
Feature Selection for Nonlinear Kernel Support Vector Machines

Olvi L. Mangasarian and Edward W. Wild
Computer Sciences Department

University of Wisconsin
Madison, WI 53706

{olvi,wildt}@cs.wisc.edu

Abstract

An easily implementable mixed-integer algorithm is pro-
posed that generates a nonlinear kernel support vector ma-
chine (SVM) classifier with reduced input space features. A
single parameter controls the reduction. On one publicly
available dataset, the algorithm obtains 92.4% accuracy
with 34.7% of the features compared to 94.1% accuracy
with all features. On a synthetic dataset with 1000 features,
900 of which are irrelevant, our approach improves the ac-
curacy of a full-feature classifier by over 30%. The pro-
posed algorithm introduces a diagonal matrix E with ones
for features present in the classifier and zeros for removed
features. By alternating between optimizing the continu-
ous variables of an ordinary nonlinear SVM and the integer
variables on the diagonal of E, a decreasing sequence of
objective function values is obtained. This sequence con-
verges to a local solution minimizing the usual data fit and
solution complexity while also minimizing the number of
features used.

1. Introduction

Feature selection is a fairly straightforward procedure for
linear support vector machine (SVM) classifiers. For exam-
ple, a 1-norm support vector machine linear classifier ob-
tained by either linear programming or concave minimiza-
tion will easily reduce features [1]. However, when simi-
lar techniques are applied to nonlinear SVM classifiers, the
resulting reduction is not in the number of input space fea-
tures but in the number of kernel functions needed to gen-
erate the nonlinear classifier [6]. This may be interpreted
as a reduction in the dimensionality of the higher dimen-
sional transformed space, but does not result in any reduc-
tion of input space features. It is precisely this reduction
that we are after in this paper, namely, a reduced number
of input space features that we need to input into a nonlin-
ear SVM classifier. We shall achieve this by replacing the

usual nonlinear kernel K(A, A′), where A is the m×n data
matrix, by K(AE, EA′) where E is an n×n diagonal ma-
trix of ones and zeros. The proposed algorithm alternates
between computing the continuous variables (u, γ) of the
nonlinear kernel classifier K(x′E, EA′)u−γ = 0, by using
linear programming, and the integer diagonal matrix E of
ones and zeros by successive minimization sweeps through
its components. The algorithm generates a decreasing se-
quence of objective function values that converge to a local
solution that minimizes the usual data fit and the number of
kernel functions used while also minimizing the number of
features used. A possibly related result, justifying the use
of reduced features, is that of random projection on a sub-
space of features for Gaussian mixtures which states that
data from a mixture of k Gaussians can be projected into
O(log k) dimensions while retaining approximate separa-
bility of the clusters [3].

There has been considerable recent interest in feature se-
lection for SVMs. Weston et al. propose reducing features
based on minimizing generalization bounds via a gradient
approach [19]. In [5], Frölich and Zell introduce an incre-
mental approach based on ranking features by their effect
on the margin. An approach based on a Bayesian interpre-
tation of SVMs is presented by Gold et al. [7], and an ap-
proach based on smoothing spline ANOVA kernels is pro-
posed by Zhang [20]. In [8], Guyon et al. use a wrapper
method designed for SVMs. Another possibility is to use
a filter method such as Relief [14] in conjunction with an
SVM. None of these approaches utilize the straightforward
and easily implementable mixed-integer programming for-
mulation proposed here.

We briefly outline the contents of the paper now. In
Section 2 we derive the theory behind our reduced fea-
ture support vector machine classifier and state our algo-
rithm for generating our RFSVM and its convergence. Sec-
tion 3 gives computational results on two publicly available
datasets that show the effectiveness and utility of RFSVM.
In particular, we will show that RFSVM is often able to re-
duce features by similar percentages to those of established

Seventh IEEE International Conference on Data Mining - Workshops

0-7695-3019-2/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDMW.2007.30

231

techniques for linear classifiers, while maintaining the ac-
curacy associated with nonlinear classifiers. We will further
demonstrate that the feature selection and classification ac-
curacy of RFSVM is comparable to two other feature selec-
tion methods which can be applied to nonlinear classifica-
tion. Finally, we will show that RFSVM can handle prob-
lems with large numbers of features. Section 4 concludes
the paper.

A word about our notation and background material fol-
lows. All vectors will be column vectors unless transposed
to a row vector by a prime superscript ′. The scalar (in-
ner) product of two vectors x and y in the n-dimensional
real space Rn will be denoted by x′y and the p-norm of

x, (
n∑

i=1

|xi|p) 1
p , will be denoted by ‖x‖p. For a matrix

A ∈ Rm×n, Ai denotes the ith row of A, while A·j de-
notes j-th column of A and Aij denotes the element of A
in row i and column j. A column vector of ones of ar-
bitrary dimension will be denoted by e. The base of the
natural logarithm will be denoted by ε. For A ∈ Rm×n

and B ∈ Rn×l, the kernel K(A, B) is an arbitrary function
that maps Rm×n × Rn×l into Rm×l. In particular, if x and
y are column vectors in Rn then, K(x′, y) is a real num-
ber, K(x′, A′) is a row vector in Rm and K(A, A′) is an
m × m matrix. We shall employ the widely used Gaussian
kernel [18, 11, 15] ε−µ‖Ai−Aj‖2

2 , i, j = 1, . . . , m for all our
numerical tests. The notation E = diag(1 or 0) denotes a
diagonal matrix with ones or zeros on the diagonal while x+

denotes the nonnegative vector generated from x by setting
all its negative components to zero. Cardinality of a vector
or matrix denotes the number of its nonzero components.
The abbreviation “s.t.” stands for “subject to.”

2. Reduced Feature Support Vector Machine
(RFSVM) Formulation and Algorithm

We consider a given set of m points in the n-dimensional
input feature space Rn represented by the matrix A ∈
Rm×n. Each point represented by Ai, i = 1, . . . , m, be-
longs to class +1 or class -1 depending on whether Dii is 1
or -1, where D ∈ Rm×m is a given diagonal matrix of plus
or minus ones. We shall attempt to discriminate between the
classes +1 and -1 by a nonlinear classifier induced by a com-
pletely arbitrary kernel K(A, A′) and parameters u ∈ Rm

and γ ∈ R, as follows. The classifier (1) is determined by
the nonlinear surface:

K(x′, A′)u − γ = 0, (1)

which classifies points as belonging to class +1 if
K(x′, A′)u− γ > 0 and as class -1 if K(x′, A′)u− γ < 0.

The parameters u ∈ Rm and γ ∈ R in the classifier
(1) are determined by solving the following linear program

[11, 2, 15]:

min
u,γ,y,s

νe′y + e′s

s.t. D(K(A, A′)u − eγ) + y ≥ e,
−s ≤ u ≤ s,

y ≥ 0.

(2)

Here ν is a positive parameter that weights the misclassifi-
cation error e′y = ‖y‖1 versus the model-simplifying reg-
ularization term e′s = ‖u‖1. In fact, it turns out that min-
imizing e′s = ‖u‖1 leads to a minimal number of kernel
functions used in the classifier (1) by zeroing components
of the variable u [6]. However, our primary concern here
is to use as few components of the input space vector x as
possible in the nonlinear classifier (1). We proceed to do
that now as follows.

We introduce a diagonal matrix E ∈ Rn×n with ones or
zeros on its diagonal. The zeros correspond to suppressed
input space features and the ones correspond to features uti-
lized by the nonlinear classifier (1) which we modify as fol-
lows:

K(x′E, EA′)u − γ = 0. (3)

In turn, the linear program (2) becomes the following
mixed-integer nonlinear program:

min
u,γ,y,s,E

νe′y + e′s + σe′Ee

s.t. D(K(AE, EA′)u − eγ) + y ≥ e,
−s ≤ u ≤ s,

y ≥ 0,
E = diag(1 or 0),

(4)

where σ is a positive parameter that that weights the fea-

ture suppression term e′Ee =
n∑

i=1

Eii. Mixed-integer pro-

grams are basically NP-hard. However, we can easily ob-
tain a local solution by fixing E and solving the resulting
linear program (4) for (u, γ, y, s), then fixing (u, γ, y, s)
and sweeping through the components of E altering them
successively only if such alteration decreases the objec-
tive function. Repeating this process leads to the follow-
ing algorithm which, in addition to suppressing input space
features, suppresses components of the variable u because
of the 1-norm term in the objective function and hence
utilizes a minimal number of kernel function components
K(AE, (EA′)·j), j = 1, . . . , m.

We state our algorithm now. More implementation de-
tails are given in Section 3.

Algorithm 2.1. Reduced Feature SVM (RFSVM) Algo-
rithm

232

(1) Pick a random E = diag(1 or 0) with cardinality of
E inversely proportional to σ. Pick a fixed integer k,
typically very large, for the number of sweeps through
E, and a stopping tolerance tol, typically 1e − 6.

(2) Solve the linear program (4) for a fixed E and denote
its solution by (u, γ, y, s).

(3) For � = 1, . . . , kn and j = 1 + (� − 1)mod n:

(a) Replace Ejj by 1 if it is 0 and by 0 if it is 1.

(b) Compute:

f(E) = νe′(e−D(K(AE, EA′)u−eγ))++σe′Ee,

before and after changing Ejj .

(c) Keep the new Ejj only if f(E) decreases by more
than tol. Else undo the change in Ejj . Go to (a)
if j < n.

(d) Go to (4) if the total decrease in f(E) is less than
or equal to tol in the last n steps.

(4) Solve the linear program (4) for a fixed E and denote
its solution by (u, γ, y, s). Stop if objective function
decrease of (4) is less than tol.

(5) Go to (3).

Remark 2.2. We note that f(E) in the RFSVM algorithm
is equivalent to νe′y + σe′Ee when y takes on its optimal
value generated by the first and the next-to-the-last sets of
constraints of (4). Note that f(E) still depends on E even
for the case when σ = 0.

We establish now convergence of the RFSVM algorithm
for tol = 0, however computationally we use tol = 1e− 6.

Proposition 2.3. RFSVM Convergence
For tol = 0, the nonnegative nonincreasing values of
the sequence of objective function values {νe′yr + e′sr +
σe′Ere}r=∞

r=1 , where the superscript r denotes iteration
number of step (4) of Algorithm 2.1, converge to (νe′ȳ +
e′s̄+σe′Ēe) where (ū, γ̄, ȳ, s̄, Ē) is any accumulation point
of the sequence of iterates {ur, γr, yr, sr, Er} generated by
Algorithm 2.1. The point (ū, γ̄, ȳ, s̄, Ē) has the following
local minimum property:

(νe′ȳ + e′s̄ + σe′Ēe) = min
u,γ,y,s

νe′y + e′s + σe′Ēe

s.t. D(K(AĒ, ĒA′)u − eγ) + y ≥ e
−s ≤ u ≤ s

y ≥ 0,
(5)

and for p = 1, . . . , n:

f(Ē) ≤ f(E), for Epp = 1−Ēpp, Ejj = Ējj , j �= p. (6)

Proof. That the sequence {νe′yr + e′sr + σe′Ere}r=∞
r=1

converges follows from the fact that it is nonincreas-
ing and bounded below by zero. That (5) is satisfied
follows from the fact that each point of the sequence
{ur, γr, yr, sr, Er} satisfies (5) with (ū, γ̄, ȳ, s̄, Ē) re-
placed by {ur, γr, yr, sr, Er} on account of step (4) of
Algorithm 2.1. That (6) is satisfied follows from the fact
that each point of the sequence {Er} satisfies (6) with
(Ē) replaced by {Er} on account of step (3) of Algo-
rithm 2.1. Hence every accumulation point (ū, γ̄, ȳ, s̄, Ē)
of {ur, γr, yr, sr, Er} satisfies (5) and (6).

It is important to note that by repeating steps (3) and (4)
of Algorithm 2.1, a feature dropped in one sweep through
the integer variables may be added back in another cy-
cle, and conversely. Thus, our algorithm is not merely a
naı̈ve greedy approach because the choices of one iteration
may be reversed in later iterations, and we have observed
this phenomenon in our experiments. However, cycling is
avoided by choosing tol > 0, which ensures that the se-
quence of objective values generated by Algorithm 2.1 is
strictly decreasing. It is also important to note that when
changing the integer variables in step (3), only the objective
function needs to be recomputed, which is much faster than
solving the linear program in step (4). In fact, as we shall
discuss in Section 3, we have found that the cycle through
the integer variables in step (3) tends to be repeated more
often than the linear program of step (4). We turn now to
computational testing of our approach.

3. Computational Results

We illustrate the effectiveness of our Reduced Feature
SVM (RFSVM) on two datasets from the UCI Machine
Learning Repository [13] and on synthetic data generated
using Michael Thompson’s NDCC generator [17]. The
UCI datasets are used to compare the feature selection and
classification accuracy of RFSVM to the following two
algorithms: recursive feature elimination (RFE), a wrap-
per method designed for SVMs [8], and Relief, a filter
method [14]. A feature-reducing linear kernel 1-norm
SVM (SVM1) [1], and a nonlinear kernel 1-norm SVM
(NKSVM1) [11] with no feature selection are used as base-
lines. The synthetic NDCC data is used to illustrate the ef-
fectiveness of RFSVM on problems with large numbers of
features, including a problem with 1000 features, 900 of
which are irrelevant.

3.1 UCI Datasets

We use the UCI datasets to compare RFSVM to two
other algorithms. RFE and Relief are used to illustrate how

233

RFSVM maintains classification accuracy for different de-
grees of feature selection. SVM1 and NKSVM1 are used
to establish baselines for feature selection and classifica-
tion accuracy. For the sake of efficiency, we use the experi-
mental methodology described below to compare the algo-
rithms. We first briefly describe RFE and Relief.

3.1.1. RFE. Recursive Feature Elimination (RFE) is a
wrapper method designed for SVMs [8]. First an SVM
(u, γ) is learned using all features, then features are ranked
based on how much the margin u′K(A, A′)u changes when
each feature is removed separately. Features which have a
small effect on the margin are considered less relevant. A
given percentage of the least relevant features are removed,
and the entire procedure is repeated with the remaining fea-
tures. In our experiments, we remove one feature at a time
until the reported number of features is reached. Note that
our RFSVM procedure uses the objective value f(E) to de-
termine whether to include or remove each feature, and re-
moves or keeps features if the objective function decreases
by more than a threshold, without first ranking the features.
Furthermore, once a feature is removed by RFE it is never
again considered for inclusion in the final classifier, while
any feature removed during a sweep through the integer
variables E in our Algorithm 2.1 may be included by a later
sweep.

3.1.2. Relief. Relief is a filter method for selecting features
[14]. Features are ranked by computing weights as follows.
For a randomly chosen training example, find the nearest
example with the same class (the nearest hit), and the near-
est example in the other class (the nearest miss). Then up-
date the weight of each feature by subtracting the absolute
value of the difference in feature values between the exam-
ple and the nearest hit, and adding the absolute value of the
difference between the example and the nearest miss. This
procedure is then repeated several times, with a different
random example each time. Features with high weight are
considered more relevant. Relief may be used with any bi-
nary classification algorithm, but in the following we use it
exclusively with a 1-norm Gaussian kernel SVM.

3.1.3. Methodology. To save time, we tuned each algorithm
by using 1

11 of each dataset as a tuning set, and performed
ten-fold cross validation on the remaining 10

11 . The tuning
set was used to choose the parameters ν and µ on the first
fold, and the chosen parameters were then used for the re-
maining nine folds. In order to avoid bias due to the choice
of the tuning set, we repeated the above procedure five times
using a different, randomly selected, tuning set each time.
This procedure allows us to efficiently investigate the be-
havior of the feature selection algorithms RFSVM, RFE,
and Relief on the datasets. Since the algorithms exhibit

similar behavior on the datasets, we believe that our results
support the conclusion that RFSVM is effective for learning
nonlinear classifiers with reduced input space features.

For all the algorithms, we chose ν and the Gaussian ker-
nel parameter µ from the set {2i|i ∈ {−7, . . . , 7}}. For
each dataset, we evaluated the accuracy and number of fea-
tures selected at σ ∈ {0, 1, 2, 4, 8, 16, 32, 64}. The diagonal
of E was randomly initialized so that max{n

σ , 1} features
were present in the first linear program, where n is the num-
ber of input space features for each dataset. As σ increases,
the penalty on the number of features begins to dominate
the objective. We only show values of σ for which we ob-
tained reliable results. For RFE, we removed 1 feature per
iteration. For Relief, we used 1000 iterations to determine
the feature weights.

3.1.4. Results and discussion. Figure 1 gives curves show-
ing the accuracy of RFSVM versus the number of input
space features used on the Ionosphere and Sonar datasets.
Each point on the curve is obtained by averaging five ten-
fold cross validation experiments for a fixed σ. The square
points denote the accuracy of NKSVM1, an ordinary non-
linear classifier which uses all the input space features. The
points marked by triangles represent the accuracy and fea-
ture reduction of SVM1, a linear classifier which is known
to reduce features [1]. Results for RFE are denoted by ’+’,
and results for Relief are denoted by ’�’ while results of
our RFSVM algorithm are denoted by circles. Note that
RFSVM is potentially able to obtain a higher accuracy than
the linear classifier using approximately the same number
of features on the Ionosphere and Sonar datasets. Note also
that even for σ = 0, RFSVM was able to reduce features
based only on decrease in the objective term e′y. RFSVM
is comparable in both classification accuracy and feature se-
lection to RFE and Relief.

To illustrate the efficiency of our approach, we report
the CPU time taken on the Ionosphere dataset. On this
dataset, the RFSVM algorithm required an average of 6 cy-
cles through the integer variables on the diagonal of the ma-
trix E, and the solution of 3 linear programs. The aver-
ages are taken over the classifiers learned for each fold once
the parameters were selected. Using the MATLAB profiler,
we found that the CPU time taken for one complete exper-
iment on the Ionosphere dataset was 60.8 minutes. The ex-
periment required 1960 runs of the RFSVM algorithm. Of
this time, approximately 75% was used in evaluating the
objective function, and 15% was used in solving linear pro-
grams. Our experience with the RFSVM algorithm is that
the bottleneck is often the objective function evaluations
rather than the linear programs, which suggests that signif-
icant speedups could be obtained by using more restrictive
settings of the number of sweeps k and the tolerance tol for
decreasing f(E). These measurements were taken using

234

MATLAB 7.2 [12] under CentOS Linux 4.3 running on an
Intel 3.0 GHz Pentium 4. The linear programs were solved
using CPLEX 9.0 [9] and the Gaussian kernels were com-
puted using a compiled function written in C.

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0 5 10 15 20 25 30 35 40

8 4 2 1 0

A
ve

ra
ge

 T
en

-F
ol

d
C

ro
ss

 V
al

id
at

io
n

A
cc

ur
ac

y

Number of Input Space Features Used

Ionosphere Dataset: 351 points in R34

σ

16

SVM1

NKSVM1
RFSVM

RFE

Relief

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 10 20 30 40 50 60 70

8 4 2 1 0

A
ve

ra
ge

 T
en

-F
ol

d
C

ro
ss

 V
al

id
at

io
n

A
cc

ur
ac

y

Number of Input Space Features Used

Sonar Dataset: 208 points in R60

σ
64

32
16

SVM1

NKSVM1

RFSVM

RFE

Relief

Figure 1. Ten-fold cross validation accu-
racy versus number of features used on the
Ionosphere and Sonar datasets. Results for
each algorithm are averages over five ten-
fold cross validation experiments, each us-
ing a different 1

11 of the data for tuning only,
and the remaining 10

11 for ten-fold cross vali-
dation. Circles mark the average number of
features used and classification accuracy of
RFSVM for each value of σ. ’+’, ’�’, ’�’, and
’�’ represent the same values for RFE, Re-
lief, NKSVM1, and SVM1, respectively.

3.2 NDCC Data

The NDCC dataset generator creates datasets by placing
normal distributions at the vertices of concentric 1-norm
cubes [17]. The resulting datasets are not linearly sepa-
rable, thus making them attractive testbeds for nonlinear
classifiers. We create datasets to test feature selection by

0.51

0.67

0.74

0.83

 100 200 500

A
ve

ra
ge

 A
cc

ur
ac

y
on

 1
00

0
T

es
t P

oi
nt

s

Total Number of Features Given to RFSVM and NKSVM1
 Including the 20 True Features

NDCC Dataset: 200 Training Points with 20 True Features
 and Varying Number of Random Features

0.79
0.78

RFSVM

NKSVM1

Figure 2. RFSVM1 and NKSVM1 on NDCC
data with 20 true features and 80, 180, and
480 irrelevant random features. Each point is
the average of the test set accuracy over two
independently generated datasets.

adding random normal features to an NDCC dataset and
then normalizing all features to have mean 0 and standard
deviation 1. The order of the features is shuffled. Each
dataset has 200 training points, 200 tuning points, and 1000
testing points. Accuracy of RFSVM and NKSVM1 on
the dataset is measured by choosing ν and µ from the set
{2i|i ∈ {−7, . . . , 7}} using the tuning set, and then eval-
uating the chosen classifier on the 1000 testing points. To
save time, we arbitrarily set σ in RFSVM to 1 before per-
forming any experiments.

Figure 2 shows a comparison of RFSVM and NKSVM1
on NDCC data with 20 true features as the number of irrele-
vant features increases. Note that the accuracy of NKSVM1
decreases more than the accuracy of RFSVM as more irrel-
evant features are added. When 480 irrelevant features are
added, the accuracy of RFSVM is 74%, 45% higher than
NKSVM1.

We also investigated the performance of RFSVM on
NDCC data with 1000 features, 900 of which were irrele-
vant. To improve the running time of RFSVM on problems
with such large numbers of features, we implemented op-
timizations which took advantage of the form of the Gaus-
sian kernel. We also used the Condor distributed comput-
ing system [10], which allowed us to evaluate Algorithm
2.1 for several tuning parameters simultaneously. Over 10
datasets, the average classification accuracy of RFSVM was
70%, while the average classification accuracy of NKSVM1
was 53%. Thus, the feature selection provided by RFSVM
leads to a 32% improvement over a classifier with no fea-
ture selection. We expect that even better accuracy could
be obtained by tuning σ, and heuristics to choose σ are an

235

important topic of future research.
When using Condor, we used the freely available CLP

linear programming solver [4] to solve the linear programs
and the MATLAB compiler version 4.5 to produce a stand-
alone executable which ran Algorithm 2.1 for given values
of ν and µ. On the same machine described above, the av-
erage time to run this executable for the parameters chosen
by the tuning procedure was 115 seconds. Further speedups
may be possible for some kernels, including the Gaussian
kernel, by using approximations such as [16].

4. Conclusion and Outlook

We have presented a new approach to feature selection
for nonlinear SVM classifiers for a completely arbitrary ker-
nel. Our approach is formulated as an easily implementable
mixed-integer program and solved efficiently by alternating
between a linear program to compute the continuous param-
eter values of the classifier and successive sweeps through
the objective function to update the integer variables repre-
senting the presence or absence of each feature. This pro-
cedure converges to a local minimum that minimizes both
the usual SVM objective and the number of input space fea-
tures used. Our results on two publicly available datasets
and synthetic NDCC data show that our approach efficiently
learns accurate nonlinear classifiers with reduced numbers
of features. Extension of RFSVM to regression problems,
further evaluation of RFSVM on datasets with very large
numbers of features, use of different strategies to update the
integer variables, and procedures for automatically choos-
ing a value of σ for a desired percentage of feature reduction
are important avenues of future research.

Acknowledgments

We thank Hector Corrada Bravo, Greg Quinn, and
Nicholas LeRoy for their assistance with Condor. The re-
search described in this Data Mining Institute Report 06-03,
July 2006 and revised June 2007, was supported by Na-
tional Science Foundation Grants CCR-0138308 and IIS-
0511905.

References

[1] P. S. Bradley and O. L. Mangasarian. Feature selec-
tion via concave minimization and support vector ma-
chines. In J. Shavlik, editor, Proceedings 15th Inter-
national Conference on Machine Learning, pages 82–
90, San Francisco, California, 1998. Morgan Kaufmann.
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-03.ps.

[2] P. S. Bradley, O. L. Mangasarian, and D. R. Musi-
cant. Optimization methods in massive datasets. In

J. Abello, P. M. Pardalos, and M. G. C. Resende, edi-
tors, Handbook of Massive Datasets, pages 439–472, Dor-
drecht, Netherlands, 2002. Kluwer Academic Publishers.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-01.ps.

[3] S. Dasgupta. Learning mixtures of Gaussians. In IEEE Sym-
posium on Foundations of Computere Science (FOCS) 1999,
pages 634–644, 1999.

[4] J. Forrest, D. de la Nuez, and R. Lougee-
Heimer. CLP User Guide, 2004. http://www.coin-
or.org/Clp/userguide/index.html.

[5] H. Fröhlich and A. Zell. Feature subset selection for support
vector machines by incremental regularized risk minimiza-
tion. In International Joint Conference on Neural Networks
(IJCNN), volume 3, pages 2041–2046, 2004.

[6] G. Fung and O. L. Mangasarian. A feature selection Newton
method for support vector machine classification. Computa-
tional Optimization and Applications, 28(2):185–202, July
2004. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/02-03.ps.

[7] C. Gold, A. Holub, and P. Sollich. Bayesian approach to fea-
ture selection and parameter tuning for support vector ma-
chine classifiers. Neural Networks, 18(5-6):693–701, 2005.

[8] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selec-
tion for cancer classification using support vector machines.
Machine Learning, 46(1-3):389–422, 2002.

[9] ILOG, Incline Village, Nevada. ILOG CPLEX 9.0 User’s
Manual, 2003. http://www.ilog.com/products/cplex/.

[10] M. Litzkow and M. Livny. Experience with the condor
distributed batch system. In Proceedings IEEE Workshop
on Experimental Distributed Systems, pages 97–101, Hun-
stville, AL, October 1990. IEEE Compter Society Press.

[11] O. L. Mangasarian. Generalized support vector ma-
chines. In A. Smola, P. Bartlett, B. Schölkopf, and
D. Schuurmans, editors, Advances in Large Margin Clas-
sifiers, pages 135–146, Cambridge, MA, 2000. MIT Press.
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-14.ps.

[12] MATLAB. User’s Guide. The MathWorks, Inc., Natick,
MA 01760, 1994-2006. http://www.mathworks.com.

[13] P. M. Murphy and D. W. Aha. UCI machine learning repos-
itory, 1992. www.ics.uci.edu/∼mlearn/MLRepository.html.

[14] M. Robnik-Šikonja and I. Kononenko. Theoretical and em-
pirical analysis of ReliefF and RReliefF. Machine Learning,
53(1-2):23–69, 2003.

[15] B. Schölkopf and A. Smola. Learning with Kernels. MIT
Press, Cambridge, MA, 2002.

[16] Y. Shen, A. Y. Ng, and M. Seeger. Fast gaus-
sian process regression using kd-trees. In NIPS
18, 2006. http://ai.stanford.edu/∼ang/papers/nips05-
fastgaussianprocess.pdf.

[17] M. E. Thompson. NDCC: Normally distributed clustered
datasets on cubes, 2006. www.cs.wisc.edu/dmi/svm/ndcc/.

[18] V. N. Vapnik. The Nature of Statistical Learning Theory.
Springer, New York, 1995.

[19] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio,
and V. Vapnik. Feature selection for SVMs. In NIPS, pages
668–674, 2000.

[20] H. H. Zhang. Variable selection for support vector machines
via smoothing spline ANOVA. Statistica Sinica, 16(2):659–
674, 2006.

236

