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Abstract

Support vector machines utilizing the 1-norm, typically set up as linear programs (Man-
gasarian, 2000; Bradley and Mangasarian, 1998), are formulated here as a completely un-
constrained minimization of a convex differentiable piecewise-quadratic objective function
in the dual space. The objective function, which has a Lipschitz continuous gradient and
contains only one additional finite parameter, can be minimized by a generalized Newton
method and leads to an exact solution of the support vector machine problem. The ap-
proach here is based on a formulation of a very general linear program as an unconstrained
minimization problem and its application to support vector machine classification prob-
lems. The present approach which generalizes both (Mangasarian, 2004) and (Fung and
Mangasarian, 2004) is also applied to nonlinear approximation where a minimal number of
nonlinear kernel functions are utilized to approximate a function from a given number of
function values.

1. Introduction

One of the principal advantages of 1-norm support vector machines (SVMs) is that, unlike
2-norm SVMs, they are very effective in reducing input space features for linear kernels
and in reducing the number of kernel functions (Bradley and Mangasarian, 1998; Fung
and Mangasarian, 2004) for nonlinear SVMs. With few exceptions, the simplex method
(Dantzig, 1963) has been the exclusive algorithm for solving 1-norm SVMs. The interesting
paper (Zhu et al., 2004) which treats the 1-norm SVM uses standard linear programming
packages for solving their formulation. To the best of our knowledge there has not been an
exact completely unconstrained differentiable minimization formulation of 1-norm SVMs,
which is the principal concern of the present rather theoretical contribution which we outline
now.

In Section 2 we show how a very general linear program can be solved as the minimiza-
tion of a completely unconstrained differentiable piecewise-quadratic convex function that
contains a single finite parameter. This result generalizes (Mangasarian, 2004) where linear
programs with millions of constraints were solved as unconstrained minimization problems
by a generalized Newton method. In Section 3 we show how to set up 1-norm SVMs, with
linear and nonlinear kernels as unconstrained minimization problems and state a general-
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ized Newton method for their solution. In Section 4 we show how to solve the problem
of approximating an unknown function based on a given number of function values using
a minimal number of kernel functions. We achieve this by again converting a 1-norm ap-
proximation problem to an unconstrained minimization problem. Computational results
given in Section 5 show that the proposed approach is faster than a conventional linear
programming solver, CPLEX (ILO, 2003), and faster than another related method as well
as having better input space feature suppression for a linear classifier and mostly better
kernel function suppression for a nonlinear classifier. Section 6 concludes the paper.

We now describe our notation and give some background material. All vectors will be
column vectors unless transposed to a row vector by a prime ′. For a vector x in the n-
dimensional real space Rn, x+ denotes the vector in Rn with all of its negative components
set to zero. This corresponds to projecting x onto the nonnegative orthant. For a vector
x ∈ Rn, x∗ denotes the vector in Rn with components (x∗)i = 1 if xi > 0 and 0 otherwise
(i.e. x∗ is the result of applying the step function component-wise to x). For x ∈ Rn,
‖x‖1, ‖x‖ and ‖x‖∞, will denote the 1−, 2− and ∞− norms of x. For simplicity we drop
the 2 from ‖x‖2. The notation A ∈ Rm×n will signify a real m × n matrix. For such a
matrix A′ will denote the transpose of A, Ai will denote the i-th row of A and Aij will
denote the ij-th element of A. A vector of ones or zeroes in a real space of arbitrary
dimension will be denoted by e or 0, respectively. For a piecewise-quadratic function such
as, f(x) = 1

2 ||(Ax − b)+||
2 + 1

2x′Px, where A ∈ Rm×n, P ∈ Rn×n, P = P ′, P positive
semidefinite and b ∈ Rm, the ordinary Hessian does not exist because its gradient, the
n × 1 vector ∇f(x) = A′(Ax − b)+ + Px, is not differentiable but is Lipschitz continuous
with a Lipschitz constant of ‖A′‖ ‖A‖ + ‖P‖. However, one can define its generalized
Hessian (Hiriart-Urruty et al., 1984; Facchinei, 1995; Mangasarian, 2001) which is the
n × n symmetric positive semidefinite matrix:

∂2f(x) = A′diag(Ax − b)∗A + P,

where diag(Ax− b)∗ denotes an m×m diagonal matrix with diagonal elements (Aix− bi)∗,
i = 1, . . . ,m. The generalized Hessian has many of the properties of the regular Hessian
(Hiriart-Urruty et al., 1984; Facchinei, 1995; Mangasarian, 2001) in relation to f(x). If the
smallest eigenvalue of ∂2f(x) is greater than some positive constant for all x ∈ Rn, then
f(x) is a strongly convex piecewise-quadratic function on Rn. A separating plane, with
respect to two given point sets A and B in Rn, is a plane that attempts to separate Rn

into two halfspaces such that each open halfspace contains points mostly of A or B. The
notation := denotes a definition.

2. Linear Programs as Exact Unconstrained Differentiable Minimization

Problems

We consider in this section a very general linear program (LP) that contains nonnegative
and unrestricted variables as well as inequality and equality constraints. We will show how
to obtain an exact solution of this LP by a single minimization of a completely unconstrained
differentiable piecewise-quadratic function that contains a single finite parameter. We begin
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with the primal linear program:

min
(x,y)∈Rn+ℓ

c′x + d′y s.t. Ax + By ≥ b, Ex + Gy = h, x ≥ 0, (1)

where c ∈ Rn, d ∈ Rℓ, A ∈ Rm×n, B ∈ Rm×ℓ, E ∈ Rk×n, G ∈ Rk×ℓ, b ∈ Rm and h ∈ Rk,
and its dual:

max
(u,v)∈Rm+k

b′u + h′v s.t. A′u + E′v ≤ c, B′u + G′v = d, u ≥ 0. (2)

The exterior penalty problem for the dual linear program is:

min
(u,v)∈Rm+k

ǫ(−b′u − h′v) +
1

2
(‖(A′u + E′v − c)+‖

2 + ‖B′u + G′v − d‖2 + ‖(−u)+‖
2). (3)

Solving the exterior penalty problem for a positive sequence {ǫi} converging to zero will
yield a solution to the dual linear program (2) (Fiacco and McCormick, 1968; Bertsekas,
1999). However, we will not do that here because of the inherent inaccuracies associated
with asymptotic exterior penalty methods and the fact that this would merely yield an
approximate dual solution but not a primal solution. Instead, we will solve the exterior
penalty problem for some finite value of the penalty parameter ǫ and from this inexact dual
solution we shall easily extract an exact primal solution by using the following proposition.

Proposition 1 Exact Primal Solution Computation Let the primal LP (1) be solvable.
Then the dual exterior penalty problem (3) is solvable for all ǫ > 0. For any ǫ ∈ (0, ǭ] for
some ǭ > 0, any solution (u, v) of (3) generates an exact solution to primal LP (1) as
follows:

x =
1

ǫ
(A′u + E′v − c)+, y =

1

ǫ
(B′u + G′v − d). (4)

In addition, this (x, y) minimizes:

‖x‖2 + ‖y‖2 + ‖Ax + By − b‖2, (5)

over the solution set of the primal LP (1).

Proof The dual exterior penalty minimization problem (3) can be written in the equivalent
form:

min
(u,v,z1,z2)∈Rm+k+n+m

ǫ(−b′u − h′v) +
1

2
(‖z1‖

2 + ‖B′u + G′v − d‖2 + ‖z2‖
2)

s.t. − A′u − E′v + c + z1 ≥ 0
u + z2 ≥ 0.

(6)

The justification for this is that at a minimum of (6) the variables z1 and z2 are nonnegative,
else if any component of these variables is negative the objective function can be strictly
decreased by setting that component to zero while maintaining constraint feasibility. Hence,
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at a solution of (6), z1 = (A′u + E′v − c)+ and z2 = (−u)+. The Wolfe dual (Mangasarian,
1994, Problem 8.2.2) for the convex quadratic program (6) is:

max
(u,v,z1,z2,r,s)∈Rm+k+n+m+n+m

−
1

2
((‖z1‖

2 + ‖B′u‖2 + ‖G′v‖2 + 2v′GB′u − ‖d‖2 + ‖z2‖
2) − c′r

s.t. − ǫb + B(B′u + G′v − d) + Ar − s = 0
−ǫh + G(B′u + G′v − d) + Er = 0

z1 = r ≥ 0
z2 = s ≥ 0,

(7)
which can be written in the equivalent form:

− min
(u,v,r,s)∈Rm+k+n+m

1

2
(‖r‖2 + ‖B′u‖2 + ‖G′v‖2 + 2v′GB′u − ‖d‖2 + ‖s‖2) + c′r

s.t. − b + B(B′u+G′v−d
ǫ

) + A r
ǫ

= s
ǫ

≥ 0

−h + G(B′u+G′v−d
ǫ

) + E r
ǫ

= 0
r ≥ 0.

(8)

Note that at a solution of the exterior penalty problem (6) and the corresponding Wolfe
dual (7) we have that:

r = z1 = (A′u + E′v − c)+
s = z2 = (−u)+.

(9)

Define now:
x := r

ǫ
= 1

ǫ
(A′u + E′v − c)+

y := 1
ǫ
(B′u + G′v − d),

(10)

where the equality in (10) follows from (9). Substituting (10) in (8) gives, after some
algebra, the optimization problem (11) below. It is easiest to see that (8) follows from (11)
if we substitute for x and y from (10) in (11) below and note that 0 ≤ r = ǫx and that
0 ≤ s = ǫ(Ax + By − b) which follow from the constraints of (8) and the definitions (10) of
x and y.

− min
(x,y)∈Rn+ℓ

c′x + d′y + ǫ
2(‖x‖2 + ‖y‖2 + ‖Ax + By − b‖2)

Ax + By ≥ b

Ex + Gy = h

x ≥ 0.

(11)

This convex quadratic program (11) is feasible, because the linear program (1) is feasible. It
is solvable for any ǫ > 0 (Frank and Wolfe, 1956) because its objective function is bounded
below since it is a strongly convex quadratic function in (x, y). Since the dual exterior
penalty minimization problem objective (3) or equivalently (6) is bounded below by the
negative of the objective function of (11) by the weak duality theorem (Mangasarian, 1994,
Theorem 8.2.3), hence (3) is solvable for any ǫ > 0. By the perturbation theory of linear
programs (Mangasarian and Meyer, 1979), it follows that for ǫ ∈ (0, ǭ], for some ǭ > 0,
(x, y) as defined in (10) or equivalently (4), solve the linear program (1) and additionally
minimize the expression (5) over the solution set of the original linear program (1).2

A more direct, but just as laborious and rather unintuitive proof of Proposition 1 can
be given by showing that the KKT necessary and sufficient optimality conditions for (11)
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follow from the necessary and sufficient optimality conditions of setting the gradient of the
exterior penalty problem (3) equal to zero. We do not give that proof here because it does
not justify how the quadratic perturbation terms of (11) arose, but it merely starts with
these terms as given.

We turn now to an implementation of this result for various 1-norm SVMs.

3. 1-Norm SVMs as Unconstrained Minimization Problems

We consider first the 1-norm linear SVM binary classification problem (Mangasarian, 2000;
Bradley and Mangasarian, 1998; Fung and Mangasarian, 2004):

min
(w,γ,y)

ν‖y‖1 + ‖w‖1

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0,

(12)

where, with some abuse of notation by multiple representation, we let the m × n matrix A

in this section represent m points in Rn to be separated to the best extent possible by a
separating plane:

x′w = γ, (13)

according to the class of each row of A as given by the m × m diagonal matrix D with
elements Dii = ±1. The objective term ‖y‖1 minimizes the classification error weighted with
the positive parameter ν while the term ‖w‖1 maximizes the ∞-norm margin (Mangasarian,
1999) between the bounding planes x′w = γ ± 1 that approximately bound each of the two
classes of points represented by A. It is well known (Bradley and Mangasarian, 1998; Fung
and Mangasarian, 2004) that using ‖w‖1 in the objective function of (12) instead of the
standard 2-norm squared term ‖w‖2 (Vapnik, 2000; Schölkopf and Smola, 2002) results in
input space feature selection by suppressing many components of w, whereas the standard
2-norm SVM does not suppress any components of w in general. We convert (12) to an
explicit linear program as in (Fung and Mangasarian, 2004) by setting:

w = p − q, p ≥ 0, q ≥ 0, (14)

which results in the linear program:

min
(p,q,γ,y)

νe′y + e′(p + q)

s.t. D(A(p − q) − eγ) + y ≥ e

p, q, y ≥ 0.

(15)

We note immediately that this linear program is solvable because it is feasible and its
objective function is bounded below by zero. Hence, Proposition 1 can be utilized to yield
the following unconstrained reformulation of the problem.

Proposition 2 Exact 1-Norm SVM Solution via Unconstrained Minimization
The unconstrained dual exterior penalty problem for the 1-norm SVM (15):

min
u∈Rm

−ǫe′u+
1

2
(‖(A′Du−e)+‖

2+‖(−A′Du−e)+‖
2+(−e′Du)2+‖(u−νe)+‖

2+‖(−u)+‖
2),

(16)
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is solvable for all ǫ > 0. For any ǫ ∈ (0, ǭ] for some ǭ > 0, any solution u of (16) generates
an exact solution of the 1-norm SVM classification problem (12) as follows:

w = p − q = = 1
ǫ
((A′Du − e)+ − (−A′Du − e)+),

γ = −1
ǫ
e′Du,

y = 1
ǫ
(u − νe)+.

(17)

In addition this (w, γ, y) minimizes:

‖w‖2 + γ2 + ‖y‖2 + ‖D(Aw − eγ) + y − e‖2, (18)

over the solution set of the 1-norm SVM classification problem (12).

We note here the similarity between our unconstrained penalty minimization problem (16)
and the corresponding problem of (Fung and Mangasarian, 2004, Equation 23). But, we also
note a major difference. In the latter, a penalty parameter α multiplies the term ‖(−u)+‖

2

of equation (16) above and is required to approach ∞ in order to obtain an exact solution
to the original problem (12). Thus, the solution obtained by (Fung and Mangasarian, 2004,
Equation 23) for any finite α is only approximate, as pointed out there. Furthermore, our
solution to (16) here minimizes the expression (18) rather than being merely an approximate
least 2-norm solution as is the case in (Fung and Mangasarian, 2004, Equation 11). However
the generalized Newton method prescribed in (Fung and Mangasarian, 2004) for a sequence
{α ↑ ∞}, is applicable here with α = 1. For completeness we state that result here. To
do that we let f(u) denote the exterior penalty function (16). Then the gradient and
generalized Hessian as defined in the Introduction are given as follows.

∇f(u) = −ǫe + DA(A′Du − e)+ − DA(−A′Du − e)+
+Dee′Du + (u − νe)+ − (−u)+.

(19)

∂2f(u) = DA(diag((A′Du − e)∗ + (−A′Du − e)∗)A
′D

+Dee′D + diag((u − νe)∗ + (−u)∗)
= DA(diag(|A′Du| − e)∗)A

′D

+Dee′D + diag((u − νe)∗ + (−u)∗),

(20)

where the last equality follows from the equality:

(a − 1)∗ + (−a − 1)∗ = (|a| − 1)∗. (21)

To handle a nonlinear symmetric kernel K(A,B) that maps Rm×n × Rn×ℓ into Rm×ℓ

and which generates, instead of the separating plane (13), the nonlinear separating surface:

K(x′, A′)Dv = γ, (22)

all we need to do is essentially to make the replacement:

A −→ K(A,A′)D, (23)

which we justify now. For a linear kernel K(A,A′) = AA′, we have that w = A′Dv, where
v is a dual variable (Mangasarian, 2000) and the primal linear programming SVM (15)
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becomes upon using w = p − q = A′Dv and minimizing the 1-norm of v in the objective
instead that of w:

min
(v,γ,y)

νe′y + ‖v‖1

s.t. D(AA′Dv − eγ) + y ≥ e

y ≥ 0.

(24)

Setting:

v = r − s, r ≥ 0, s ≥ 0, (25)

the linear program (24) becomes:

min
(r,s,γ,y)

νe′y + e′(r + s)

s.t. D(AA′D(r − s) − eγ) + y ≥ e

r, s, y ≥ 0,

(26)

which is the linear kernel SVM in terms of the dual variable v = r − s. If we replace the
linear kernel AA′ in (26) by the nonlinear kernel K(A,A′) we obtain the nonlinear kernel
linear program:

min
(r,s,γ,y)

νe′y + e′(r + s)

s.t. D(K(A,A′)D(r − s) − eγ) + y ≥ e

r, s, y ≥ 0.

(27)

We immediately note that the linear program (15) is identical to the linear program (27) if
we make the replacement (23).

Finally, a word regarding the choice of ǫ in Propositions 1 and 2. Computationally in
(Fung and Mangasarian, 2004) this does not seem to be critical and is effectively addressed
as follows. By (Lucidi, 1987, Corollary 3.2), if for two successive values of ǫ: ǫ1 > ǫ2,
the corresponding solutions of the ǫ-perturbed quadratic programs (11) are equal, then
under certain assumptions these equal successive solutions constitute a solution of the linear
programs (1) or (12) that also minimize the quadratic perturbations (5) or (18). This result
can be implemented computationally by using an ǫ, which when decreased by some factor
yields the same solution to (1) or (12). In our computational results this turned out to
either 4 × 10−4 or 10−6.

We state now our generalized Newton algorithm for solving the unconstrained minimiza-
tion problem (16) as follows.

Algorithm 3 Generalized Newton Algorithm for (16) Let f(u), ∇f(u) and ∂2f(u)
be defined by (16),(19) and (20). Set the parameter values ν, ǫ, δ, tolerance tol, and
imax (typically: ǫ ∈ [10−6 , 4 × 10−4] for linear SVMs and ǫ ∈ [10−9 , 1] nonlinear SVMs,
tol = 10−3, imax = 50, while ν and δ are set by a tuning procedure). Start with any
u0 ∈ Rm. For i = 0, 1, . . .:

(I) ui+1 = ui − λi(∂
2f(ui) + δI)−1∇f(ui) = ui + λid

i,
where the Armijo stepsize λi = max{1, 1

2 , 1
4 , . . .} is such that:

f(ui) − f(ui + λid
i) ≥ −

λi

4
∇f(ui)′di, (28)
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and di is the modified Newton direction:

di = −(∂2f(ui) + δI)−1∇f(ui). (29)

In other words, start with λi = 1 and keep multiplying λi by 1
2 until (28) is satisfied.

(II) Stop if ‖ui − ui+1‖ ≤ tol or i = imax. Else, set i = i + 1 and go to (I).

(III) Define the solution of the 1-norm SVM (12) with least quadratic perturbation (18) by
(17) with u = ui.

We state a convergence result for this algorithm now.

Proposition 4 Let tol = 0, imax = ∞ and let ǫ > 0 be sufficiently small. Each accu-
mulation point ū of the sequence {ui} generated by Algorithm 3 solves the exterior penalty
problem (16). The corresponding (w̄, γ̄, ȳ) obtained by setting u to ū in (17) is an exact solu-
tion to the primal 1-norm SVM (12) which in addition minimizes the quadratic perturbation
(18) over the solution set of (12).

Proof That each accumulation point ū of the sequence {ui} solves the minimization problem
(13) follows from exterior penalty results (Fiacco and McCormick, 1968; Bertsekas, 1999)
and standard unconstrained descent methods such as (Mangasarian, 1995, Theorem 2.1,
Examples 2.1(i), 2.2(iv)) and the facts that the direction choice di of (24) satisfies, for some
c > 0:

−∇f(ui)′di = ∇f(ui)′(δI + ∂2f(ui))−1∇f(ui)
≥ c‖∇f(ui)‖2,

(30)

and that we are using an Armijo stepsize (28). The last statement of the theorem follows
from Proposition 2.2

We turn now to minimal kernel function approximation.

4. Minimal Kernel Function Approximation as Unconstrained

Minimization Problems

We consider here the problem of constructing a kernel function approximation from a given
number of function values using the 1-norm to minimize both the error in the approximation
as well as the weights of the kernel functions. Utilizing the 1-norm in minimizing the kernel
weights suppresses unnecessary kernel functions similar to the approach of (Mangasarian
et al., 2004) except that we shall solve the resulting linear program here through an un-
constrained minimization reformulation. Also, for simplicity we shall not incorporate prior
knowledge as was done in (Mangasarian et al., 2004).

We consider m given function values b ∈ Rm associated with m n-dimensional vectors
represented by the m rows of the m × n matrix A. We shall fit the data points by a linear
combination of symmetric kernel functions as follows:

K(A,A′)v + eγ ≈ b, (31)

where the unknown parameters v ∈ Rm and γ ∈ R are determined by minimizing the
1-norm of the approximation error weighted by ν > 0 and the 1-norm of v as follows:

min
(v,γ)∈Rn+1

ν‖K(A,A′)v + eγ − b‖1 + ‖v‖1. (32)
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Setting

v = r − s, r ≥ 0, s ≥ 0,
K(A,A′)v + eγ − b = y − z, y ≥ 0, z ≥ 0,

(33)

we obtain the following linear program:

min
(r,s,γ,y,z)

νe′(y + z) + e′(r + s)

s.t. K(A,A′)(r − s) + eγ − y + z = b

r, s, y, z ≥ 0,

(34)

which is similar to the nonlinear kernel SVM classifier linear programming formulation (27)
with equality constraints replacing inequality constraints. We also note that this linear
program is solvable because it is feasible and its objective function is bounded below by
zero. Hence, Proposition 1 can be utilized to yield the following unconstrained reformulation
of the problem.

Proposition 5 Exact 1-Norm Nonlinear SVM Approximation via Unconstrained
Minimization The unconstrained dual exterior penalty problem for the 1-norm SVM ap-
proximation (34):

min
u∈Rm

− ǫb′u +
1

2
(‖(K(A,A′)u − e)+‖

2 + ‖(−K(A,A′)u − e)+‖
2+

(e′u)2 + ‖(−u − νe)+‖
2 + ‖(u − νe)+‖

2),
(35)

is solvable for all ǫ > 0. For any ǫ ∈ (0, ǭ] for some ǭ > 0, any solution u of (35) generates
an exact of the 1-norm SVM approximation problem (32) as follows:

v = r − s = = 1
ǫ
((K(A,A′)u − e)+ − (−K(A,A′)u − e)+),

γ = 1
ǫ
e′u,

y = 1
ǫ
(−u − νe)+,

z = 1
ǫ
(u − νe)+

(36)

In addition this (r, s, γ, y, z) minimizes:

‖r‖2 + ‖s‖2 + γ2 + ‖y‖2 + ‖z‖2, (37)

over the solution set of the 1-norm SVM classification problem (34).

Computational results utilizing the linear programming formulation (32) with prior
knowledge in (Mangasarian et al., 2004) but using the simplex method of solution is effective
for solving approximation problems. The unconstrained minimization formulation (35) is
another method of solution which can also handle such problems without prior knowledge
as well as with prior knowledge with appropriate but straightforward modifications.

We turn now to our computational results.
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5. Computational Results

Computational testing was carried on a 3 Ghz Pentium 4 machine with 2GB of memory
running CentOS 4 Linux and utilizing the CPLEX 7.1 (ILO, 2003) linear programming
package within MATLAB 7.1 (MATLAB, 1994-2001). We tested our algorithm on six
publicly available data sets. Five from the UCI Machine Learning Repository Murphy
and Aha (1992): Ionosphere, Cleveland Heart, Pima Indians, BUPA Liver and Housing.
The sixth data set, Galaxy Dim, is available from Odewahn et al. (1992). The results are
summarized in Tables 1 and 2.

For the linear classifier (13) we compare in Table 1, NLPSVM (Fung and Mangasarian,
2004), CPLEX (ILO, 2003) and our Generalized LPNewton Algorithm for (16), on six public
data sets using ten-fold cross validation. NLPSVM is essentially identical to our algorithm,
except that it requires a penalty parameter multiplying the last term of (16) to approach
infinity. CPLEX uses the standard linear programming package CPLEX (ILO, 2003) to
solve (26). We note that our method LPNewton is faster than both NLPSVM and CPLEX
on all six data sets and gives the best feature suppression based on the average number of
features used by the linear classifier (13). NLPSVM has the best test set correctness on
two of the data sets, and comparable correctness on the other four. The Armijo step size
was not needed in either NLPSVM or LPNewton. Tuning on 10% of the training set was
used to determine the parameters ν and δ from the sets {2−12, . . . , 212} and {10−3, . . . , .103}
respectively. Epsilon was set to the value 4.00E-04 used in (Fung and Mangasarian, 2004)
for NLPSM and to 1.00E-06 for our LPNewton algorithm.

For the nonlinear classifier (22) we compare in Table 2, NLPSVM (Fung and Mangasar-
ian, 2004), CPLEX (ILO, 2003) and our Generalized LPNewton Algorithm 3 for (27), on
three public data sets using ten-fold cross validation. We note again that our method LP-
Newton is faster than both NLPSVM and CPLEX on all three data sets and gives the best
reduction in the number of kernel functions utilized, on two of the data sets, based on the
cardinality of v = r − s as defined in (25) and (27). Best test set correctness was achieved
on two data sets by our method and it was a close second on the third data set. Again the
Armijo step size was not needed in either NLPSVM or LPNewton. Tuning and choice of
the parameters ν and ǫ was done as for the linear classifier above. A Gaussian kernel was
used for all three methods and data sets with the Gaussian parameter tuned from the set
{2−12, . . . , 212}.

6. Conclusion and Outlook

We have derived an unconstrained differentiable convex minimization reformulation of a
most general linear program and have applied it to 1-norm classification and approximation
problems. Very effective computational results of our method on special cases of general lin-
ear programs (Mangasarian, 2004) and an approximate version for support vector machine
classification (Fung and Mangasarian, 2004), as well as computational results presented in
Section 5, lead us to believe that the proposed unconstrained reformulation of very general
linear programs and support vector machines is a very promising computational method for
solving such problems as well as extensions to knowledge-based formulations (Mangasarian,
2005; Fung et al., 2003; Mangasarian et al., 2004).
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Data Set/Size Algorithm Iters Time Train % Test % Feat Eps

Ionosphere NLPSVM 69 0.1796 92.6254 83.8016 20.6 4e-4
Ionosphere CPLEX 0.179 92.6255 85.4841 25.1
Ionosphere LPNewton 30.7 0.0767 89.6169 87.1825 9.6 1e-6

351× 34

BUPA Liver NLPSVM 100 0.1062 70.1791 67.916 5.9 4e-4
BUPA Liver CPLEX 0.2278 70.4994 67.2941 6
BUPA Liver LPNewton 63.3 0.0623 69.1814 67.563 5.2 1e-6

345× 6

Pima Indians NLPSVM 93.2 0.2169 73.5809 72.6692 6.8 4e-4
Pima Indians CPLEX 1.1707 76.8086 75.2683 5.8
Pima Indians LPNewton 40.6 0.0904 76.0563 75.0051 4.6 1e-6

768× 8

Cleveland NLPSVM 42.2 0.0515 85.6742 84.1609 7.5 4e-4
Cleveland CPLEX 0.1409 85.9348 84.1609 8.4
Cleveland LPNewton 25.3 0.028 85.7478 84.5287 7.1 1e-6
297× 13

Housing NLPSVM 66.6 0.0891 83.9049 83.8078 9.1 4e-4
Housing CPLEX 0.363 86.8035 84.3882 10.5
Housing LPNewton 57.4 0.0781 85.6626 83.2078 7.7 1e-6
506× 13

Galaxy Dim NLPSVM 97.5 1.097 94.4392 94.4415 5.9 4e-4
Galaxy Dim CPLEX 12.5357 95.5153 95.5153 11.5
Galaxy Dim LPNewton 39.2 0.4297 94.4948 94.5131 4.8 1e-6

4192× 14

Table 1: Comparison of the Linear Classifier (13) obtained by NLPSVM (Fung
and Mangasarian, 2004), CPLEX (ILO, 2003) and our Generalized LP-
Newton Algorithm 3 for (16) on six public data sets. Time is for one
fold in seconds, Train and Test corectness is the average over ten folds
and Features (Feat) denote the average number over ten folds of input
space features utilized by the linear classifier. Epsilon (Eps) is the finite
parameter defined in (16). Best result is in bold. Note that LPNewton
is fastest and has least features.
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Data Set/Size Algorithm Iters Time Train % Test % Card(v) Eps

Ionosphere NLPSVM 81.7 0.181 92.0242 89.4683 18.5 4e-4
Ionosphere CPLEX 0.1555 94.7773 91.4683 15.5
Ionosphere LPNewton 36.5 0.103 92.5297 91.1587 11.2 1e-6

351× 34

BUPA NLPSVM 88.3 0.1706 68.8514 65.2521 15.5 4e-4
BUPA CPLEX 0.2552 74.1061 69.2521 17.3
BUPA LPNewton 88.2 0.1345 73.6572 70.6975 25.5 1e+0
345× 6

Cleveland NLPSVM 84.6 0.1128 83.168 80.4368 9.1 4e-4
Cleveland CPLEX 0.1097 85.0383 81.8161 11.8
Cleveland LPNewton 80.2 0.1061 83.0151 82.8621 5.6 1e-9
297× 13

Table 2: Comparison of the Nonlinear Classifier (22) obtained by NLPSVM
(Fung and Mangasarian, 2004), CPLEX (ILO, 2003) and our Gener-
alized LPNewton Algorithm 3 for (27) on three public data sets. Time
for one fold is in seconds, Train and Test corectness is on ten folds.
Card(v) denotes the average number of nonzero components of v = r−s

as defined in (25) and (27) and hence that is the number of kernel func-
tions utilized by the nonlinear classifier (22). Epsilon (Eps) is the finite
parameter defined in (16) with the replacement (23) of A by K(A,A′)D.
Features (Feat) denotes the average number of features over ten folds.
Reduced SVM (RSVM) (Lee and Mangasarian, 2001) was used to speed
all computations by using the reduced kernel K(A, Ā′) where m

10 ran-
domly chosen rows of A constitute the rows of rows of Ā. Best result is
in bold. Note that LPNewton is fastest.
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