
Multiple Instance Classification via Successive

Linear Programming

O. L. Mangasarian ∗ Edward W. Wild 1

Computer Sciences Department

University of Wisconsin

Madison, WI 53706

Abstract

The multiple instance classification problem [6,2,12] is formulated using a linear

or nonlinear kernel as the minimization of a linear function in a finite dimensional

(noninteger) real space subject to linear and bilinear constraints. A linearization

algorithm is proposed that solves a succession of fast linear programs that converges

in a few iterations to a local solution. Computational results on a number of datasets

indicate that the proposed algorithm is competitive with the considerably more

complex integer programming and other formulations. A distinguishing aspect of

our linear classifier not shared by other multiple instance classifiers is the sparse

number of features it utilizes. In some tasks the reduction amounts to less than one

percent of the original features.

Key words: Multiple instance learning, support vector machines, successive

linearization algorithm

Preprint submitted to Elsevier Science 11 May 2006

1 Introduction

The multiple instance classification problem was introduced in [6,2,12] and

consists of classifying positive and negative bags of points in the n-dimensional

real space Rn on the following basis. Each bag contains a number of points

and a classifier correctly classifies all the bags if for each positive bag at least

one point in the bag is classified as positive, and for each negative bag all the

points in the bag are classified as negative. Various formulations of the multiple

instance classification problem including integer programming, expectation

maximization, and kernel formulations have been proposed [1,9,22,23]. Ray

and Craven [19] provide an empirical comparison of several multiple instance

classification algorithms and their non-multiple-instance counterparts.

We propose here a novel mathematical programming formulation of the mul-

tiple instance classification problem that leads to an efficient successive lin-

earization algorithm that typically converges in a few steps to a local solution

of the problem which for a linear classifier utilizes as little as one percent of

problem features. Our formulation uses a linear or nonlinear kernel support

vector machine classifier [20,4,21,14] and is based on the following simple ideas.

For a linear classifier, a positive bag is classified correctly if and only if some

convex combination of points in the bag lies on the positive side of a separat-

ing plane. For a nonlinear kernel classifier, a similar statement applies to the

higher dimensional space induced by the kernel. This leads to a constrained

optimization problem where the objective function and constraints are linear

except for a set of bilinear constraints corresponding to the positive bags. A

∗ www.cs.wisc.edu/∼olvi. Also, Department of Mathematics, University of Califor-
nia at San Diego, La Jolla, CA 92093. Email: olvi@cs.wisc.edu
1 www.cs.wisc.edu/∼wildt. Email: wildt@cs.wisc.edu

2

local solution to this formulation is obtained by solving a sequence of linear

programs that terminate in a few iterations.

The outline of the paper is as follows. In Section 2 we give our formulation of

the multiple instance classification problem and state some of its properties.

In Section 3 we state our algorithm and give its convergence. In Section 4 we

present our numerical tests on five datasets. Section 5 concludes the paper.

We now describe our notation. All vectors will be column vectors unless trans-

posed to a row vector by a prime ′. The scalar (inner) product of two vectors

x and y in the n-dimensional real space Rn will be denoted by x′y. For x ∈ Rn

and 1 ≤ p < ∞, the p-norm and the ∞-norm are defined as follows:

‖x‖p =





n
∑

j=1

|xj|
p





1

p

, ‖x‖∞ = max
1≤j≤n

|xj|.

The notation A ∈ Rm×n will signify a real m × n matrix. For such a matrix

A′ will denote the transpose of A, Ai will denote the i-th row of A, and

A·j will denote the j-th column of A. A vector of ones in a real space of

arbitrary dimension will be denoted by e. Thus for e ∈ Rm and y ∈ Rm the

notation e′y will signify the summation
m

∑

i=1

yi. A vector of zeros in a real space

of arbitrary dimension will be denoted by 0. The identity matrix of arbitrary

dimension will be denoted by I. A separating plane, with respect to two given

point sets A and B in Rn, is a plane that attempts to separate Rn into two

halfspaces such that each open halfspace contains points mostly of A or B. A

bilinear function is the product of two linear functions. A bounding plane to

the set A is a plane that places A in one of the two closed halfspaces that

the plane generates. For A ∈ Rm×n and B ∈ Rn×k, a kernel K(A,B) maps

Rm×n × Rn×k into Rm×k. In particular, if x and y are column vectors in Rn,

3

then K(x′, y) is a real number, K(x′, A′) is a row vector in Rm and K(A,A′)

is an m×m matrix. The base of the natural logarithm will be denoted by ε. A

frequently used kernel in nonlinear classification that will be employed here is

the Gaussian kernel [21,14] whose ij−th element, i = 1, . . . ,m, j = 1, . . . , k,

is given by: (K(A,B))ij = ε−µ‖Ai
′−B·j‖

2

, where A ∈ Rm×n, B ∈ Rn×k and µ

is a positive constant. For simplicity, the dimensionality of some vectors will

not be explicitly given. The abbreviation “s.t.” stands for “such that”.

2 Problem Formulation

2.1 Linear Kernel Classifier

Let the positive bags be represented by the k matrices Bi ∈ Rmi×n, i =

1, . . . , k, where row ℓ, Bi
ℓ ∈ Rn, of the matrix Bi represents point ℓ of bag

i with ℓ = 1, . . . ,mi. Similarly, we shall represent the negative bags by the

m − k matrices Ci ∈ Rmi×n, i = k + 1, . . . ,m, where row ℓ, Ci
ℓ ∈ Rn, of the

matrix Ci represents point ℓ of bag i with ℓ = 1, . . . ,mi. We shall first use a

linear classifier given by the separating plane:

x′w = γ, (1)

where w ∈ Rn is the normal to a plane that attempts to separate the positive

and negative bags, while γ determines the location of the plane relative to

the origin in Rn. The separation will be achieved by attempting to place all

the points in the negative bags in the halfspace {x|x′w ≤ γ − 1} and at the

same time placing some convex combination of points of each positive bag in

the halfspace {x|x′w ≥ γ + 1} while maximizing the margin (distance) 2
‖w‖1

4

between the bounding planes x′w = γ ± 1 using the ∞-norm to measure the

margin, as described in [13] . Our mathematical programming formulation

will be based on the simple observation that a positive bag will be classified

as being in the halfspace {x|x′w ≥ γ + 1} by the separating plane (1) if and

only if some convex combination of points in that bag lies in the positive half-

space. This leads to the following mathematical program with some positive

parameter ν that weights data fitting versus generalization:

min
w,γ,y,v1,...,vk

νe′y + ‖w‖1

s.t. vi′Biw − γ + yi ≥ 1, i = 1, . . . , k,

−Ci
ℓw + γ + yi

ℓ ≥ 1, i = k + 1, . . . ,m, ℓ = 1, . . . ,mi,

e′vi = 1, vi ≥ 0, i = 1, . . . , k,

y ≥ 0.

(2)

Here, the vector y with components yi, i = 1, . . . , k and yi
ℓ, i = k+1, . . . ,m, ℓ =

1, . . . ,mi represents nonnegative slack variables that are driven towards zero

by the objective function term νe′y. The objective function term ‖w‖1 rep-

resents twice the reciprocal of the soft margin between the bounding planes

x′w = γ ± 1. Other than the first set of k constraints which are bilinear, the

optimization problem has a linear objective function and constraints. We note

that the term ‖w‖1 is easily converted to a linear term e′s with the added

constraint s ≥ w ≥ −s. We shall propose and establish convergence to a local

solution of our formulation (2) of the multiple-instance problem via a succes-

sive linearization algorithm in the next section after we have formulated the

nonlinear kernel problem.

5

2.2 Nonlinear Kernel Classifier

We now describe how to generate a nonlinear classifier via a nonlinear kernel

formulation. We replace the separating plane (1) by the nonlinear separating

surface:

K(x′, H ′)u = γ, (3)

where u ∈ Rm is a dual variable and the m × n matrix H is defined as:

H ′ = [B1′ . . . Bk ′ Ck+1′ . . . Cm′] (4)

and K(x′, H ′) is an arbitrary kernel map from Rn × Rn×m̄ into Rm̄, where

m̄ =
m
∑

i=1
mi. We note that the linear classifier (1) is recovered from (3) if

we use the linear kernel K(x′, H ′) = x′H ′ and define w = H ′u. With this

nonlinear kernel formulation, the mathematical program for generating the

nonlinear classifier becomes the following, upon kernelizing (2):

min
u,γ,y,v1,...,vk

νe′y + ‖u‖1

s.t. vi′K(Bi, H ′)u − γ + yi ≥ 1, i = 1, . . . , k,

−K(Ci
ℓ, H

′)u + γ + yi
ℓ ≥ 1, i = k + 1, . . . ,m, ℓ = 1, . . . ,mi,

e′vi = 1, vi ≥ 0, i = 1, . . . , k,

y ≥ 0.

(5)

We note again that the only nonlinearity is in the first k bilinear constraints.

A necessary and sufficient condition for nonlinear kernel separation is that

6

y < e.

3 Multiple Instance Classification Algorithm

Since only the first constraints in our multiple instance formulation are non-

linear, and in fact are bilinear, an obvious method of solution suggests itself as

follows. Alternately hold one set of variables that constitute the bilinear terms

constant while varying the other set. This leads to the successive solution of

linear programs that underly our algorithm which we specify now.

Algorithm 3.1 MICA: Multiple Instance Classification Algorithm

with a Nonlinear Kernel K

(0) Choose as initial guess for vi0 = e
mi , i = 1, . . . , k. Set counter r = 0.

Note: This initial choice of v10, . . . , vk0 results in using the mean for each

positive bag in (i) below.

(i) For fixed v1r, . . . , vkr, where vir is iterate r for vi, solve the following

linear program for (ur, γr, yr) for some positive value of the parameter ν:

min
u,γ,y

νe′y + ‖u‖1

s.t. vir ′K(Bi, H ′)u − γ + yi ≥ 1, i = 1, . . . , k,

−K(Ci
ℓ, H

′)u + γ + yi
ℓ ≥ 1, i = k + 1, . . . ,m, ℓ = 1, . . . ,mi,

y ≥ 0.

(6)

(ii) For ur fixed at the value obtained in (i), solve the following linear program

7

for (γ, y, v1(r+1), . . . , vk(r+1)):

min
γ,y,v1,...,vk

e′y

s.t. vi′K(Bi, H ′)ur − γ + yi ≥ 1, i = 1, . . . , k,

−K(Ci
ℓ, H

′)ur + γ + yi
ℓ ≥ 1, i = k + 1, . . . ,m, ℓ = 1, . . . ,mi,

e′vi = 1, vi ≥ 0, i = 1, . . . , k,

y ≥ 0.

(7)

(iii) Stop if ‖(v1(r+1) − v1r, . . . , vk(r+1) − vkr)‖2 is less than some desired tol-

erance. Else replace (v1r, . . . , vkr) by (v1(r+1), . . . , vk(r+1)), r by r + 1 and

go to (i).

Since the objective function of our original multiple instance formulation (5)

is bounded below by zero and is nonincreasing in the iterations (i) and (ii)

of the MICA Algorithm 3.1, it must converge. We can state the following

convergence result.

Proposition 3.2 : Convergence to a Local Minimum Value The non-

negative nonincreasing values of the sequence of objective function values {νe′yr+

‖ur‖1}
r=∞
r=1 converges to (νe′ȳ + ‖ū‖1) where (ū, γ̄, ȳ, v̄1, . . . , v̄k) is any accu-

mulation point of the sequence of iterates {(ur, γr, yr, v1r, . . . , vkr)} generated

by the MICA Algorithm 3.1. The point (ū, γ̄, ȳ, v̄1, . . . , v̄k) has the following

8

local minimum property:

νe′ȳ + ‖ū‖1 = min
u,γ,y

νe′y + ‖u‖1

s.t. (v̄i)′K(Bi, H ′)u − γ + yi ≥ 1, i = 1, . . . , k,

−K(Ci
ℓ, H

′)u + γ + yi
ℓ ≥ 1, i = k + 1, . . . ,m, ℓ = 1, . . . ,mi,

y ≥ 0.

(8)

Proof That the sequence {νe′yr +‖ur‖1} converges follows from the fact that

it is nonincreasing and bounded below by zero. That (8) is satisfied follows

from the fact each point of the sequence {(ur, γr, yr, v1r, . . . , vkr)} satisfies (8)

with (ū, ȳ, v̄1, . . . , v̄k) replaced by (ur, yr, v1r, . . . , vkr) on account of step (i) of

the MICA Algorithm 3.1. Hence, any accumulation point (ū, γ̄, ȳ, v̄1, . . . , v̄k)

of {(ur, γr, yr, v1r, . . . , vkr)} satisfies (8). ♦

In practice the MICA Algorithm 3.1 terminates very quickly, typically before

ten iterations.

A similar algorithm and proposition can be given for a linear classifier which

is a special case of the above nonlinear kernel classifier.

Before we turn to our numerical results, it is important to point out some

significant differences between our MICA Algorithm 3.1 and the mi-SVM and

MI-SVM mixed integer programming formulations introduced by Andrews et

al. in [1]. A key difference is that MICA employs the 1-norm, rather than the 2-

norm used by mi-SVM and MI-SVM. The 1-norm SVM formulation is known

to lead to sparse solutions [3,24], which corresponds to using few input features

when a linear classifier is used. Our experimental results will demonstrate this

9

behavior. The 1-norm also allows MICA to be solved by a succession of linear

programs, rather than more complex quadratic programs. Also, MICA uses an

arbitrary convex combination of points in the positive bags to represent each

such bag. This representation is done by means of a continuous nonnegative

variable vi for each positive bag. This is fundamentally different from both

mi-SVM which uses integer variables to assign labels to each point in each

positive bag, and from MI-SVM which chooses a single “witness” point to

represent each positive bag. Furthermore, while MI-SVM chooses the witness

point to be the point furthest from the decision boundary, MICA does not

necessarily choose a convex combination furthest from the decision boundary.

Finally, MICA and mi-SVM use one slack variable per negative instance, while

MI-SVM uses one slack variable per negative bag. Our formulation leads to a

simple algorithm without heuristics which we have shown converges to a local

solution.

4 Numerical Testing

To demonstrate the capabilities of our formulation, we report results on twelve

datasets, two from the UCI machine learning repository [17], and ten from [1].

Detailed information about these datasets is summarized in Table 1. We use

the datasets from [1] to evaluate our linear classification algorithm. Three of

these datasets are from an image annotation task in which the goal is to de-

termine whether or not a given animal is present in an image. The other seven

datasets are from the OHSUMED data and the task is to learn binary con-

cepts associated with the Medical Subject Headings of MEDLINE documents.

The two datasets from the UCI repository [17] are the Musk datasets, which

10

Table 1
Description of the datasets used in the experiments. Ele-
phant, Fox, Tiger, and the TST datasets are used in [1],
while Musk-1 and Musk-2 are available from [17]. + Bags
denotes the number of positive bags in each dataset, while
+ Instances denotes the total number of instances in all
the positive bags. Similarly, - Bags and - Instances denote
corresponding quantities for the negative bags.

Data Set + Bags + Instances - Bags - Instances Features

Elephant 100 762 100 629 143

Fox 100 647 100 673 143

Tiger 100 544 100 676 143

TST1 200 1580 200 1644 6668

TST2 200 1715 200 1629 6842

TST3 200 1626 200 1620 6568

TST4 200 1754 200 1637 6626

TST7 200 1746 200 1621 7037

TST9 200 1684 200 1616 6982

TST10 200 1818 200 1635 7073

Musk-1 47 207 45 269 166

Musk-2 39 1017 63 5581 166

are commonly used in multiple instance classification. We report results on

these datasets for our nonlinear classification algorithm.

We compare our linear classification algorithm to the linear versions of mi-

SVM and MI-SVM [1]. Both mi-SVM and MI-SVM use mixed-integer pro-

gramming to learn a linear classifier, and as such are natural candidates for

comparison with MICA. Since Andrews et al. also report results on Zhang and

Goldman’s expectation-maximization approach EM-DD [23] on these datasets

[1], we include those results here as well. Finally, Ray and Craven [19] demon-

strate that in some domains, algorithms that make no use of multiple instance

11

information may outperform their multiple instance counterparts. Thus, we

include a linear programming formulation of an SVM (SVM1) [3,14] in our

comparisons as the natural non-multiple-instance counterpart to MICA.

Table 2 reports results comparing MICA to MI-SVM, MI-SVM, EM-DD, and

SVM1. Correctness results for mi-SVM, MI-SVM and EM-DD were taken

from [1]. Correctness for each algorithm was measured by averaging ten ten-

fold cross validation runs. The regularization parameters for MICA and SVM1

were selected from the set {2i|i = −7, . . . , 7} by ten-fold cross validation on

each training fold for the image annotation datasets, and by using a random

ten percent of each training fold as a tuning set. The final classifier for each

fold was trained using all the data in the training fold. MICA was stopped if

the difference between the v variables was less than 10−4 or if r > 80. SVM1

was trained by assuming all instances in each positive bag had a positive label,

but for tuning and testing the classification rule was the same as for MICA.

We note that MICA had the best correctness on four datasets, while mi-SVM

had the best correctness on three datasets. SVM1 had the best correctness on

two datasets, and MI-SVM had the best correctness on one dataset. EM-DD

did not have the best correctness on any dataset.

In order to evaluate the difference between the algorithms more precisely, we

used the Friedman test [8] on the results reported in Table 2. The Friedman

test is a nonparametric test that compares the average ranks of the algorithms,

where the algorithm with the highest correctness on a dataset is given a rank

of 1 on that dataset, and the algorithm with the worst correctness is given a

rank of 5. For example, on the Elephant dataset, mi-SVM has rank 1, MICA

has rank 3, and EM-DD has rank 5. The average rank for MICA was 2.1,

for mi-SVM 2.3, for SVM1 2.9, for MI-SVM 3.1, and for EM-DD 4.6. The

12

Table 2
Linear kernel MICA, mi-SVM [1], MI-SVM [1], EM-DD
[23], and SVM1 testing correctness and number of fea-
tures used averaged over ten ten-fold cross validation ex-
periments. The datasets are those used by Andrews et al. in
[1]. The number of features used is available on all datasets
for MICA and SVM1, and on the Elephant, Fox, and Tiger
datasets for mi-SVM and MI-SVM. Best correctness on
each dataset is in bold. Note the substantial reduction in
features by MICA and SVM1.

Data Set MICA mi-SVM MI-SVM EM-DD SVM1

% Correct % Correct % Correct % Correct % Correct

#Features # Features # Features # Features # Features

Elephant 80.5% 82.2% 81.4% 78.3% 78.5%

143 59.0 143.0 143.0 19.2

Fox 58.7% 58.2% 57.8% 56.1% 56.7%

143 78.0 143.0 143.0 73.6

Tiger 82.6% 78.4% 84.0% 72.1% 77.3%

143 50.8 143.0 143.0 46.0

TST1 94.5% 93.6% 93.9% 85.8% 94.2%

6668 50.5 41.1

TST2 85.0% 78.2% 84.5% 84.0% 77.6%

6842 97.2 68.4

TST3 86.0% 87.0% 82.2% 69.0% 87.3%

6568 123.7 39.4

TST4 87.7% 82.8% 82.4% 80.5% 81.0%

6626 59.9 69.0

TST7 78.9% 81.3% 78.0% 75.4% 79.2%

7037 145.3 37.3

TST9 61.4% 67.5% 60.2% 65.5% 65.8%

6982 302.1 119.6

TST10 82.3% 79.6% 79.5% 78.5% 83.6%

7073 132.2 37.6

13

Friedman test indicated that these results were significantly different at the

five percent level, so we went on to perform a Bonferroni-Dunn post-hoc test [7]

to compare MICA with the other algorithms. We found that the only algorithm

with statistically significant difference from MICA was EM-DD. Demšar [5]

gives an introduction to these tests, and demonstrates their applicability to

the comparison of machine learning algorithms. These results indicate that

MICA, which is the only algorithm that incorporates both multiple instance

information and substantial feature reduction, has correctness comparable to

the other linear classifiers and better than EM-DD on these datasets.

Table 2 also reports the number of features used by MICA and SVM1 on all

datasets, and by the mixed-integer programming formulations on the image

annotation datasets (Elephant, Fox, and Tiger). The feature selection results

for mi-SVM and MI-SVM were computed by running a single ten-fold cross

validation experiment on each dataset. The regularization parameter was cho-

sen from the set {2i|i = −7, . . . , 7} by a tuning set consisting of a random

ten percent of each training fold, and the final classifier was trained on all the

data in the training fold for each fold. Our implementations achieved correct-

ness within a few percentage points of the reported accuracies in [1]. We do

not believe that changing the tuning procedure or running more experiments

would change the number of features used, since our results are in line with

previous comparisons between 1-norm and 2-norm penalties for SVMs [3,24].

We note that although there were 230 features reported in the three image

annotation datasets, 87 are zero in every instance for each dataset. Thus, nei-

ther MI-SVM nor mi-SVM reduce features on these datasets. While we did

not test mi-SVM and MI-SVM on the OHSUMED data, the above results and

cited work indicate that they will not reduce features as drastically as MICA

14

Table 3
Nonlinear kernel MICA, mi-SVM [1], MI-SVM [1], EM-DD
[23], DD [15] MI-NN [18], IAPR [6], and MIK [9] ten-fold
testing correctness on the Musk-1 and Musk-2 datasets.
Best accuracy is in bold.

Data Set MICA mi-SVM MI-SVM EM-DD DD MI-NN IAPR MIK

Musk-1 84.4% 87.4% 77.9% 84.8% 88.0% 88.9% 92.4% 91.6%

Musk-2 90.5% 83.6% 84.3% 84.9% 84.0% 82.5% 89.2% 88.0%

or SVM1. We note that in some cases MICA used less than one percent of the

features, and never used more than five percent on the OHSUMED data or

more than 55% of the 143 non-zero features on the image annotation data.

To demonstrate the efficiency of our proposed formulation, we describe its be-

havior on the Elephant dataset. The average time to learn a classifier once the

parameter ν was chosen was 25.2 seconds, and the average number of MICA

iterations required was 5.8. Note that each iteration involves solving two lin-

ear programs. These results were obtained on a Pentium III 650 MHz desktop

machine with 256MB RAM running Tao Linux, Version 1. The algorithm was

implemented in MATLAB [16] and the linear programs were solved using the

dual simplex method of the CPLEX linear programming solver [10].

Although our numerical testing is focused on linear classification, Table 3 gives

ten-fold cross validation accuracy results for MICA using a Gaussian kernel

and previously published results of several other algorithms on the Musk-1 and

Musk-2 datasets which are available from the UCI repository [17]. The results

for EM-DD are taken from [1]. The MIK entry reports the best ten-fold cross

validation result among the multi-instance kernel methods of Gartner et al.

[9]. The IAPR entry reports the results obtained by Dietterich et al. using the

Iterated Discrimination Axis-Parallel Rectangle algorithm [6]. The parameters

ν and µ of MICA were both chosen from the set {2i|i = −7, . . . , 7} using a

15

subset of the training set as a tuning set for each fold. MICA was stopped if

the difference between the v variables was less than 10−4 or if r > 80. To speed

computation and reduce the risk of overfitting, a reduced kernel containing ten

percent of the rows of H was used as in [11]. We note that MICA had the best

correctness among eight methods on Musk-2.

5 Conclusion & Outlook

We have introduced a mathematical programming formulation of the multiple-

instance problem that has a linear objective with linear and bilinear con-

straints. Our mathematical program can be efficiently solved by a succes-

sion of fast linear programs that converge in a few iterations to a local so-

lution. Results on previously published datasets indicate that our approach

is very effective at finding substantially sparse linear classifiers. Furthermore,

our approach can be easily extended to finding nonlinear classifiers with po-

tentially high accuracy through the use of nonlinear kernels. Improvements in

the mathematical programming formulation and evaluation using a wide va-

riety of datasets and algorithms, such as those in [19], are promising avenues

of future research.

Acknowledgments

The research described in this Data Mining Institute Report 05-02, May 2005,

revised May 2006, was supported by National Science Foundation Grants

CCR-0138308 and IIS-0511905, the Microsoft Corporation and ExxonMobil.

We are grateful to our colleague Soumya Ray for access to some of the datasets

and to the anonymous reviewers for their constructive comments.

16

References

[1] S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for

multiple-instance learning. In Suzanna Becker, Sebastian Thrun, and Klaus

Obermayer, editors, Advances in Neural Information Processing Systems 15,

pages 561–568. MIT Press, Cambridge, MA, October 2003.

[2] P. Auer. On learning from multi-instance examples: Empirical evaluation of a

theoretical approach. In Proceedings 14th International Conference on Machine

Learning, pages 21–29. Morgan Kaufmann, 1997.

[3] P. S. Bradley and O. L. Mangasarian. Feature selection via concave

minimization and support vector machines. In J. Shavlik, editor,

Machine Learning Proceedings of the Fifteenth International Conference(ICML

’98), pages 82–90, San Francisco, California, 1998. Morgan Kaufmann.

ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-03.ps.

[4] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector

Machines. Cambridge University Press, Cambridge, 2000.

[5] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal

of Machine Learning Research, 7:1–30, 2006.

[6] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Perez. Solving the multiple-

instance problem with axis-parallel rectangles. Artificial Intelligence, 89:31–71,

1998.

[7] O. J. Dunn. Multiple comparisons among means. Journal of the American

Statistical Association, 56:52–64, 1961.

[8] M. Friedman. The use of ranks to avoid the assumption of normality implicit

in the analysis of variance. Journal of the American Statistical Association,

32:675–701, 1937.

17

[9] Thomas Gartner, Peter A. Flach, Adam Kowalczyk, and Alex J. Smola. Multi-

instance kernels. In Claude Sammut and Achim Hoffmann, editors, Proceedings

of the 19th International Conference on Machine Learning, pages 179–186.

Morgan Kaufmann, July 2002.

[10] ILOG, Incline Village, Nevada. ILOG CPLEX 9.0 User’s Manual, 2003.

http://www.ilog.com/products/cplex/.

[11] Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced support vector machines.

In Proceedings of the First SIAM International Conference on Data Mining,

Chicago, April 5-7, 2001, CD-ROM. ftp://ftp.cs.wisc.edu/pub/dmi/tech-

reports/00-07.ps.

[12] P. M. Long and L. Tan. PAC learning axis aligned rectangles with respect

to product distributions from multiple instance examples. Machine Learning,

30(1):7–22, 1998.

[13] O. L. Mangasarian. Arbitrary-norm separating plane. Operations Research

Letters, 24:15–23, 1999. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/97-

07r.ps.

[14] O. L. Mangasarian. Generalized support vector machines. In A. Smola,

P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large

Margin Classifiers, pages 135–146, Cambridge, MA, 2000. MIT Press.

ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-14.ps.

[15] O. Maron and A. L. Ratan. Multiple-instance learning for natural scene

classification. In 15th International Conference on Machine Learning, San

Francisco, CA, 1998. Morgan Kaufmann.

[16] MATLAB. User’s Guide. The MathWorks, Inc., Natick, MA 01760, 1994-2001.

http://www.mathworks.com.

18

[17] P. M. Murphy and D. W. Aha. UCI machine learning repository, 1992.

www.ics.uci.edu/∼mlearn/MLRepository.html.

[18] J. Ramon and L. De Raedt. Multi-instance neural networks. In Proceedings of

ICML-2000, Workshop on Attribute-Value and Relational Learning, 2000.

[19] S. Ray and M. Craven. Supervised versus multiple instance learnining: An

emperical comparison. In Proceedings of the 22nd International Conference on

Machine Learning, Bonn, Germany, 2005.

[20] B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge,

MA, 2002.

[21] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,

second edition, 2000.

[22] J. Wang and J.-D. Zucker. Solving the multiple instance problem:

A lazy learning approach. In P. Langley, editor, Proceedings of the

Seventeenth International Conference on Machine Learning (ICML-2000),

Stanford University, pages 1119–1125, San Francisco, CA, 2000. Morgan

Kaufman Publishers.

[23] Q. Zhang and S. A. Goldman. EM-DD: an improved miltiple-instance learning

technique. In Neural Information Processing Systems 2001, pages 1073–1080,

Cambridge, MA, 2002. MIT Press.

[24] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-Norm support vector

machines. In Sebastian Thrun, Lawrence K. Saul, and Bernhard Schölkopf,

editors, Advances in Neural Information Processing Systems 16–NIPS2003.

MIT Press, 2004.

19

