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Abstract. A function on Rn with multiple local minima is approximated from below, via linear
programming, by a linear combination of convex kernel functions using sample points from the
given function. The resulting convex kernel underestimator is then minimized, using either a
linear equation solver for a linear-quadratic kernel or by a Newton method for a Gaussian kernel,
to obtain an approximation to a global minimum of the original function. Successive shrinking
of the original search region to which this procedure is applied leads to fairly accurate estimates,
within 0.0001% for a Gaussian kernel function, relative to global minima of synthetic nonconvex
piecewise-quadratic functions for which the global minima are known exactly. Gaussian kernel
underestimation improves by a factor of ten the relative error obtained using a piecewise-linear
underestimator [11], while cutting computational time by an average factor of over 28.

keywords: multiple minima, underestimation, convex kernels, global minimiza-
tion

1. Introduction

Recently [11] nonconvex functions with multiple local minima were underestimated
by a convex piecewise-linear function in order to obtain a global minimum of the
function. Aside from taking over four hours for solving a 6-dimensional problem,
the method required the solution of an NP-hard problem of minimizing a concave
function on a polyhedral set. In an earlier work [14] the same problem was solved
by obtaining a strongly convex quadratic underestimator. However that approach
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also required the difficult minimization of a concave function on a quadratically
constrained convex region.

The present approach avoids all the above difficulties associated with these two
methods by using an underestimator that is a linear combination of convex kernel
functions. The convex kernel underestimator is obtained by solving a single linear
program. A global minimum of the underestimator is then easily obtained by
either solving a system of linear equations or by a Newton method. Kernel (or
equivalently support vector machine) methods used here constitute the method of
choice for classification and approximation problems [16, 3, 18, 8, 1, 6, 10, 9, 15].
However, these methods have not been used to any significant extent for nonconvex
function minimization. The nonconvex function minimization problem that we are
interested in here plays a key role in protein docking [5, 12, 13] and will be used to
test our method.

We briefly outline the contents of the paper now. In Section 2 we formulate the
kernel underestimation problem as a linear program for both a linear-quadratic ker-
nel and a Gaussian kernel and give two algorithms for finding a global minimum of
an underestimator. In Section 3 we present our numerical results and compare them
with previous ones. The global minimum value was attained to within 0.9290% rel-
ative to the exact minimum by using a linear-quadratic kernel underestimator and
to within 0.0001% by using a Gaussian kernel underestimator. Section 4 concludes
the paper.

A word about our notation and background material. All vectors will be column
vectors unless transposed to a row vector by a prime superscript ′. The scalar
product of two vectors x and y in the n-dimensional real space Rn will be denoted
by x′y. For x ∈ Rn the norm ‖x‖ will denote the 2-norm and ‖x‖1 will denote
the 1-norm. For an m × n matrix A, Ai will denote the ith row of A, A·j will
denote the jth column of A and Aij will denote the element in row i and column
j. The identity matrix in a real space of arbitrary dimension will be denoted by
I, while a column vector of ones of arbitrary dimension will be denoted by e. For
a vector v ∈ Rm, diag(v) will denote an m × m diagonal matrix with v along the
diagonal. For A ∈ Rm×n and B ∈ Rn×k, a kernel K(A, B) is an arbitrary function
that maps Rm×n×Rn×k into Rm×k. In particular, if x and y are column vectors in
Rn then, K(x′, y) is a real number, K(x′, A′) is a row vector in Rm and K(A, A′)
is an m × m matrix. The base of the natural logarithm will be denoted by ε. A
frequently used kernel in nonlinear classification is the Gaussian kernel [18, 8] whose

ijth element, i = 1 . . . , m, j = 1 . . . , k, is given by: (K(A, B))ij = ε−µ‖Ai
′−B·j‖

2

,
where A ∈ Rm×n, B ∈ Rn×k and µ is a positive constant. We shall assume for
simplicity that our kernels are symmetric, that is K(x′, y)′ = K(y′, x), and instead
of the standard Mercer positive semidefiniteness condition on K(A, A′) [18, 16] we
shall require that the m components of K(x′, A′) are convex functions on Rn, which
turns out to be the case for linear and quadratic kernels as well as for the negative
of the Gaussian kernel. We shall refer to such kernels as convex kernels.
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2. Convex Kernel Underestimation via Linear Programming

The problem we are interested in is to find a global minimum of a function f :
Rn −→ R, given m function evaluations of f(x), that is:

yk = f(xk), k = 1, . . . , m. (1)

In [14] a strictly convex quadratic underestimator:

q(α, c, M ; x) = α + c′x +
1

2
x′Mx, M symmetric positive definite, (2)

is first obtained by solving the mathematical program:

min
α,c,M

m
∑

k=1

(yk − q(α, c, M ; xk))

s.t. q(α, c, M ; xk) ≤ yk, k = 1, . . . , m,

M symmetric positive definite,

(3)

where α ∈ R, c ∈ Rn and M ∈ Rn×n, and then minimizing q(α, c, M ; x) over
x ∈ Rn. The nonlinear positive definiteness constraint in (3) complicates this
otherwise linear formulation. This constraint is converted to a convex quadratic
constraint in [14] by using the representation M = LL′, which renders the objective
of (3) a concave function that is difficult to find a global minimum for. Another
possible difficulty with this approach is that a single strongly convex quadratic
function, such as q(α, c, M ; x), might not closely underestimate f(x). To avoid this
last difficulty, a piecewise-linear underestimator was proposed in [11]:

p(α, c, A, b; x) = α + c′x + ‖Ax + b‖1, (4)

where α ∈ R, c ∈ Rn, A ∈ Rℓ×n and b ∈ Rℓ, where ℓ is the number of linear
functions generating our piecewise-linear underestimation. Note that p(α, c, A, b; x)
is convex and piecewise-linear in x for fixed (α, c, A, b) and similarly it is convex
and piecewise-linear in (α, c, A, b) for fixed x. The approximation problem for an
underestimator of f(x) proposed in [11] was the following concave minimization
problem:

min
α,c,A,b

m
∑

k=1

(yk − p(α, c, A, b; xk))

s.t. p(α, c, A, b; xk) ≤ yk, k = 1, . . . , m.

(5)

Note that unlike the mathematical program (3), there are no constraints on the
matrix A. However, the objective function of this minimization problem is again
concave and at best only a local minimum can be found.

It is these noted difficulties that led us to the following considerably simpler
formulation that utilizes a convex kernel underestimator and requires merely a
linear program for its generation. Our underestimator is the following:

s(a, β, γ; x) = K(x′, H ′)a + β + γ
x′x

2
=

m
∑

i=1

aiK(x′, Hi
′) + β + γ

x′x

2
, (6)
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where a ∈ Rm, β ∈ R, x ∈ Rn, H ∈ Rm×n is the matrix whose m rows consist of
the m row vectors: x1′, x2′, . . . , xm′, K(x′, H ′) is a convex kernel function: R1×n ×
Rn×m −→ R1×m, as defined in the Introduction and γ ∈ R. A positive value for
the parameter γ ensures positive definiteness of the Hessian of the underestimator
for linear and quadratic kernel functions. The parameters a, β and γ defining our
kernel underestimator are chosen by the following linear program:

min
a≥0,β,γ≥0

m
∑

k=1

(yk − s(a, β, γ; xk))

s.t. s(a, β, γ; xk) ≤ yk, k = 1, . . . , m.

(7)

In order to ensure that the resulting underestimator is convex in x, we look at the
gradient and Hessian of s(a, β, γ; x) with respect to x, which are:

∇xs(a, β, γ; x) =

m
∑

i=1

ai∇xK(x′, Hi
′) + γx, (8)

∇xxs(a, β, γ; x) =

m
∑

i=1

ai∇xxK(x′, Hi
′) + γI. (9)

For the linear-quadratic kernel function:

lq(a, β, γ; x) =

m
∑

i=1

[a
(1)
i (x′Hi

′) + a
(2)
i (x′Hi

′)2] + β + γ
x′x

2
, a =

[a(1) ∈ Rm

a(2) ∈ Rm

]

, (10)

the gradient and Hessian are:

∇xlq(a, β, γ; x) =

m
∑

i=1

a
(1)
i Hi

′ +

m
∑

i=1

2a
(2)
i (x′Hi

′)Hi
′ + γx, (11)

∇xxlq(a, β, γ; x) =
m

∑

i=1

2a
(2)
i Hi

′Hi + γI. (12)

It follows immediately from (12) that the Hessian ∇xxlq(a, β, γ; x) is positive semidef-

inite if a
(2)
i and γ are nonnegative. Hence the linear-quadratic kernel function

lq(a, β, γ; x) of (10) is convex on Rn under the constraints that a
(2)
i and γ are

nonnegative which are already imposed by the linear program (7), and is strictly
convex if γ is bounded below by a positive number.

For the Gaussian kernel function:

g(a, β, γ; x) =

m
∑

i=1

− aiε
−µ‖x−Hi

′‖2

+ β + γ
x′x

2
, (13)

the gradient and Hessian are:

∇xg(a, β, γ; x) =

m
∑

i=1

2aiε
−µ‖x−Hi

′‖2

µ(x − Hi
′) + γx, (14)
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∇xxg(a, β, γ; x) =

m
∑

i=1

2µaiε
−µ‖x−Hi

′‖2

[I − 2µ(x − Hi
′)(x − Hi

′)′] + γI. (15)

It follows from (15) that the Hessian ∇xxg(a, β, γ; x) is positive definite if µ is suf-
ficiently small and ai and γ are nonnegative. Hence, the Gaussian kernel function
g(a, β, γ; x) of (13) is strictly convex on any bounded subset of Rn under the con-
straints that ai and γ are nonnegative and µ is sufficiently small. Numerically µ

ranged in the interval [0.00001, 0.1] and was determined experimentally.

We conclude from the above that the linear program (7) will generate a convex
underestimator for both the linear-quadratic kernel function lq(a, β, γ; x) of (10)
and for the Gaussian kernel function g(a, β, γ; x) of (13).

We state now our explicit algorithms for finding the global minimum of our kernel
function underestimator which is obtained by solving the linear program (7). Note
that for the linear-quadratic kernel function the global minimum is found by solving
a system of linear equations and for the Gaussian kernel function by using a Newton
method.

Algorithm 1 Global Minimum of Convex Linear-Quadratic Kernel Un-

derestimator Solve the linear program (7) with s(a, β, γ; x) replaced by lq(a, β, γ; x)
of (10). Find the global minimum of lq(a, β, γ; x) with respect to x by solving the
linear system of equations obtained by setting ∇xlq(a, β, γ; x) of (11) equal to zero.

Remark 2 The system of linear equations ∇xlq(a, β, γ; x) = 0, to be solved in
Algorithm 1 above, is nonsingular whenever the Hessian ∇xxlq(a, β, γ; x) of (12) is
positive definite. This is the case whenever γ > 0 or the n columns of the matrix
(diag(a2))

1

2 H are linearly independent. In our numerical experiments it turns out
that the Hessian ∇xxlq(a, β, γ; x) is nonsingular because γ > 0.

Algorithm 3 Global Minimum of Convex Gaussian Kernel Underestima-

tor Solve the linear program (7) with s(a, β, γ; x) replaced by g(a, β, γ; x) of (13).
Find the global minimum of g(a, β, γ; x) with respect to x by a Newton method with
an Armijo stepsize obtained by setting ∇xg(a, β, γ; x) of (14) equal to zero.

Remark 4 The Newton direction for solving the nonlinear equations ∇xg(a, β, γ; x) =
0 in Algorithm 3 is a descent direction whenever the Hessian ∇xxg(a, β, γ; x) of (15)
is positive definite, which is the case whenever γ ≥ 0 and µ is small enough. This
together with an Armijo stepsize ensures global quadratic convergence of Algorithm
3 [7, Appendix].

Remark 5 Computationally, it was found that adding a Tikhonov regularization
term [17] to the minimization problem (7), with weight 1

ν
, improved computational

efficiency. Such regularization, commonly used in machine learning and statistics,
consists of adding a term that minimizes a norm of some of the variables to be
determined. In our case we added the term that minimizes the 1-norm of (a, β) as
follows:
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min
a≥0,β,γ≥0

m
∑

k=1

(yk − s(a, β, γ; xk)) +
1

ν

∥

∥

∥

[ a

β

]∥

∥

∥

1

s.t. s(a, β, γ; xk) ≤ yk, k = 1, . . . , m.

(16)

Values of ν used are given in Tables 1 and 2. Note that
∥

∥

∥

[

a
β

]∥

∥

∥

1
is handled by

replacing it by e′t =

m+1
∑

i=1

ti and the added linear constraints −t ≤
[

a
β

]

≤ t, that is:







−t1
...

−tm+1






≤











a1

...
am

β











≤







t1
...

tm+1






.

We turn now to numerical implementation and testing of the proposed algorithms.

3. Numerical Testing

We tested both Algorithms 1 and 3 on six nonconvex piecewise-quadratic functions
on Rn with n = 1, . . . , 6 defined as follows.

y(x) = min
j∈{1,...,r}

hj(x), (17)

where hj(x), j = 1, . . . , r are arbitrary strictly convex quadratic functions, such as:

hj(x) = βj + dj ′x +
1

2
x′(0.5I + M j ′M j)x, j = 1, . . . , r, (18)

Here, βj ∈ R, dj ∈ Rn and M j ∈ Rn×n are randomly chosen. In our testing,
we used r = 5. An interesting feature of the piecewise-quadratic function y(x)
generated as described above, is that its exact global minimum solution can be
computed as follows [11, Section 4, Proposition 1]. An exact global minimum of
(17)-(18) is given by:

min
j∈{1,...,r}

min
x∈Rn

hj(x). (19)

More specifically,
min
x∈Rn

y(x) = min
j∈{1,...,r}

hj(x
j), (20)

where:
xj = −(0.5I + M j ′M j)−1dj , j = 1, . . . , r. (21)

We also tested our algorithms on a synthetic protein docking (SPD) problem
generated from real docking data [12, 14]. For the SPD problem we used the model
(17), where each hj(x) is a strictly convex quadratic function with a pre-determined
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minimum solution corresponding to local minima of the docking problem energy
function. The protein docking problem energy function [12] is defined on R6 with
r = 5. The data for the SPD consisted of five local minima vj of the docking energy
function given at five specific points xj ∈ R6, j = 1, . . . , 5. The six dimensions of
the space R6 for the SPD represent three coordinate axes and three angles that
define the docking energy function. For each of the five given local minima vj

at xj , j = 1, . . . , 5, we generated a quadratic hj(x) as in (18) with the matrix

(0.5I + M j ′M j) replaced by a diagonal matrix Dj ∈ R6×6. The minimum value
of each hj(x) was set to be vj at xj as follows. We chose the diagonal matrix
Dj with element values ranging between 0.6 and 140, then set dj = −Djxj and
βj = vj −

1
2dj ′xj .

Results of these tests are presented in Table 1 for the linear-quadratic kernel
function of (10) and in Table 2 for the Gaussian kernel function of (13).

In our testing, we used a search process similar to that in [11, Section 5], refining
the search region around the minimum solution of the underestimator after each
iteration. An example of the refinement process using Algorithm 3 is shown in
Figure 1 with the synthetic piecewise-quadratic function of (17)-(18) on R with
r = 5. In our implementation using Algorithm 1, we found it helpful to introduce a
positive lower bound γmin on γ in (16). This caused the solution of lq(a, β, γ; x) to
consistently be within the search region. Furthermore, in implementing Algorithm
3, we found that γ was not needed, because µ was sufficiently small so as to render
g(a, β, γ; x) strictly convex, and so we conducted those tests with γ = 0. We also
used the solution of the previous iterate as a starting point for our Newton method
when finding the minimum of g(a, β, γ; x).

We make the following observations regarding our computational results:

(i) With the exception of the SPD problem, both the computed minimum value
error as a percentage of the true minimum value (%Error in min) and the 1-
norm error in the computed solution vector as a percentage of the 1-norm of
the true solution vector (%Error in soln) were better for the linear-quadratic
kernel underestimator using Algorithm 1 than the corresponding results of the
piecewise-linear underestimator of [11, Section 5, Table 1]. Computational times
(Time) were also faster for all cases including the SPD problem.

(ii) The Gaussian kernel results of Algorithm 3 were consistently better than the
linear-quadratic kernel results of Algorithm 1. That is, all quantities: %Error
in min, %Error in soln and Time were smaller for the Gaussian kernel. An in-
tuitive justification for the superiority of the Gaussian kernel is that it mimics
the commonly used and effective nearest neighbor [2, 4] classification approach
of machine learning wherein points are classified according to the class of the
majority of the nearest k neighboring points. In particular, here and in clas-
sification algorithms, the Gaussian kernel term ε−µ‖x−Hi

′‖2

gives much more
weight to an Hi that is closer to a given x than an Hi that is much further away
from x.

(iii) All %Error in min and %Error in soln were ten times smaller for the Gaussian
kernel Algorithm 3 than those for the piecewise-linear underestimator of [11,
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Section 5, Table 1]. Average speedup of Time for the Gaussian kernel over
those for the piecewise-linear underestimator was over 28.

(iv) We note that we conveniently used m = 3n sample points by taking 3 values
along each coordinate axis. Because n ≤ 6 is sufficiently small for the SPD
and our other numerical problems, this poses no difficulty. To handle consid-
erably larger dimensional problems one could use instead m(<< 3n) randomly
generated points in Rn, say of the order of n3.

(v) We give in Table 3 below a comparison of the proposed convex kernel un-
derestimation versus the piecewise-linear underestimation of [11] on the SPD
problem in R6. The table shows the distinct superiority of the Gaussian kernel
underestimator. We note that the results of the strictly convex quadratic under-
estimation of [14] are not directly comparable to the present results because the
function being underestimated there is a perturbed strictly convex quadratic
function and not a nonconvex piecewise-quadratic function such as (17).

In view of (ii), (iii) and (v) above, the Gaussian kernel function is the underes-
timator of choice for finding a global minimum of functions with multiple minima.
This parallels the wide use of the Gaussian kernel in the extensive literature on
kernel classification and approximation. However, quite unlike the existing kernel
literature, we utilize here the negative of the Gaussian kernel in order to generate
a convex kernel function underestimator.

As in [11], our computations were performed on machines utilizing an 800 Mhz
Pentium III processor and 256MB of memory running on Redhat Linux 9, with
MATLAB 6.5 installed.
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Figure 1. Selected iterations from the refinement process using Algorithm 3 on a synthetic

piecewise-quadratic function defined in (17)-(18) over R with r = 5.

4. Conclusion and Outlook

We have proposed a method for finding an accurate estimate of a global minimum
of a nonconvex function by underestimating the function by a linear combination of
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Table 1. Linear-quadratic kernel results on six synthetic test problems and the synthetic pro-
tein docking (SPD) problem. The number m of initial sample points used to generate our
underestimator is 3n. %Error is rounded to 4 decimal places.

Synthetic Problems in Rn SPD in R6

n 1 2 3 4 5 6 6
m 3 9 27 81 243 729 729

Refinement rate 0.5 0.5 0.5 0.5 0.5 0.25 0.25
Iterate tolerance 0.0001 0.01 0.05 0.005 0.1 0.01 0.01
ν 1e0 1e1 1e-1 1e0 1e-1 1e0 1e-2
γmin 1e3 1e3 1e3 5e3 1e3 5e3 5e3
True min -2917.9 -2758.5 -3594.0 -12421.2 -3217.6 -7023.7 -42.7
Computed min -2917.9 -2758.5 -3594.2 -12421.4 -3221.5 -7025.1 -42.3
Error in min 0.0 0.0 -0.2 -0.2 -3.9 -1.3 0.4
%Error in min 0.0000% -0.0004% -0.0052% -0.0018% -0.1211% -0.0187% 0.9290%
Error in soln (1-norm) 0.000 0.012 0.020 0.021 0.098 0.093 0.392
%Error in soln 0.0001% 0.0335% 0.0688% 0.0509% 0.2598% 0.2227% 0.7767%
No. refinements 27 14 15 38 41 17 12
Time (s) 0.37 0.54 2.07 23.94 372.08 1649.43 1042.33
Time per refinement 0.01 0.04 0.14 0.63 9.08 97.03 86.86

Table 2. Gaussian kernel results on six synthetic test problems and the synthetic protein
docking (SPD) problem. The number m of initial sample points used to generate our under-
estimator is 3n. %Error is rounded to 4 decimal places.

Synthetic Problems in Rn SPD in R6

n 1 2 3 4 5 6 6
m 3 9 27 81 243 729 729

Refinement rate 0.5 0.5 0.25 0.5 0.5 0.25 0.5
Iterate tolerance 0.1 0.001 0.01 0.01 0.01 0.01 0.001
ν 1e-2 1e-3 1e2 1e0 1e0 1e-1 1e-3
Kernel parameter (µ) 1e-5 1e-1 1e-4 1e-4 1e-4 1e-3 1e-1
True min -4734.1 -1675.8 -4576.2 -19824.8 -6286.7 -18431.4 -42.7
Computed min -4734.1 -1675.8 -4576.2 -19824.8 -6286.7 -18431.4 -42.7
Error in min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
%Error in min 0.0000% 0.0000% -0.0001% -0.0001% 0.0000% 0.0000% 0.0000%
Error in soln (1-norm) 0.000 0.002 0.003 0.009 0.011 0.004 0.004
%Error in soln 0.0000% 0.0069% 0.0071% 0.0153% 0.0209% 0.0103% 0.0085%
No. refinements 5 11 17 27 32 30 16
Time (s) 0.09 0.49 2.02 14.31 97.07 875.95 477.20
Time per refinement 0.02 0.04 0.12 0.53 3.03 29.20 29.82

convex kernel functions and then finding the global minimum of the underestima-
tor. The method gives accurate estimates of global minima for a class of synthetic
nonconvex piecewise-quadratic functions that closely model protein docking prob-
lems. An interesting problem for future consideration is that of approximating
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Table 3. Comparison of Convex Kernel and Piecewise-Linear
Underestimation [11] on the SPD Problem in R6.

Underestimator %Error in Soln %Error in Min Time(Seconds)
(1-Norm)

Gaussian Kernel 0.0085% 0.0000% 477.20
Quadratic Kernel 0.7767% 0.9290% 1042.33
Piecewise-Linear 0.083% 0.014% 5846.9

nonconvex protein docking energy functions by our synthetic nonconvex piecewise-
quadratic function (17)-(18). This may lead to a considerably more accurate global
docking energy representation whose exact global minimum can be easily found by
(20)-(21).
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