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Abstract

Prior knowledge over general nonlinear sets is incor-
porated into proximal nonlinear kernel classification
problems as linear equalities. The key tool in this
incorporation is the conversion of general nonlinear
prior knowledge implications into linear equalities in
the classification variables without the need to ker-
nelize these implications. These equalities are then
included into a proximal nonlinear kernel classifica-
tion formulation [1] that is solvable as a system of
linear equations. Effectiveness of the proposed formu-
lation is demonstrated on a number of publicly avail-
able classification datasets. Nonlinear kernel classi-
fiers for these datasets exhibit marked improvements
upon the introduction of nonlinear prior knowledge
compared to nonlinear kernel classifiers that do not
utilize such knowledge.

Keywords: prior knowledge, kernel classifica-
tion, proximal support vector machines

1 Introduction

Prior knowledge has been used effectively in improv-
ing classification for both linear [2] and nonlinear
[3] kernel classifiers, as well as for nonlinear kernel
approximation [4, 5]. In these applications, prior
knowledge was specified over polyhedral regions, but
when a nonlinear kernel was used, the kernelized prior
knowledge could not be easily related to the original
polyhedral regions. To address this concern, prior
knowledge over nonlinear regions was added to non-
linear kernel approximation [6] and classification [7]
without kernelizing the prior knowledge. All of these
approaches convert the prior knowledge into linear in-
equalities which are added to the linear programming
formulation of a support vector machine for classifi-
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cation or approximation [8]. In contrast, proximal
nonlinear classifiers [1, 9, 10] require only the solu-
tion of a system of linear equations. Solvers for such
systems are both computationally cheaper and more
available than linear programming solvers. Here, we
consider adding nonlinear prior knowledge as linear
equalities to proximal nonlinear classification. Con-
verting prior knowledge implications to linear equal-
ities is motivated by a theorem of the alternative for
convex functions [7, Theorem 2.1] employed as de-
scribed in Proposition 2.1 in Section 2. Other in-
teresting recent approaches to knowledge-based sup-
port vector machines include modifying the hypoth-
esis space rather than the optimization problem [11],
and adding additional points labeled based on the
prior knowledge to the dataset [12].

In Section 3 we describe our proximal nonlinear
kernel classification formulation that incorporates
nonlinear prior knowledge as linear equalities, leading
to a symmetric positive definite system of linear
equations. Section 4 shows that prior knowledge can
improve a nonlinear kernel classification significantly
on public datasets. Section 5 concludes the paper.

We describe our notation now. All vectors will be
column vectors unless transposed to a row vector by
a prime ′. The scalar (inner) product of two vectors
x and y in the n-dimensional real space Rn will be
denoted by x′y. For x ∈ Rn, ‖x‖1 denotes the 1-
norm while ‖x‖ denotes the 2-norm and x+ denotes
the vector max{x, 0}, that is the vector the i-th
component of which is the maximum of xi and 0. The
notation A ∈ Rm×n will signify a real m × n matrix.
For such a matrix, A′ will denote the transpose of
A, Ai will denote the i-th row of A and A·j the j-
th column of A. A vector of all ones or all zeros
of arbitrary dimension will be denoted by e and 0,
respectively. Thus for y ∈ Rm the notation e′y
will denote the sum of the components of y. For
A ∈ Rm×n and B ∈ Rn×k, a kernel K(A,B) maps
Rm×n × Rn×k into Rm×k. In particular, if x and
y are column vectors in Rn then, K(x′, y) is a real
number, K(x′, A′) is a row vector in Rm and K(A,A′)
is an m × m matrix. We shall make no assumptions



whatsoever on our kernels other than symmetry, that
is K(x′, y)′ = K(y′, x), and in particular we shall not
assume or make use of Mercer’s positive definiteness
condition [13]. The base of the natural logarithm
will be denoted by ε. In this paper, we will use
the frequently used Gaussian kernel [8] whose ij-
th element, i = 1, . . . ,m, j = 1, . . . , k, is given
by: (K(A,B))ij = ε−µ‖Ai

′−B·j‖
2

, where A ∈ Rm×n,
B ∈ Rn×k and µ is a positive constant.

2 Conversion of Nonlinear Prior Knowledge

into a Linear Equality

We wish to impart prior knowledge to the problem
of classifying a dataset in Rn represented by the m
rows of the matrix A ∈ Rm×n that are labeled as
belonging to the class +1 or −1 by a corresponding
diagonal matrix D ∈ Rm×m of ±1’s. The nonlinear
kernel classifier to be generated based on this data as
well as prior knowledge will be:

(2.1) K(x′, B′)u − γ = 0,

where B ∈ Rk×n and K(x′, B′) : R1×n × Rn×k −→
R1×k is an arbitrary kernel function. The values of
the variables u ∈ Rk and γ ∈ R will be determined
by an optimization problem such that the labeled
data A satisfy, to the extent possible, the separation
condition:

(2.2) D(K(A,B′)u − eγ) ≥ 0.

Condition (2.2) places the +1 and −1 points repre-
sented by A on opposite sides of the nonlinear sep-
arating surface (2.1). In general the matrix B is set
equal to A [14]. However, in reduced support vec-
tor machines [15] B = Ā, where Ā is a submatrix of
A whose rows are a small subset of the rows of A.
In fact, B can be an arbitrary matrix in Rk×n. We
now impose prior knowledge on the construction of
our classifier function K(x′, B′)u − γ to ensure that
a certain set of points lies on the +1 side of the clas-
sifier (2.1). We achieve this through the following
implication:

(2.3) g(x) ≤ 0 =⇒ K(x′, B′)u − γ = 1, ∀x ∈ Γ1.

Here, g(x) : Γ1 ⊂ Rn −→ Rr is an r-dimensional
function defined on a subset Γ1 of Rn that determines
the region {x|g(x) ≤ 0}. The prior knowledge
requires that for any x in this region, the classifier
function K(x′, B′)u − γ return a value +1. Such
points would thus be classified in class +1. Prior
knowledge about the class −1 can be added through
a similar implication.

It is interesting to compare the implication (2.3)
to the similar implication treated in [7]:

(2.4) g(x) ≤ 0 =⇒ K(x′, B′)u − γ ≥ 1, ∀x ∈ Γ1.

This implication has the same interpretation as (2.3),
but uses an inequality constraint to impose the condi-
tion that any x for which g(x) ≤ 0 is classified in class
+1. While implication (2.4) can be added as a set of
linear inequality constraints to the linear program-
ming formulation of an SVM, here we shall preserve
the computational advantages of the proximal SVM
by adding implication (2.3) as a set of linear equality
constraints as follows.

The implication (2.3) can be written in the
following equivalent form:

(2.5) g(x)+ = 0 =⇒ K(x′, B′)u−γ = 1, ∀x ∈ Γ1,

where g(x)+ = max{g(x), 0}. The use of g(x)+ = 0
in (2.5) in place of g(x) ≤ 0 is a key observation
which allows us to convert the implication to a linear
equality via Proposition 2.1 with a multiplier that is
not required to be nonnegative. We can then add
this linear equality to a proximal nonlinear classifier
without adding nonnegativity constraints. Motivated
by a fundamental theorem of the alternative for con-
vex functions [7, Theorem 2.1],[16, Corollary 4.2.2],
Proposition 2.1 ensures implication (2.5) is satisfied
once a certain linear equality is satisfied.

Proposition 2.1. Prior Knowledge as a Linear

Equality The implication (2.5), or equivalently the
implication (2.3), is satisfied if ∃v ∈ Rr such the
following linear equality in v is satisfied:

(2.6) K(x′, B′)u − γ − 1 + v′g(x)+ = 0,∀x ∈ Γ1.

Proof If the implication (2.5) does not hold then
for some x ∈ Γ1 such that g(x)+ = 0 it follows
that K(x′, B′)u − γ 6= 1. However this leads to the
following contradiction for that x:
(2.7)
0 = K(x′, B′)u−γ−1+v′g(x)+ = K(x′, B′)u−γ−1 6= 0,

where the first equality follows from (2.6), the second
equality from g(x)+ = 0 and the inequality follows
from K(x′, B′)u − γ 6= 1. �

We now use Proposition 2.1 to formulate proxi-
mal knowledge-based nonlinear kernel classification.

3 Nonlinear Prior Knowledge via Proximal

Support Vector Machines

We first formulate the classification problem (2.2)
without knowledge using a proximal support vector



machine approach [1]. The error in a proximal
formulation is measured by closeness to the two
following bounding surfaces that are parallel to the
classifier (2.1) in the u-space:

(3.8)
K(x′, B′)u − γ = +1
K(x′, B′)u − γ = −1

In contrast to an ordinary support vector machine,
the two parallel surfaces in (3.8) are chosen so that
the first surface is close to the training points in
class +1 and the second surface is close to points
in class −1, and the two surfaces are as far apart as
possible. Thus, we measure the error in satisfying
(2.2) by how close the points in class +1 and class
−1 are to the first and second surface of (3.8), re-
spectively. This error can be succinctly written as
‖D(K(A,B′)u − eγ) − e‖. Minimizing the square of
this error with parameter weight ν/2 and the square
of the 2-norm of the variables (u, γ) for model simplic-
ity, we obtain our proximal support vector machine
classification formulation without prior knowledge:
(3.9)

min
(u,γ)

ν

2
‖D(K(A,B′)u − eγ) − e‖2 +

1

2
‖u‖2 +

1

2
γ2.

This unconstrained quadratic optimization problem
can be solved by setting its gradient, a system of
linear equations in (u, γ), equal to zero. Before we do
that we shall introduce prior knowledge in the form
of implication (2.5) by means of the linear equality
(2.6) with weight σ/2 to be satisfied in a least square
sense at ℓ discrete points xi, i = 1, . . . , ℓ in the set Γ1

as follows:

(3.10)

min
(u,γ,v)

ν
2‖D(K(A,B′)u − eγ) − e‖2+

σ
2

ℓ∑

i=1

(K(xi′, B′)u − γ − 1+

v′g(xi)+)2+
1
2‖u‖

2 + 1
2γ2 + 1

2‖v‖
2.

In the above equation, we have also added an addi-
tional regularization term, ‖v‖2. This term ensures
that the optimization problem is strongly convex, and
trades off the size of v with the fit to the data, the
extent to which (2.6) is satisfied, and the solution
complexity. Figure 1 and its caption describe an ex-
ample of the effect of v.

Remark 3.1. One important consequence of Propo-
sition 2.1 is that the multiplier v causes the lin-
ear equality (2.6) to be sufficient for the implica-
tion (2.5) to hold even if Γ1 does not closely

match {x|g(x)+ = 0}. In terms of (3.10), the dis-
cretization points xi, i = 1, . . . , ℓ need not be in the

set {x|g(x)+ = 0}. This sets our approach apart
from those such as [12] where knowledge is imparted
through discrete points in Γ1 = {x|g(x)+ = 0}. In
the extreme example shown in Figure 1, our formula-
tion (3.10) gives similar results whether Γ1 is disjoint
from {x|g(x)+ = 0} or not. In Section 4.2 we do not
ensure that every point in the discretization satisfies
the left-hand side of the prior knowledge implication.

Since the objective function of (3.10) is strongly
convex with a symmetric positive definite Hessian
matrix, it has a unique solution obtained by setting
its gradient equal to zero. This gives a system of
k + 1 + r nonsingular linear equations in as many
unknowns (u, γ, v). We note that additional prior
knowledge about the class −1 can be added to (3.10)
in an analogous way. Finally, the prior knowledge
can easily be imposed at many points by using the
incremental technique of [10] since the size of the
system of linear equations does not depend on ℓ. We
note that in the linear programming approach of [7],
both the number of constraints and the number of
variables in the linear program grow linearly with ℓ.
The fact that the size of the system of equations does
not depend on ℓ allows our approach to potentially
handle knowledge which is imposed at a huge number
of points, which would be difficult to solve using the
linear programming formulation.

We turn now to numerical examples of our prox-
imal prior knowledge approach.

4 Computational Results

We illustrate the effectiveness of our proposed for-
mulation in two ways: by comparing our approach
to [7], and by comparing our approach to a proximal
nonlinear kernel classifier without knowledge in new
experiments in which prior knowledge is generated
from ordinary datasets.

4.1 Comparing Linear Programming and

Proximal Knowledge-Based Classification In
[7], prior knowledge implications of the form in (2.3)
were converted to linear inequalities and added to
a linear program for nonlinear kernel classification.
Prior knowledge was incorporated into three publicly
available datasets: the Checkerboard dataset [17],
the Spiral dataset [18], and the Wisconsin Prognos-
tic Breast Cancer (WPBC) dataset [19]. Here we
compare our proposed proximal formulation to the
linear programming formulation using the same prior
knowledge. Our results show that our proximal for-
mulation can obtain solutions with accuracy similar
to the linear programming formulation, while being



(a) (b) (c)

Figure 1: An example showing that the set Γ1 discretized in (3.10) need not contain the region {x|g(x)+ = 0} in which

the left-hand side of the implication (2.5) is satisfied. Each of the figures (a), (b) and (c) depict 600 points denoted

by “+” and “o” that are obtained from three bivariate normal distributions. Another 400 points from the same three

distributions in the same proportions were used for training and tuning each of the three classifiers of figures (a), (b)

and (c). For simplicity, we use the linear kernel K(A, B′) = AB′ to obtain three different linear classifiers to discriminate

between the +’s and o’s. A linear classifier without prior knowledge is shown in (a). Note that some + points from

the rarely sampled distribution are misclassified. Figures (b) and (c) show classifiers using the same data and the prior

knowledge (‖x −
`

−3

3

´

‖ − 1)+ = 0 =⇒ K(x′, B′)u − γ = 1. The left hand side of this implication is true in the region

enclosed by the circle in (b) and (c) and contains most of the + points from the rarely sampled distribution. The prior

knowledge is imposed over a single grid of 100 evenly spaced points in the square shown and the parameter σ of (3.10)

was set to 1. In (b), the square contains the set {x|(‖x−
`

−3

3

´

‖−1)+ = 0}, but the square of (c) is highly disjoint from the

set {x|(‖x −
`

−3

3

´

‖ − 1)+ = 0}. Nevertheless, the classifier of (c) is nearly indistinguishable from that in (b). Techniques

such as [12], which incorporate prior knowledge by adding points which conform to the knowledge as “pseudo” points

to the training set, will not make use of a discretization such as that of (c). Our approach is able to handle points in

the discretization that are not in {x|g(x)+ = 0} partly because of the multiplier v in (2.6). At the solution shown in (c),

v′g(x)+ > 1 in the discretized region. For such x, (2.6) implies that x should have class −1. Thus, v can select which

side of the separating surface (2.1) points with a relatively large g(x)+ should lie on. In (3.10), the size of v is traded

off against the fit to the data, the extent to which (2.6) is satisfied, and the solution complexity. This extreme example

illustrates an important property of our approach: Proposition 2.1 does not require that Γ1 match the set {x|g(x)+ = 0}

closely.

much faster to solve.

4.1.1 Checkerboard and Spiral Problems

The frequently used Checkerboard [17, 3] and Spi-
ral [18, 1] datasets are synthetic datasets for which
prior knowledge can be easily constructed [7, 3].
The checkerboard dataset consists of points with la-
bels “black” and “white” arranged in the shape of
a checkerboard, while the spiral dataset consists of
points from two concentric spirals. Table 1 shows
both the accuracy and CPU time needed to run the
experiments of [7] using both the linear programming
formulation originally used in [7] and our proposed
proximal formulation. On both datasets, 225 opti-
mization problems were solved. In the checkerboard
experiment, the matrix B has 16 rows, and the prior
knowledge is imposed at 200 points. In the spiral
dataset, the matrix B has 194 rows, and the knowl-
edge is imposed at 194 points. For the checkerboard
experiment, the knowledge consists only of the two

leftmost squares of the bottom row, while for the
spiral dataset, the knowledge was constructed by in-
specting the source code used to generate the spiral.
The experiments were performed using MATLAB 7.2
[20] under CentOS Linux 4.4 on an Intel Pentium
IV 3 GHz processor with 1 gigabyte of RAM. The
running times were calculated by the MATLAB pro-
filer, and represent the total time during the exper-
iment consumed in setting up and solving the opti-
mization problem. Linear programs were solved us-
ing CPLEX 9.0 [21], and the linear systems of equa-
tions were solved using the chol routine of MAT-
LAB. For the spiral dataset, flush-to-zero mode was
enabled to speed the multiplication of numbers with
very small magnitude. This change had a significant
impact on the running time of our proximal formu-
lation, and negligible impact on the linear program-
ming formulation. Note that the proximal formula-
tion has similar accuracy to the linear programming
formulation, while being approximately an order of



magnitude faster to solve. We further note that con-
sidering only the time taken to solve the linear pro-
gram or linear system of equations gives a similar
result, thus we do not believe that the difference in
computation time can be attributed to the setup pro-
cedure.

4.1.2 Predicting Breast Cancer Survival

Time We have also tested our proposed proximal
formulation on the Wisconsin Prognostic Breast Can-
cer (WPBC) dataset [19]. This dataset contains
thirty cytological features obtained from a fine nee-
dle aspirate and two histological features, tumor size
and the number of metastasized lymph nodes, ob-
tained during surgery for breast cancer patients. The
dataset also contains the amount of time before each
patient experienced a recurrence of the cancer, if
any. Here, we shall consider the task of predicting
whether a patient will remain cancer free for at least
24 months. In [7] prior knowledge was used to achieve
91% correctness on this task using only the histo-
logical features. In this dataset, 81.9% of patients
are cancer free after 24 months. To our knowledge,
the best result on this dataset without the knowledge
used in [7] is 86.3% correctness obtained by Bennett
in [22]. We have repeated the experiment of [7], which
we briefly describe below for completeness.

In order to evaluate our proposed proximal ap-
proach, we compared the misclassification rates of
two classifiers on this dataset. One classifier is
learned without prior knowledge, while the second
classifier is learned using the prior knowledge from [7],
which is depicted in Figure 2 (a). For both cases the
rows of the matrices A and B of (3.10) were set to the
usual values, that is to the coordinates of the points
of the training set. The misclassification rates are
computed using leave-one-out cross validation. For
each fold, the parameter ν and the kernel parame-
ter µ were chosen from the set {2i|i = −7, . . . , 7} by
using ten-fold cross validation on the training set of
the fold. In the classifier with prior knowledge, the
parameter σ was set to 106 for simplicity, which cor-
responds to very strict adherence to the prior knowl-
edge. The results are summarized in Figure 2 (b).
We note that both the linear programming and prox-
imal formulations misclassify the same number of ex-
amples on this dataset, even though they generate
slightly different separating surfaces. The reduction
in misclassification rate indicates that our proximal
approach can achieve the same 50% improvement in
classification accuracy using prior knowledge as the
linear programming formulation [7].

4.2 Generating Prior Knowledge from Ordi-

nary Classification Datasets In order to further
demonstrate the effectiveness of our proposed formu-
lation, we generate prior knowledge from a subset of
an ordinary classification dataset. In these exper-
iments, we will ensure that the prior knowledge is
generated without knowing the true distribution of
the data, or inspecting the full data set. By using or-
dinary datasts, we are also able to easily demonstrate
our proposed formulation on datasets with more than
two features. In order for prior knowledge to improve
classification accuracy when combined with ordinary
data, the prior knowledge and the data must contain
different information about the “true” dataset. Thus,
we simulate a situation where a knowledge-based clas-
sifier using both prior knowledge and data will be su-
perior to a classifier that uses either the data or prior
knowledge alone. In our scenario, the set M+ will
consist mostly of points from the class +1 and will
be used only to generate prior knowledge, while the
set M− will consist mostly of points from the class
−1 and will be used only as ordinary data. We var-
ied the percentage of negative points in M+. As this
percentage approaches fifty percent one expects that
M+ and M− will contain the same information, and
the gain due to incorporating prior knowledge will be
minimal. Construction of the sets M+ and M− is
illustrated in Figure 3 (a). The motivation for this
scenario is a situation in which prior knowledge is
available about data in the set M+, while only the set
M− is available as ordinary data. Thus, the learning
algorithm will need to incorporate both prior knowl-
edge about M+ and the conventional data in M− in
order to generalize well to new points.

One can imagine many methods of automatically
generating prior knowledge from M+, such as [23].
However, we used the simple approach of learning
a proximal support vector machine on the points in
M+. The knowledge we used was the following:
(4.11)

(−φ(x))+ = 0 =⇒ K(x′, B′)u − γ = 1, ∀x ∈ Γ1,

where φ(x) is the classifier function (2.1) learned on
the set M+. This knowledge simply states that if
the proximal support vector machine represented by
φ(x) labels the point as +1, then the point should be
labeled +1 by the classifier which combines both data
and knowledge. We impose the prior knowledge of
(4.11) at a random sample from a multivariate normal
distribution fit to the points in M+. We chose the
multivariate normal distribution for simplicity, but
one can easily imagine using a more sophisticated
distribution. Investigation of different methods of
generating prior knowledge is left to future research.



Table 1: Accuracy and CPU time in seconds for the linear programming formulation [7] and the proposed proximal

formulation. Each running time result is the total time needed to set up and solve the optimization problem, either

as a linear program or a linear system of equations, 225 times. The time ratio is the time for the linear programming

formulation divided by the time for the proximal formulation.

Dataset Linear Programming SVM [7] Proximal SVM Time
Accuracy Accuracy

CPU Time in Seconds CPU Time in Seconds Ratio

Checkerboard without 89.2% 94.2%
Knowledge 2.3 0.2 11.5

Checkerboard with 100% 98.0%
Knowledge 26.4 3.2 8.3

Spiral without 79.9% 80.4%
Knowledge 21.3 4.3 5.0
Spiral with 100% 100%
Knowledge 300.2 19.0 15.8
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Figure 2: (a) Number of metastasized lymph nodes versus tumor size for the WPBC (24 mo.) dataset. The solid

dots represent patients who experienced a recurrence within 24 months of surgery, while the crosses represent the

cancer free patients. The shaded regions which correspond to the areas in which the left-hand side of one of the three

implications in the form of Equation (2.3) is true simulate an oncological surgeon’s prior knowledge regarding patients

that are likely to have a recurrence. Prior knowledge was enforced at the points enclosed in squares. (b) Leave-one-out

misclassification rate of classifiers with and without knowledge on the WPBC (24 mo.) dataset. Best result is in bold.



Since φ(x) is learned with few negative examples, it
will likely not be accurate over the entire dataset.
In fact, in our experiments φ(x) alone always had
similar accuracy on the test set to the classifier built
using only the data in M−. Intuitively, since φ(x) is
a kernel classifier, the knowledge we imposed states
that points which are “close” to the +1 points in
M+ used to construct φ(x) should be labeled +1.
However, enforcement of this knowledge is balanced
against fitting the ordinary data points in M−.
Thus, the combination of data and prior knowledge
is necessary to obtain high accuracy.

Figure 3 (b) shows the result of applying
the above procedure to Thompson’s Normally Dis-
tributed Clusters on Cubes (NDCC) dataset [24].
This dataset generates points according to multivari-
ate normal distributions centered at the vertices of
two concentric 1-norm cubes. Points are mostly la-
beled according to the cube they were generated from,
with some specified fraction of noisy labels. We gen-
erated a dataset of 20000 points in R50, with ten per-
cent label noise. We used 300 points as a training
set, 2000 separate points to choose parameters from
the set {2i|i = −7, . . . , 7}, and the remaining 17700
points to evaluate the classifiers. In Figure 3 (b), we
compare an approach using only the data in the set
M− and no prior knowledge to an approach based
on the same data plus prior knowledge obtained from
the points in M+, with σ equal to ν. The knowl-
edge was imposed on |M+| randomly sampled points
as described above, where |M+| is the cardinality
of M+. In our experience on this dataset, reducing
the number of sampled points to less than half |M+|
had very little impact on accuracy. Determining the
appropriate number of points to sample for a given
dataset is left to future work. The approach using
prior knowledge is able to approach ten percent mis-
classification error even when relatively few points in
M− have label +1.

Figure 4 shows the result of applying the above
procedure to the publicly available Wisconsin Di-
agnostic Breast Cancer (WDBC) and Ionosphere
datasets [19]. In the WDBC dataset, the task is to
classify tumors as either malignant or benign based
on the 30 features given. To simulate the scenario
in which most information about malignant tumors
is available only through prior knowledge, while in-
formation about benign tumors is more readily gath-
ered, we label malignant tumors +1. In the Iono-
sphere dataset, the task is to classify radar returns
as either good or bad based on the 34 features
given. We chose to label bad radar returns +1. To
asses the generalization performance of our approach,

we computed ten-fold cross validation misclassifica-
tion rates. We chose all parameters from the set
{2i|i = −7, . . . , 7} using ten-fold cross validation on
the training set. When using prior knowledge, we
set σ equal to ν. In carrying out the cross valida-
tion experiment, M+ and M− were formed from the
training set for each fold. In Figure 4, three differ-
ent approaches are compared. In the first approach,
represented by squares, the classifier is learned us-
ing only the data in M− with no prior knowledge.
This classifier performs poorly until a sufficient num-
ber of +1 points are present in M−. The second ap-
proach, represented by circles, learns a classifier using
the data in M− plus the prior knowledge from M+

described by (4.11). The knowledge was imposed at
|M+| randomly generated points as described above.
Note that the use of prior knowledge results in con-
siderable improvement, especially when there are few
points in M+ with class −1. For reference, we include
an approach represented by triangles which uses no
prior knowledge, but all the data. Note that this clas-
sifier has the same misclassification rate regardless of
the fraction of negative points in M+. Including this
approach illustrates that our approach is able to use
the prior knowledge generated from M+ to recover
most of the information in M+. Recall that we are
simulating a situation in which M+ is only available
as prior knowledge.
5 Conclusion and Outlook

We have proposed a computationally effective frame-
work for handling general nonlinear prior knowledge
in proximal kernel classification problems. We have
reduced such prior knowledge to an easily imple-
mented linear equation that can be incorporated into
an unconstrained strongly convex quadratic program-
ming problem. We have demonstrated the effective-
ness of our approach on a number of publicly available
datasets. One possible future extension is to even
more general prior knowledge, such as that where the
right hand side of the implication (2.3) is replaced
by a very general nonlinear inequality involving the
classification function (2.1). Other interesting future
extensions include proximal knowledge-based approx-
imation, and the construction of an interface which
allows users to easily specify arbitrary regions to be
used as prior knowledge.
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