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Absolute Value Equations

Abstract. We investigate existence and nonexistence of solutions for NP-hard equations in-
volving absolute values of variables: Az — |x| = b, where A is an arbitrary n X n real matrix.
By utilizing an equivalence relation to the linear complementarity problem (LCP) we give
existence results for this class of absolute value equations (AVEs) as well as a method of so-
lution for special cases. We also give nonexistence results for our AVE using theorems of the
alternative and other arguments.
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1. Introduction

We consider absolute value equations of the type:
Az — |z| = b, (1)

where A € R™™ b € R™ and | - | denotes absolute value. As will be shown,
the general linear complementarity problem (LCP) [2,3] which subsumes many
mathematical programming problems can be formulated as an absolute value
equation (AVE) such as (1). This implies that (1) is NP-hard in its general
form. By utilizing this connection with LCPs we are able to give some simple
existence results for (1) such as that all singular values of A exceeding 1 implies
existence of a unique solution for any right-hand side b. By using theorems of
the alternative [4, Chapter 2], we are able to give nonexistence results for (1).
We shall also give a method of solution based on successive linear programming.
This work is motivated in part by [7] where a more general AVE,

Az + Blz| = b, (2)

is considered with A € R™*" B € R™*"™ and b € R™. By specializing (2) to
the important case of (1) we obtain new results in this work.

The significance of the AVE (1) arises from the fact that linear programs,
quadratic programs, bimatrix games and other problems can all be reduced to an
LCP [2,3] which in turn is equivalent to the AVE (1). Thus our AVE formulation,
which is simpler to state than an LCP, subsumes major fundamental problems
of mathematical programming.
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We now describe our notation. All vectors will be column vectors unless
transposed to a row vector by a prime ’. The scalar (inner) product of two
vectors z and y in the n-dimensional real space R™ will be denoted by z'y.
Orthogonality 2’y = 0 will be denoted by x L y. For x € R" the 1-norm will be
denoted by ||z||; and the 2-norm by |z||, while || will denote the vector with
absolute values of each component of x. The notation A € R™*"™ will signify
a real m x n matrix. For such a matrix A’ will denote the transpose of A, A;
will denote the i-th row of A, and A;; will denote the ij-th element of A. A
vector of ones in a real space of arbitrary dimension will be denoted by e. A
vector of zeros in a real space of arbitrary dimension will be denoted by 0. The
identity matrix of arbitrary dimension will be denoted by I. For simplicity, the
dimensionality of some vectors and matrices will not be explicitly given. For a
square matrix A € R"*" eig(A) will denote the set of n eigenvalues of A. We
shall write D = diag(£1) for a diagonal matrix D each diagonal element of
which is +1.

2. Absolute Value Problems and Linear Complementarity Problems

We will start by showing that the AVE (1) is in fact equivalent to a bilinear
program (an optimization problem with an objective function that is the product
of two affine functions) and to a generalized linear complementarity problem. We
will then show equivalence to the ordinary LCP.

Proposition 1. AVE <= Bilinear Program <= Generalized LCP
The AVE (1) is equivalent to the bilinear program:

0= min {((A+Dz—b)'(A=Da=b) | (A+D)a—b>0, (A=Dz—b >0}, (3)

and the generalized LCP:
0<A+Dzx—-b L (A-Dz—-b>0. (4)

Proof. It is obvious that (3) and (4) are equivalent. We will show now that (3)
is equivalent to the AVE (1). Note that the following equivalence holds:

2] < Ar —b <= —Az+b<z <Az -0, (5)

where the right side of the equivalence constitutes the constraints of (3). Hence,

2] = Az —b <= (A+ Dz —-b)(A—DNx—-b)=0and |z| < Az —b. (6)
Consequently (3) holds if and only if (1) holds.$

We establish now, under mild conditions, equivalence of the AVE (1) to the
standard LCP:
0<z L Mz+q>0, )

where M € R™*"™ and q € R"™.
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Proposition 2. AVE < LCP (i) Under the assumption that 1 is not an
eigenvalue of A, the AVE (1) can be reduced to the following LCP:

0<z L (A+D(A-D)"'24+¢>0, (8)

where:
= ((A+I)(A—I)*1 —I)b,
g:(A—I)x—b. ©)

(i) Conversely, if 1 is not an eigenvalue of M, then the LCP (7) can reduced to
the AVE:
(M —1)"" (M + Dz —|z| = (M = I)"'q, (10)

where
v=3((M-1)z+q). (11)

Remark 1. We note that the AVE (10) above, that is equivalent to the LCP (7),
is simpler than that given in [7, Equation (4)].

Proof. (i) To prove the first part, start with the generalized LCP (4), which is
equivalent to the AVE (1), to obtain (8) as follows. Use z = (A — Iz — b from
(9) in the right inequality of (4) to get z > 0, which is the left inequality of (8).
Then from (9) set x = (A — I)~!(z + b) in the left inequality of (4) to get:

0 < (A+D)(A=I)" z4+b)—b= (A+D)(A-D) "2+ ((A+D)(A-T)"'=1)b, (12)

which gives the right inequality of (8) with ¢ as defined in (9). The orthogonality
in (8) follows from that of (4).

(ii) To establish the converse, we again use the generalized LCP (4), which
is equivalent to the AVE (1) as follows. Start with the LCP (7) and set the left
and right side terms of (4) equal to right and left side terms respectively of (7)

as follows:
(A+Dx—b=Mz+yq,

This results in:
x:(Af‘[)il(Z‘Fb)a (14)
Mz+qg=MA-DNz—-Mb+q=(A+1)x—b.
To satisfy the last equality of (14) for all x € R™, set:
b= (M —1)"1q,
A= (M—1)"'(M+1). (15)
Substituting from (15) in (14) gives:
r=(A-1)"Yz+0)
=(M-I)""M+1)=1)"'(z+ (M —I)"'q) (16)
=((M+1)—(M-1))""((M - 1)z +q)

=3((M - Dz +q).
Hence AVE (1) holds with A, b as given in (10) and z as defined in (11).{
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We note that the AVE (1) is NP-hard. This was shown in [7, Proposition 2] by
reducing the LCP corresponding to the NP-hard knapsack feasibility problem
to an AVE.

We also note that the bilinear formulation (3) can serve as a method of
solution for the AVE as was bilinear programming exploited in [1,6] for other
problems. However in general, the bilinear program (3) is a nonconvex problem
and a solution is not always guaranteed. We will show in Corollary 1 below
that under certain assumptions on A, the bilinear program (3) is convex and a
solution exists.

We turn now to existence results for the AVE (1).

3. Existence of Solution for AVEs

Our existence results are based on the reduction of the AVE (1) in Proposition
2 to the LCP (8). Existence results are well known for LCPs with various classes
of matrices [3]. We first prove a simple lemma.

Lemma 1. Let S € R™*™ denote the diagonal matriz constituting the nonnega-
tive singular values of A. Then:

min eig(A’A) > (>)1 <= S > (>)I, (17)
where min eig denotes the least eigenvalue.

Proof. Let USV’ be the singular value decomposition of A, where U and V are
orthogonal matrices and S is a nonnegative diagonal matrix of singular values.
Then,

A=USV', A =VvSU', AA=VSU'USV' =VS*V". (18)
Hence, the diagonal elements of S? constitute the set of eigenvalues of A’A and

the columns of V' the eigenvectors of A’A. Hence S > (>)I, which is is equivalent
to S > (>)I, is in turn equivalent to eig(A’A) > (>)1.

We turn now to our existence result.

Proposition 3. Existence of AVE Solution

(i) The AVE (1) is uniquely solvable for any b € R™ if the singular values of A
exceed 1.

(ii) If 1 is not an eigenvalue of A and the singular values of A are merely greater
or equal to 1, then the AVE (1) is solvable if the bilinear program (3) is
feasible, that is:

{z | (A+Dz—b>0, (A—Dz—b>0} #0. (19)
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Proof. (i) We first show that (A — I)~! exists. For, if not, then for some z # 0

we have that (A — I)x = 0, which gives the contradiction:
rr <2’ A'Ar =2'Ax = 2/ Aw = 2'x,

where the first inequality follows from eig(A’A) > 1 as a consequence of
Lemma 1. Hence (A — I)~! exists. It follows by Proposition 2 that the AVE
(1) can be reduced to the the LCP (8). We show now that the LCP (8) is
uniquely solvable by showing that (A + I)(A — I)~! is positive definite [3,
Chapter 3]. Since eig(A’A) > 1 it follows that z'(A’A — I)z > 0 for z # 0,
which is equivalent to 2/ (A’ —I)(A+1)z > 0 for z # 0. Letting z = (A—1)"y
gives that y'(A+ I)(A —I)"'y > 0 for y # 0. Hence (A+ I)(A—1)7"' is
positive definite and the LCP (8) is uniquely solvable for any ¢ € R"™ and so
is the AVE (1) for any b.

We note that the feasibility condition (19) is a necessary condition for the
solvability of the AVE (1) because it is equivalent to the condition:

{z | Az —b > [a]} # 0. (20)

By a similar argument as that of part (i) above we have that the matrix
(A+I)(A—1I)~1 of the corresponding LCP (8) is positive semidefinite and
hence (8) is solvable if it is feasible. That it is feasible, follows from the
assumption (19). &

Corollary 1. Bilinear Program Convexity Under the assumptions of Propo-
sition 3(ii) the bilinear program (3) is convet.

Proof. The Hessian of the objective function of (3) is 2(A’A—1TI), which is positive
semidefinite by (17). ¢

Remark 2. The bilinear program (3), which is equivalent to AVE (1), can be
solved by a finite number of successive linear programs obtained by lineariz-
ing its objective function around the current iterate under the assumptions of
Proposition 3(ii) [1].

Another interesting existence result is the following.

Proposition 4. Unique Solvability of AVE The AVE (1) is uniquely solvable
for any b if |A7Y| < 1.

Proof. Let USV’ be the singular value decomposition of A. Then:

| A2 = max ||Az|]? = max 2’ A’ Az

[lz||=1 [lz||=1

= H]anax 2'VSU'USV x = ”mHax 2VS*V'x
z||=1 z||=1

= HmHaxlySQy = ||S||?, where z = Vy.
y =

Hence, the assumption that |A~!|| < 1 is equivalent to S > I applies; accord-
ingly by Proposition 3(i) the AVE (1) is uniquely solvable for any b.
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Remark 3. We note that much more general existence results can be given by
invoking classes of matrices for which the LCP (8) is solvable [3,5]. In fact there
is a large class of matrices, the class @) for which the LCP is always solvable for
any value of g. Thus whenever (A+I)(A—1)~! € Q the AVE (1) is solvable for
any b € R™. The class @ includes, for example, strictly copositive matrices M,
that is 2’ Mz > 0 for all z > 0, which in turn includes positive definite matrices.
Another useful class is the class Qg for which the LCP (8) is solvable whenever
it is feasible, that is whenever the inequalities of (8) are satisfied. This includes
the class of copositive-plus matrices, that is z2’Mz > 0 whenever z > 0 and in
addition (M 4+ M’)z = 0 whenever z' Mz = 0. This includes the class of positive
semidefinite matrices.

Alternatively, the existence part of Proposition 4 may be established by re-
writing AVE in the equivalent form # = A~'|z| + A~'b and establishing the
convergence of the iteration z¥*! = A~1|z*| + A=1b. Uniqueness of the solution
then follows easily from this representation by considering the difference of two
solutions and obtaining a contradiction using |47 < 1.

Another simple existence result based on the iteration ¢! = Az* — b is the
following.

Proposition 5. Existence of Nonnegative Solution Let A > 0, ||A]] < 1
and b < 0, then a nonnegative solution to the AVE (1) exists.

Proof. As a consequence of the iteration 2**! = Az* — b with 2% = —b, the
iterates {z*} are nonnegative and, since ||A|| < 1, converge to a solution z* > 0
that satisfies * = Az* — b and hence Az* — |z*| =b. $

Another existence result can also be given based on the iteration a2**! =
Az — b (with 2° = —b) for the case when ||A|~ (as opposed to ||A7!| ) is
small. This case corresponds to dominance of the |z| term in AVE (whereas
Proposition 4 corresponds to dominance of the linear terms in AVE), and leads

to 2™ distinct solutions under suitable assumptions as follows.

Proposition 6. Existence of 2" Solutions If b < 0 and || Al < 7/2 where
~ = min|b;|/max|b;|, then AVE has exactly 2" distinct solutions, each of which
7 7

has no zero components and a different sign pattern.

Proof. Consider the iteration z*t1 = Axz* — b, with starting point 20 = —b >
0. We will demonstrate that this iteration converges to a solution z* > 0, so
that |2*| = z* and the AVE is satisfied. It is easily verified by induction that
okl — b = — Ak+1p and thus standard arguments using ||Al| < 1 establish
the convergence of the iteration and also yield

o — 2o < (2! = 29) + (22 — &) + ... [
< (7/2+ (1/2)% + ..} bl
< |[bll e < minfb,|

It follows that,
[lz* 4 b]|co < min — by,
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and
—x; —b; < |z +b;] < —maxb;, i=1,...n.
7

Consequently:
0 < (maxb;) —b; <zf, i=1,...n.
K3
Hence z* > 0 .

Note that ||Allcc < 1 implies that z* is the unique solution of the system
Axr — x = b and hence z* is the unique positive solution of AVE. For solutions
with other sign patterns, note that for a D with |D| = I, Az — |x| = b has
a solution with sign pattern D (i.e., Dz > 0) iff the system ADy —y = b,
resulting from the substitution z = Dy, has a nonnegative solution y. Since
|AD||soc = ||A|lco, we may apply the argument of the preceding paragraph to
the matrix AD to demonstrate convergence of this modified linear system with
coefficient matrix AD to a solution y* > 0, which is equivalent to the existence of
a solution Dyx with sign pattern D to AVE. As before, the system ADy—y =10
has a unique solution, so the solution Dy* is the unique AVE solution with sign
pattern D. $

We turn now to nonexistence results for AVEs.

4. Nonexistence of Solutions for AVEs

We shall utilize theorems of the alternative [4, Chapter 2] as well as a simple
representation (24) of |z| to establish mainly nonexistence results for AVESs here.
We note that the significance of these somewhat negative results is that it may
otherwise take the solution of 2" linear equations to determine whether an AVE
has no solution. In contrast, the proposed nonexistence results can be checked
by solving a single linear program in polynomial time, as in the case of verifying
(21), or merely by observation, as in Propositions 9 and 10.

We begin with a simple nonexistence result based on the infeasibility of the
feasible region of the bilinear program (3) which is equivalent to te AVE (1).

Proposition 7. Nonexistence of Solution The AVE (1) has no solution for
any A,b such that:

r > A'r > —r, b'r > 0, has solution r € R™. (21)

Proof. By the Farkas theorem of the alternative [4, Chapter 2] we have that (21)
is equivalent to:

(A4 Du+ (—A+I)v = —b, (u,v) > 0, has no solution (u,v) € R*".

Making the transformations, x = —u+wv, s = u+wv, or equivalently, u = (s—x)/2,
v = (s+x)/2, results in:

—Az 4 5= —b, s+x >0, s—a >0, has no solution (s, ) € R*".
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That is,
(A+Dz—b>0, (A—1I)x —b >0, has no solution z € R".

This is equivalent to the feasible region of the bilinear program (3) being empty
and hence the AVE (1) has no solution. ¢

We give a simple example of this proposition.

Ezample 1. Consider the AVE:
-1 2 X1 _ -1
AR =

This AVE has no solution because it can be easily checked that r = {g] satisfies

Z1
€2

the nonexistence condition (21).

We note however that condition (21) is sufficient but not necessary in general
for nonexistence as the following example shows.

B[ SRR Hp @

has no solution. However, (21) has no solution as well for this case.

Example 2. The AVE:

Z1
T2

For the next set of results we shall make use of the simple fact that for
r e R™
|z| = Dz, VD = diag(+£1) such that Dz > 0. (24)

Using this fact we shall first give a couple of existence results and then our final
nonexistence result.

Proposition 8. Existence for a Class of AVEs Let C € R"*" and b € R".
Then:
(C—=1I)z=b, z >0, has a solution z € R", (25)

implies that:
Az — |x| = b has a solution VA = CD, D = diag(+1). (26)

Remark 4. We note that the assumption (25) can be easily checked by solving a
single linear program.

Proof. By setting z = Dz, we note that condition (25) is equivalent to the
following:

VD = diag(£1)), CDx — Dz = b, Dz > 0, has a solution z € R". (27)

Setting A = C'D and making use of (24) gives (26).
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We have the following corollary.

Corollary 2. Under the assumption (25), there exist 2" solvable AVEs (1) where
A=CD, D =diag(£l) and x = Dz.

We now give two final nonexistence results that are related to Propositions
5 and 6.

Proposition 9. Nonexistence of Solution Let0# b > 0 and |A|| < 1. Then
the AVE (1) has no solution.

Proof. We will show that if the AVE (1) has a nonzero solution then b must
contain at least one negative element. Rewriting AVE (1) as |z| — Ax = —b,
note that the LHS |z| — Az has at least one positive element when = # 0.
Otherwise, |z] — Az < 0, and consequently |z| < Az leads to the contradiction
lz]| < |Az]| < ||4]] |lz|l < ||z||. Thus b must contain at least one negative
element. $

Proposition 10. Nonexistence of Solution If b has at least one positive
element and || Al|co < 7/2 where 7 = max b; /max|b;|, then AVE has no solution.
i> 7

Proof. Suppose the conditions hold and AVE has a solution, so that, for some for
some diagonal matrix D with |D| = I, Ax— Dz = b has a solution with Dz = |z|.
Thus for D with |D| = I such that Db = —|b| we have that DAx — DDx = —|b|
also has a solution z* with Dz* = |z*|. Since multiplication by D and D have no
effect on ||Al|o , this implies that DADDy — y = —|b| has a unique solution y*
with DDz* = y*. Now consider y;, where j corresponds to the largest positive
element of b. By the approach of the proof of Proposition 6, it is easily shown that
y; > 0. However, since 0 < y; = dejx;?, where Jj and d; are the jth diagonal
elements of D and D, there is a contradiction since djzs >0 and Jj <0. ¢

5. Conclusion and Outlook

The AVE (1) constitutes one of the most simply stated NP-hard problems. As
such it is a fascinating problem to investigate theoretically and computationally.
In this work we have established existence and nonexistence results for classes
of AVEs and indicated a method of solution when a solution exists for a class of
these equations. Further relations with wider classes of linear complementarity
and other problems may shed further light and generate new methods of solution
and insights into this deceptively simple looking class of NP-hard problems.
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