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ABSTRACT
A highly accurate algorithm, based on support vector ma-
chines formulated as linear programs [13, 1], is proposed
here as a completely unconstrained minimization problem
[15]. Combined with a chunking procedure [2] this approach,
which requires nothing more complex than a linear equation
solver, leads to a simple and accurate method for classify-
ing million-point datasets. Because a 1-norm support vector
machine underlies the proposed approach, the method sup-
presses input space features as well. A state-of-the-art linear
programming package, CPLEX [10], fails to solve problems
handled by the proposed algorithm.

1. INTRODUCTION
One of the principal advantages of 1-norm support vector
machines (SVMs) is that unlike conventional 2-norm SVMs
[4, 22, 21], they are very effective in reducing input space fea-
tures for linear kernels [1, 7]. We utilize here an exact com-
pletely unconstrained differentiable minimization formula-
tion of 1-norm SVMs [15] coupled with a chunking proce-
dure, which allows us to handle massive datasets.

In Section 2 we describe our unconstrained minimization
formulation for a 1-norm SVM and give a simple Newton
method for its solution that merely solves a sequence of lin-
ear equations. In Section 3 we combine our unconstrained
SVM formulation with a chunking method that enables us
to handle massive datasets. In Section 4 we justify our use
of the unconstrained approach and present our numerical
results for massive datasets. Section 5 concludes the paper.

First we describe our notation and give some background
material. All vectors will be column vectors unless trans-
posed to a row vector by a prime ′. For a vector x in the
n-dimensional real space Rn, x+ denotes the vector in Rn

with all of its negative components set to zero. For a vec-
tor x ∈ Rn, x∗ denotes the vector in Rn with components
(x∗)i = 1 if xi > 0 and 0 otherwise (i.e. x∗ is the result of ap-

plying the step function component-wise to x). For x ∈ Rn,
‖x‖1, ‖x‖ and ‖x‖∞, will denote the 1−, 2− and ∞− norms
of x. For simplicity we drop the 2 from ‖x‖2. The notation
A ∈ Rm×n will signify a real m×n matrix. For such a matrix
A′ will denote the transpose of A, Ai will denote the i-th row
of A and Aij will denote the ij-th element of A. A vector of
ones or zeroes in a real space of arbitrary dimension will be
denoted by e or 0, respectively. For a piecewise-quadratic
function such as, f(x) = 1

2
||(Ax − b)+||

2 + 1
2
x′Px, where

A ∈ Rm×n, P ∈ Rn×n, P = P ′, P positive semidefinite
and b ∈ Rm, the ordinary Hessian does not exist because
its gradient, the n × 1 vector ∇f(x) = A′(Ax − b)+ + Px,
is not differentiable but is merely Lipschitz continuous with
a Lipschitz constant of ‖A′‖ ‖A‖ + ‖P‖. However, one can
define its generalized Hessian [9, 6, 14] which is the n × n
symmetric positive semidefinite matrix:

∂
2
f(x) = A

′
diag(Ax− b)∗A + P,

where diag(Ax−b)∗ denotes an m×m diagonal matrix with
diagonal elements (Aix−bi)∗, i = 1, . . . , m. The generalized
Hessian has many of the properties of the regular Hessian
[9, 6, 14] in relation to f(x). If the smallest eigenvalue of
∂2f(x) is greater than some positive constant for all x ∈ Rn,
then f(x) is a strongly convex piecewise-quadratic function
on Rn. A separating plane, with respect to two given point
sets A and B in Rn, is a plane that attempts to separate Rn

into two halfspaces such that each open halfspace contains
points mostly of A or B.

2. 1-NORM SVM AS AN UNCONSTRAINED
MINIMIZATION PROBLEM

We consider first the 1-norm linear SVM binary classifica-
tion problem [13, 1, 7]:

min
(w,γ,y)

ν‖y‖1 + ‖w‖1

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0,

(1)

where the m × n matrix A represents m points in Rn to be
separated to the best extent possible by a separating plane:

x
′
w = γ, (2)

according to the class of each row of A as given by the m×m
diagonal matrix D with elements Dii = ±1. The objec-
tive term ‖y‖1 minimizes the classification error weighted



with the positive parameter ν while the term ‖w‖1 maxi-
mizes the ∞-norm margin [12] between the bounding planes
x′w = γ±1 that approximately bound each of the two classes
of points represented by A. It is well known [1, 7] that using
‖w‖1 in the objective function of (1) instead of the stan-
dard 2-norm squared term ‖w‖2 [4, 22, 21] results in input
space feature selection by suppressing many components of
w, whereas the the standard 2-norm SVM does not sup-
press any components of w in general. We convert (1) to an
explicit linear program as in [7] by setting:

w = p − q, p ≥ 0, q ≥ 0, (3)

which results in the linear program:

min
(p,q,γ,y)

νe′y + e′(p + q)

s.t. D(A(p − q) − eγ) + y ≥ e

p, q, y ≥ 0.

(4)

We note immediately that this linear program is solvable
because it is feasible and its objective function is bounded
below by zero. We shall utilize the following proposition [15,
Proposition 2] to reduce our linear program to a completely
unconstrained minimization problem.

Proposition 2.1. Exact 1-Norm SVM Solution via
Unconstrained Minimization The unconstrained dual ex-
terior penalty problem for the 1-norm SVM (4):

min
u∈Rm

− ǫe
′
u +

1

2
(‖(A′

Du − e)+‖
2 + ‖(−A

′
Du − e)+‖

2+

(−e′Du)2 + ‖(u − νe)+‖
2 + ‖(−u)+‖

2),
(5)

is solvable for all ǫ > 0. For any ǫ ∈ (0, ǭ] for some ǭ > 0,
any solution u of (5) generates an exact solution of the 1-
norm SVM classification problem (1) as follows:

w = p − q = = 1
ǫ
((A′Du − e)+ − (−A′Du − e)+),

γ = − 1
ǫ
e′Du,

y = 1
ǫ
(u − νe)+.

(6)
In addition this (w, γ, y) minimizes:

‖w‖2 + γ
2 + ‖y‖2 + ‖D(Aw − eγ) + y − e‖2

, (7)

over the solution set of the 1-norm SVM classification prob-
lem (1).

We will now give a generalized Newton method for solving
(5). To do that we let f(u) denote the exterior penalty
function (5). Then the gradient and generalized Hessian as
defined in the Introduction are given as follows.

∇f(u) = −ǫe + DA(A′Du − e)+ − DA(−A′Du − e)+
+Dee′Du + (u − νe)+ − (−u)+.

(8)

∂2f(u) = DA(diag((A′Du − e)∗ + (−A′Du − e)∗)A
′D

+Dee′D + diag((u − νe)∗ + (−u)∗)
= DA(diag(|A′Du| − e)∗)A

′D

+Dee′D + diag((u − νe)∗ + (−u)∗),
(9)

where the last equality follows from the equality:

(a − 1)∗ + (−a − 1)∗ = (|a| − 1)∗. (10)

We state now our generalized Newton algorithm for solving
the unconstrained minimization problem (5) as follows.

Algorithm 2.2. Generalized Newton Algorithm for
(5) Let f(u), ∇f(u) and ∂2f(u) be defined by (5),(8) and
(9) respectively. Set the parameter values ν, ǫ, δ, tolerance
tol, and imax.

Start with any u0 ∈ Rm. For i = 0, 1, . . .:

(i) ui+1 = ui − λi(∂
2f(ui) + δI)−1∇f(ui) = ui + λid

i,
where the Armijo stepsize λi = max{1, 1

2
, 1

4
, . . .} is

such that:

f(ui) − f(ui + λid
i) ≥ −

λi

4
∇f(ui)′di

, (11)

and di is the modified Newton direction:

d
i = −(∂2

f(ui) + δI)−1∇f(ui). (12)

(ii) Stop if ‖ui−ui+1‖ ≤ tol or i = imax. Else, set i = i+1
and go to (i).

(iii) Define the solution of the 1-norm SVM (1) with least
quadratic perturbation (7) by (6) with u = ui.

Note that the key step (12) in the above algorithm requires
merely a simple linear equation solver such as the one avail-
able in MATLAB [16].

We state a convergence result for this algorithm now [15,
Propositon 4].

Proposition 2.3. Let tol = 0, imax = ∞ and let ǫ >
0 be sufficiently small. Each accumulation point ū of the
sequence {ui} generated by Algorithm 2.2 solves the exterior
penalty problem (5). The corresponding (w̄, γ̄, ȳ) obtained
by setting u to ū in (6) is an exact solution to the primal
1-norm SVM (1) which in addition minimizes the quadratic
perturbation (7) over the solution set of (1).

We turn now to our chunking method for handling massive
datasets.

3. CHUNKING METHOD
We shall apply the chunking approach proposed in [2] to
our unconstrained minimization approach of Section 2. We
consider a general linear program

min
x

˘

c
′
x |Hx ≥ b

¯

, (13)

where c ∈ Rn, H ∈ Rm×n and b ∈ Rm. We state now our
chunking algorithm and give its finite termination for the
linear program (13), where m could be orders of magnitude
larger than n. In its dual form our algorithm can be inter-
preted as a block-column generation method related to col-
umn generation methods of Gilmore-Gomory [8], Dantzig-
Wolfe [5], [3, pp 198-200,428-429] and others [19, pp 243-
248], but it differs from active set methods [11, pp 326-330]
in that it does not require the satisfaction of a working set
of constraints as equalities.



Algorithm 3.1. LPC: Linear Programming Chunk-
ing Algorithm for (13) Let [H b] be partitioned into ℓ
blocks, possibly of different sizes, as follows:

ˆ

H b
˜

=

2

6

4

H1 b1

...
...

Hℓ bℓ

3

7

5
.

Assume that (13) and all subproblems (14) below, have ver-
tex solutions. At iteration j = 1, . . . compute xj as a vertex
solution of the following linear program:

min

(

c
′
x

˛

˛

˛

˛

˛

H(j modulo ℓ) x ≥ b(j modulo ℓ)

H̄(j modulo ℓ)−1 x ≥ b̄(j modulo ℓ)−1

)

,

(14)
where [H̄0 b̄0] is empty and [H̄j b̄j ] is the set of active con-
straints (that is all inequalities of (14) satisfied as equalities
by xj) with positive optimal Lagrange multipliers at iteration
j. Stop when c′xj = c′xj+µ for some input integer µ.

This algorithm terminates at an optimal solution as follows.

Theorem 3.2. Finite Termination of LPC Algorithm
The sequence {xj} generated by the LPC Algorithm 3.1 has
the following properties:

(i) The sequence {c′xj} of objective function values is non-
decreasing and is bounded above by the global minimum
of min

x

˘

c
′
x |Hx ≥ b

¯

.

(ii) The sequence of objective function values {c′xj} be-
comes constant, that is: c′xj+1 = c′xj for all j ≥ j̄ for
some j̄ ≥ 1.

(iii) For j ≥ j̄, active constraints of (14) at xj with positive
multipliers remain active for iteration j + 1.

(iv) For all j ≥ j̃, for some j̃ ≥ j̄, xj is a solution of the
linear program (13) provided all active constraints at
xj have positive multipliers for j ≥ j̄.

The proof of this theorem is given in [2] and is directly ap-
plicable to solving our linear program (4) by solving suc-
cessive small linear programs obtained from chunks of the
constraints of (4) using the formulation (5) and Algorithm
2.2. We note that Algorithm 2.2 may not necessarily find
vertex solutions as required by the finite termination Theo-
rem 3.2, but this does not impede the finite termination of
our Algorithm 3.1 as shown by our computational results.

We turn to our computational results now.

4. COMPUTATIONAL METHODS AND RE-
SULTS

Before giving implementation and computational results for
our Chunking Algorithm 3.1 for solving (4)-(5) we would like
to describe some computational aspects of the underlying
Generalized Newton Algorithm 2.2 for smaller classification
problems. As reported in [15], a 1-norm linear SVM classi-
fier was obtained by Algorithm 2.2 on six public datasets,

with points numbering between 297 and 4192, in time that
was an average 9.6 times faster than that of the state-of-
the-art linear programming package CPLEX 9.0 [10]. In
addition, the average number of features used by Algorithm
2.2 for the six datasets was 53.4% of the original number of
features compared to 79.0% of features used by CPLEX 9.0.
This favorable comparison with a classical simplex or inte-
rior point method used in CPLEX 9.0 motivated the idea
of utilizing the Generalized Newton Algorithm 2.2, which
requires only a simple linear equation solver, as the best
candidate for the proposed chunking approach.

We turn now to implementation details and computational
results for our chunking Algorithm 3.1.

In implementing Algorithm 3.1, we note that the constraints
of (4) can be grouped such that, for each constraint de-
fined by Aj and Djj , there is a corresponding yj . There-
fore, each chunk is selected such that both the constraints
Djj(Aj(p− q)− γ) + yj ≥ 1 and yj ≥ 0 are always included
together in the chunk of constraints. Also, we always in-
clude the constraints p ≥ 0 and q ≥ 0. We found that
defining the chunks in this manner leads to the chunking
algorithm terminating using fewer iterations than with an
entirely random constraint selection method. Furthermore,
the problem maintains the form of (1), allowing us to use
Proposition 2.1 and Algorithm 2.2 to perform the minimiza-
tion of each chunk.

We tested our algorithm on multiple massive datasets. First,
the million-point dataset in R32 used in [2], which was gen-
erated using the Synthetic Classification Data Set Generator
(SCDS) [17]. Of the 32 attributes, 4 are relevant, and there
is a 10% ratio of misclassified points. We also used three
datasets in R32 generated using the Normally Distributed
Clusters (NDC) data generator [20]. NDC generates a series
of random centers for multivariate normal distributions and
a random fraction of data points from each center. It then
chooses the class for each center based on a random separat-
ing plane. NDC also provides an estimate of separability for
the dataset it generates. The datasets we used each had an
estimated separability of around 80%. Also, in order to bet-
ter compare our NDC datasets with the SCDS dataset, we
modified the NDC generator so it generated datasets with 4
relevant attributes by generating a dataset with 4 attributes
and then adding 28 attributes consisting of uniformly dis-
tributed random points over the same range as the original
4.

We ran Algorithm 3.1 on each dataset using tenfold cross
validation. In solving the 1-norm linear SVM via uncon-
strained minimization, we set the parameter values to be ν =
2−12 (approximately 2.44 ∗ 10−4), δ = 10−3, ǫ = 10−4, tol =
10−6, and imax = 1000. In implementing the chunking, we
used a 10% chunk size, which means it takes 10 chunking
iterations to go through all the points in the dataset once.
As in [2], we found that it was only necessary to incorpo-
rate into [H̄j b̄j ] the active constraints without determin-
ing whether the optimal Lagrange multipliers were positive.
Also, instead of stopping when c′xj = c′xj+µ, we stopped

when |c′xj−c′xj+1|

|c′xj|
≤ 0.01 for three consecutive iterations.

This led to faster termination and did not affect the ac-
curacy of our solutions. Our results are given in Table 1.



Since we are using tenfold cross validation, a problem with
90% of the given points is being solved for each fold. So, for
our million-point datasets, we are training on 900000 points,
which, when using the formulation of (4), results in a prob-
lem with 900065 variables and 900000 constraints, excluding
bounds. Figure 1 depicts a typical run of Algorithm 3.1 on
one fold of the million-point SCDS dataset and demonstrates
how the objective value of the linear program increases as
active constraints are added and others are dropped in each
iteration. It also shows the quick leveling off of the objective
function value as well as the number of active constraints
despite the fact that the algorithm continuously drops and
adds constraints. Both of these are important factors in the
practical viability of the algorithm. Figure 2 shows the cor-
rectness on one fold of the 500000-point NDC dataset using
Algorithm 3.1. This demonstrates how the correctness in-
creases as the algorithm progresses and then stabilizes before
the algorithm terminates.

Comparing Algorithm 3.1 to other methods, all of our datasets
caused CPLEX 9.0 [10], a state-of-the-art linear program-
ming code, to fail with an out-of-memory error. In compar-
ing our results to those of [2], we can now solve the SCDS
problem in approximately 2.21 hours and 14 iterations on a
3.0 Ghz Pentium IV machine with 2GB RAM running Cen-
tOS 4 Linux and MATLAB 7.1. This compares favorably
to the previous results [2] of 231.32 hours and 63 iterations,
performed on a cluster of 4 Sun Enterprise E6000 machines,
with a total of 64 UltraSPARC II processors and 8 GB of
RAM using a simplex based MINOS linear programming
package [18].
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Figure 1: Number of active constraints and objec-
tive function values versus number of iterations for
the million-point SCDS dataset. The objective func-
tion becomes stable after only ten chunking itera-
tions, that is, going through the entire dataset once.
Note the logarthmic scale.

Dataset SCDS NDC
# of Points 1000000 1000000 750000 500000
Time (hours) 2.21 4.72 3.49 2.14
Iterations 14 14 14 14
Training corr. 98.205% 91.228% 91.217% 91.214%
Testing corr. 98.204% 91.228% 91.210% 91.213%
Features used 8.0 29.4 28.5 27.9

Table 1: Results using Algorithm 3.1 on synthetic
test problems in R32, averaged over ten folds.
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Figure 2: Training and testing set correctness ver-
sus number of iterations for the 500000-point NDC
dataset. The correctness increases as the algorithm
progresses and quickly stabilizes.

5. CONCLUSION AND OUTLOOK
We have proposed an approach that effectively classifies
massive datasets of up to one million points using feature-
reducing 1-norm support vector machines. Our method
solves these problems by breaking a huge constraint set into
chunks and solving the resulting linear programs by a simple
linear equation solver. Our approach solves problems that
cause conventional state-of-the-art methods to fail. Future
extensions of these ideas include applying these methods to
SVMs with nonlinear kernels and improving the chunking
method to allow for even larger datasets to be classified.
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