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Abstract. The NP-hard absolute value equation (AVE) Ax − |x| = b where A ∈ Rn×n and
b ∈ Rn is solved by a succession of linear programs. The linear programs arise from a reformulation
of the AVE as the minimization of a piecewise-linear concave function on a polyhedral set and
solving the latter by successive linearization. A simple MATLAB implementation of the successive
linearization algorithm solved 100 consecutively generated 1000-dimensional random instances of
the AVE with only five violated equations out of a total of 100, 000 equations.
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1. Introduction

We consider the absolute value equation (AVE):

Ax − |x| = b, (1)

where A ∈ Rn×n, b ∈ Rn and | · | denotes absolute value. A slightly more general
form of the AVE, Ax + B|x| = b was introduced in [11] and investigated in a more
general context in [6]. The AVE (1) was investigated in detail theoretically in [7]
and a bilinear program was prescribed there for the special case when the singular
values of A are not less than one. No computational results were given in either
[7] or [6] where a parametric successive linearization algorithm was proposed in the
latter. As was shown in [7], the general NP-hard linear complementarity problem
(LCP) [2, 3, 1] which subsumes many mathematical programming problems can be
formulated as an AVE (1). This implies that (1) is NP-hard in its general form.

The basic contribution of the present work is a finite computational algorithm
based on a new reformulation of the AVE (1) as the minimization of a parameter-
free piecewise linear concave minimization problem on a polyhedral that is solved
by a finite succession of linear programs. We prove that the algorithm terminates
at a point satisfying a necessary optimality condition. This turns out to be an
effective way for solving the AVE as indicated by computational results on one
hundred consecutively generated random 1000-dimensional AVEs, 95 of which were
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solved exactly to an accuracy of 10−6, while each of the remaining five instances
had only one equation out of 1000 violated.

In Section 2 of the paper we formulate the AVE as the minimization of a piecewise-
linear concave function on a polyhedral set and establish the existence of a vertex
solution. In Section 3 we give a successive linearization algorithm (SLA) for the
solution of the AVE (1) and establish its finite termination at a vertex satisfying a
necessary optimality condition. Section 4 gives our computational results. Section
5 concludes the paper.

A word about our notation and background material. The scalar product of two
vectors x and y in the n-dimensional real space will be denoted by x′y in conformity
with MATLAB [8] notation. For x ∈ Rn, the norm ‖x‖ will denote the 2-norm

(x′x)
1

2 , while |x| will denote the vector in Rn of absolute values of components of
x and sign(x) will denote a vector with components equal to 1, 0 or −1 depending
on whether the corresponding component of x is positive, zero or negative. For an
m × n matrix A, Ai will denote the ith row of A. The identity matrix in a real
space of arbitrary dimension will be denoted by I, while a column vector of ones of
arbitrary dimension will be denoted by e. For a concave function f : Rn → R the
supergradient ∂f(x) of f at x is a vector in Rn satisfying

f(y) − f(x) ≤ ∂f(x)(y − x) (2)

for any y ∈ Rn. The set D(f(x)) of supergradients of f at the point x is nonempty,
convex, compact and reduces to the ordinary gradient ∇f(x), when f is differen-
tiable at x [9, 10].

2. The Absolute Value Equation as a Piecewise-Linear Concave Mini-
mization Problem

We show now the equivalence of the AVE to the following concave minimization
problem.

Proposition 1 AVE as Concave Minimization The AVE (1) is equivalent to
the following minimization problem:

min
x∈Rn

e′(Ax − b) − e′|x|

s.t. − (A + I)x ≤ −b,

(−A + I)x ≤ −b,

(3)

having a zero minimum.

Proof: The linear constraints of the concave minimization problem (3) are equiv-
alent to:

−Ax + b ≤ x ≤ Ax − b, (4)

which in turn are equivalent to:

|x| ≤ Ax − b. (5)
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Hence (3) is feasible if the AVE (1) is solvable and its concave objective is bounded
below by zero. Thus, by [10, Corollary 32.3.3] the minimization problem (3) has a
solution. This minimum is zero if and only if the AVE (1) is solvable.

We now establish that the minimization problem (3) has a vertex solution when
it is solvable.

Proposition 2 The minimization problem (3) has a vertex solution if its feasible
region is nonempty, which is the case if the AVE (1) is solvable.

Proof: By [10, Corollary 32.3.4] the minimization problem (3) has a vertex solu-
tion if its nonempty feasible region has no straight lines going to infinity in both
directions. We will show that this is indeed the case for the feasible region of (3) in
its equivalent form (4). If such a line exists then for some fixed points x and y 6= 0
in Rn and for λ ↑ ∞ the constraints (4) must be satisfied as:

−A(x ± λy) + b ≤ x ± λy ≤ A(x ± λy) − b. (6)

Dividing by λ and letting λ ↑ ∞ we have that:

∓Ay ≤ ±y ≤ ±Ay, (7)

which is equivalent to:
(A + I)y = 0,

(A − I)y = 0.
(8)

Subtracting the last equation from the previous one gives that y = 0, which
contradicts y 6= 0. Hence there are no lines going to ±∞ in the feasible region of
(3) and the minimization problem (3) must have a vertex solution.

We describe now our successive linearization algorithm for solving the concave
minimization problem (3).

3. The Successive Linearization Algorithm (SLA)

Algorithm 1 SLA Algorithm Start with a random x0 ∈ Rn. Having xi deter-
mine xi+1 as a vertex solution of the following linear program:

min
x∈Rn

e′(Ax − b) − sign(xi)′x

s.t. − (A + I)x ≤ −b,

(−A + I)x ≤ −b.

(9)

Stop when (e′A − sign(xi)′)(xi+1 − xi) = 0.

Remark 2 Note that minimizing the objective function of (9) is equivalent to min-
imizing a supporting plane of the convex hypograph of the concave objective function
of (3). This is given by the scalar product of a supergradient of the concave objective
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function of (3) at the point xi times (x − xi) added to the function value at xi as
follows:

e′(Axi − b) − e′|xi| + (e′A − sign(xi)′)(x − xi). (10)

The finite termination of Algorithm 1 follows from the following theorem.

Theorem 3 SLA Finite Termination Theorem Let f denote the concave func-
tion of the minimization problem (3) which is bounded below by zero on the feasible
region of (3) when the AVE (1) is solvable. The Successive Linearization Algo-
rithm 1 generates a finite sequence of feasible vertices {x1, x2, . . . , xī} with strictly
decreasing objective function values: f(x1) > f(x2) > . . . > f(xī), such that xī

satisfies the minimum principle necessary optimality condition:

(e′A − sign(xī))(x − xī) ≥ 0, ∀x ∈ {x | − Ax + b ≤ x ≤ Ax − b}. (11)

Proof: Follows from Theorem 3 of [5].

We turn now to our computational testing.

4. Computational Results

We used MATLAB 7.1 to test Algorithm 1 on 100 consecutively generated solvable
random problems with fully dense matrices A ∈ R1000×1000 as follows. We first
chose a random A from a uniform distribution on [-10,10], then we chose a random
x from a uniform distribution on [-1,1]. Finally we computed b = Ax − |x|. We
broke the 100 problems into 10 groups each containing 10 problems (instances).
Code 1 gives the MATLAB code for generating “imax” problems and solving at
most “itmax” (typically 40) iterations of of Algorithm 1 by using the CPLEX
9.0 [4] linear programming solver. The maximum number of iterations used per
instance was itmax=40. An absolute value equation component i is considered
satisfied provided |Aix − |xi| − bi| ≤ 10−6. This was used as a alternate stopping
criterion when satisfied for i = 1, . . . , n instead of that of the SLA Algorithm 1 of
|(e′A − sign(xi)′)(xi+1 − xi)| = 0 in order to ensure a 10−6 accuracy in satisfying
the AVE (1).

Code 1 SLA: Successive Linearization Algorithm Code

%generate imax instances of solvable AVE Ax-|x|=b & solve by SLA:

%min e’(Ax-b)-e’|x| s.t. -Ax+b =< x =< Ax-b

%input: n,imax,itmax (itmax=maximum no. of iterations typically 40)

%output: total number of violated equations for all instnances (nnztot),

%max no. of violated equations per instance (nnzx), total LPs & time (toc)

%lpxt(c,B,d) is CPLEX call to solve min c’x s.t. Bx =< d

I=eye(n);e=ones(n,1);

nnztot=0;nnzx=0;k=0;tic; %k is total number of LPs for all imax instances
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for i=1:imax

A=10*(rand(n,n)-rand(n,n));x=rand(n,1)-rand(n,1);b=A*x-abs(x);%generate AVE

j=1;y=rand(n,1)-rand(n,1);%generate initial point y

while(j<itmax & norm(A*y-abs(y)-b)>1e-6)%itmax or AVE error stop

c=[A’*e-sign(y)];B=[-(A+I) ;(-A+I) ];d=[-b;-b];[t,z,u]=lpxt(c,B,d);

y=z; j=j+1;

end

err=(A*y-abs(y)-b);nnz1=nnz(find(abs(err)>1e-6));

nnztot=nnztot+nnz1;nnzx=max([nnz1 nnzx]);k=k+j-1;

end

[nnztot nnzx k toc]

Computational results are summarized in Table 1 and were obtained using a
3.00GHz Pentium 4 processor running i386 tao10 Linux. We note the following:

(i) Out of 100 instances, 95 instances were solved to an accuracy of 10−6.

(ii) For each of the 5 unsolved instances, only one equation out of a thousand
equations was violated per instance.

(iii) The average number of LPs per instance varied from 2.6 to 9.1 with the overall
average for the 100 problems being 4.81.

(iv) The overall average time for solving each instance of 1000 fully dense equations
was 248 seconds.

(v) The average time to solve each LP was 52 seconds.

5. Conclusion

We have proposed a finite successive linear programming algorithm for solving the
the NP-hard absolute value equation Ax−|x| = b. The effectiveness of the algorithm
is demonstrated by its ability to solve 95 out of 100 consecutively generated random
problems each consisting of 1000 equations in 1000 unknowns. One fascinating
feature of the AVE is its simplicity despite its NP-hardness. Possible future work
may consist of investigating other algorithms and improvement of the proposed
algorithm here and those in [6, 7].
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Table 1. Results from Algorithm 1 on 100 consecutive
random AVEs with n=1000, shown in groups of 10. nnz-
tot denotes the total number of violated equations in
each group of 10 problems. nnzx denotes the maximum
number of violated equations per individual problem.
k denotes the total number of iterations (LPs) utilized
for each group of 10 problems. toc denotes the total
time for solving each group of 10 problems. seonds per
LP denotes the time for each LP obtained by dividing
the previous column by the column preceding it.

Instances nztot nnzx k toc(seonds) seonds per LP

1-10 1 1 80 4236 53
11-20 0 0 26 1361 52
21-30 1 1 74 3804 51
31-40 0 0 26 1351 52
41-50 0 0 26 1354 52
51-60 0 0 26 1364 52
61-70 1 1 80 4207 53
71-80 2 1 91 4379 48
81-90 0 0 26 1358 52
91-100 0 0 26 1359 52
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