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Abstract

Support vector machines (SVMs), utilizing RNA signature measure-
ments, were used to generate a classifier to distinguish breast cancer pa-
tients that are partial-responders to chemotherapy treatment, from pa-
tients that are nonresponders. Partial responders are patients whose tu-
mors were reduced by at least 50%. A stand-alone linear-programming-
based SVM algorithm was used to separate the partial-responders from
the nonresponders. A novel aspect of the classification approach utilized
here is that each patient is represented by multiple points (replicates) in
the 25-dimensional input space of RNA signature measurements. Repli-
cates for all patients except those for one patient, were used as a training
set. The average of the replicates for the patient left out was then used
to test the leave one out correctness (looc). The looc for a group of 35
patients, with 9 partial-responders and 26 nonresponders was 94.2%, in
an input space of 5 RNA measurements extracted from an original space
of 25 RNA measurements.

Keywords Support vector machines, breast cancer, chemotherapy, DNA macroar-
rays

1 Introduction

Support vector machines (SVMs) [19, 4] constitute the method of choice for
classification problems. SVMs have been applied to a great variety of real world
problems including breast cancer diagnosis [17] and prognosis [12, 13]. In this
work we apply a recently developed fast Newton algorithm [8] that generates
an SVM classifier for the problem of identifying a class of breast cancer pa-
tients that may benefit from chemotherapy. The input space for these patients
consists of points in a 25-dimensional space of DNA macroarray measurements
of RNA signatures [2]. Since most patients in this dataset have three sets of
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25-dimensional DNA macroarray measurements, referred to collectively as repli-
cates, the average of these replicates is typically used to represent such a patient.
In our present approach however, we have treated the convex hull of points rep-
resenting the replicates for each patient as a “knowledge set”, similar to the
polyhedral knowledge sets of [9, 10]. Our linear classifier then attempts to place
each convex hull of points representing a nonresponder or a partial-responder
in the appropriate halfspace generated by the linear classifier.

This work is organized as follows. In Section 2 we briefly describe the general
classification problem and our Newton method for solving it. Section 3 describes
the chemotherapy problem that we are concerned with. Section 4 details how
we generated and evaluated our SVM classifier. Section 5 concludes the paper.

A word about our notation. All vectors will be column vectors unless trans-
posed to a row vector by a prime superscript . For a vector z in the n-
dimensional real space R™, the plus function x is defined as (x4 ); = max {0, z;},

t=1,...,n, while z, denotes the subgradient of x; which is the step function
defined as (z4); = 1 if x; > 0, (x.); =0 if 2; <0, and (z.); € [0,1] if z; = 0,
i=1,...,n. Thus, (z.); is any value in the interval [0, 1], when z; = 0, and we

typically take (z.); = 0.5 in this case. The scalar (inner) product of two vectors
x and y in the n-dimensional real space R™ will be denoted by z’y, the 2-norm of
x will be denoted by ||z||2. The 1-norm and co-norm will be denoted by ||-||1 and
I |lco respectively. For a matrix A € R™*™, A; is the ith row of A which is a row
vector in R™. A column vector of ones of arbitrary dimension will be denoted
by e and the identity matrix of arbitrary order will be denoted by I. If f is a
real valued function defined on the n-dimensional real space R™, the gradient of
f at x is denoted by V f(x) which is a column vector in R™. The n X n matrix
of second partial derivatives of f at x is denoted by V2f(x). For a piecewise
quadratic function such as, f(z) = %[|(Az — b)4||* + 12/ Pz, where A € R™*",
P e R"™™ P = P’ P positive semidefinite and b € R™, the ordinary Hessian
does not exist because its gradient, the nx1 vector V f(x) = A’ (Az—b)1 + Pz, is
not differentiable. However, one can define its generalized Hessian [11, 6, 16]
which is the n x n symmetric positive semidefinite matrix:

0*f(x) = A'diag(Azx — b). A+ P, (1)

where diag(Ax — b), denotes an m x m diagonal matrix with diagonal elements
(A;jxz—b;)«, i =1,...,m. The generalized Hessian (1) has many of the properties
of the regular Hessian [11, 6, 16] in relation to f(z).

2 The Linear SVM C(lassifier and the Newton
Algorithm

We describe in this section the fundamental classification problem that leads to
a linear programming formulation. We consider the problem of classifying m
points in the n-dimensional real space R™, represented by the m X n matrix A,
according to membership of each point A; in the classes +1 or -1 as specified by



a given m x m diagonal matrix D with ones or minus ones along its diagonal.
For this problem, a standard support vector machine with a linear classifier
[15, 3] is given by the following mathematical program for some v > 0:

min ve'y + w1
(w,7,9)
st. D(Aw—ey)+y > e (2)
y = 0,
where || - ||; denotes the 1-norm. As depicted in Figure 1, w is the normal to
the bounding planes:
dw — v = +1
v — v = -1, (3)

and vy determines their location relative to the origin. The first plane above
bounds the class +1 points and the second plane bounds the class -1 points when
the two classes are strictly linearly separable, that is when the slack variable
y = 0. The linear separating surface is the plane

2w =7, (4)

midway between the bounding planes (3). If the classes are linearly inseparable
then the two planes bound the two classes with a “soft margin” determined by
a nonnegative slack variable y, that is:

w—vy+y; >+1, fora’=A; and D;; = +1. (5)
dw—vy—y; <-1, fora’=A; and D;; = —1.

The first term ve'y in the objective function of (2) minimizes the l-norm of
the slack variable y. The second term in the objective function of (2), which is
twice the reciprocal of the co-norm distance ﬁ [14] between the two bounding
planes of (3) in the n-dimensional space of w € R"™ for a fized v, maximizes that
distance, often called the “margin”. Figure 1 depicts the points represented
by A, the bounding planes (3) with margin ﬁ, and the separating plane (4)
which separates A+, the points represented by rows of A with D;; = 41, from
A— the points represented by rows of A with D;; = —1.

The SVM formulation (2) which is equivalent to the linear program (6), re-
places the quadratic term %w’ w in a conventional SVM [4, 19] in the objective
function by the term |w|;. Empirical evidence [3] indicates that the 1-norm
formulation has the advantage of generating very sparse solutions. This results
in the normal w to the separating plane z’w = 7 having many zero components,
which implies that many input space features do not play a role in determining
the linear classifier. This makes this approach suitable for feature selection in
classification problems. We note that in addition to the conventional interpre-
tation of smaller v as emphasizing a larger margin between the bounding planes
(3), a smaller v here also results in a sparse solution. This 1-norm formulation
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Figure 1: The bounding planes z'w = v £+ 1 with margin ﬁ, and the plane
2w = v separating A+, the points represented by rows of A with D;; = +1, from
A—, the points represented by rows of A with D;; = —1.

leads to the linear programming problem:

min ve'y+e'(p+q)
(pa:v-y)
st. DAp—q)—ey)+y > e 6)
nay = 0,

where the following substitution for w has been made:

This is a different and a simpler linear program from previous linear program-
ming SVM formulations [15, 3]. The dual of the linear program (6) is the
following:

max e'u
u€R™
s.t. —e < A'Du < e,
—e'Du = 0, (8)
U < ve,
U > 0.

The asymptotic exterior penalty problem [7, 1] for this dual linear program is
the following nonnegatively constrained minimization problem:

s ! 1 / _ 2
min - —ee'u + g[(A"Du —e)¢ |+ 0

sI(=ADu—e), | +5lle’Dull? + 3]|(u — ve)+[.

Here, € is a positive penalty parameter that needs to approach zero for standard
penalty function methods [1] for solving the dual linear program (8). However,
it has been established in [8] that an exact solution to the primal linear program
(6) or equivalently to (2), can be obtained for finite ¢ as follows.



Proposition 2.1 /8, Proposition 2.1](Equivalence of Least 2-norm LPSVM
to Dual Exterior Penalty ) A solution u to the dual exterior penalty (DEP)
problem (9) for € € (0,€ for some € > 0, provides an exact least 2-norm solu-
tion to primal LPSVM (6) as follows:

w=p—g= = L{(ADu-e)s—(~ADu-c)y)
~y = —1¢'Du, (10)
Y = %(U —ve)4.

Based on this proposition all we need to do is solve the dual exterior penalty
(9) for a finite value of the penalty parameter € and by incorporating the non-
negativity constraint u > 0 into the objective function of (9) as a penalty term
as follows:

minf(u) = —ec'u+ 3||(A'Du—e),|]?
+%||(—A’Du—€)+||2Jr 3lle’ Dul|? (11)

+all(w—ve) |2 + Sl (—u) 4%

The gradient of this function is given by:

Vilw) = —ee+ DAA'Du—e)y — DA(—A'Du—e)y (12)
+Dee’Du+ (u —ve)y — a(—u),
and its generalized Hessian as defined by (1) in the Introduction:
0?f(u) = DA(diag((A'Du —e), + (—A'Du —e),.)A'D
+Dee'D + diag((u — ve). + a(—u).) (13)
= DA(diag(|A’Du| —e).)A'D
+Dee'D + diag((u — ve)s + a(—u).),
where the last equality follows from the equality:
(= 1)+ (—a—1), = (ja| — 1).. (14)

We are ready now to state our Newton algorithm for solving the primal linear
program (6) or equivalently the mathematical program (2).

Algorithm 2.2 LPSVM Newton Algorithm for (9) Let f(u), Vf(u) and
02 f(u) be defined by (11)-(13). Set the parameter values v, €, §, tolerance tol,
a and imax (typically: € = 1071, tol = 1073, o = 103, imaz = 50, while v and
d are set by a tuning procedure described in Section 4). Start with any u® € R™.
Fori=0,1,...:
(I) vt =ul — X (0% f(u?) + 61) "IV f(u?) = u® + \d,
where the Armijo stepsize A; = max{1, %, %, ...} is such that:

_ . _ \i o
fu) = flu' +Nid) 2 =2V f ), (15)
and d* is the modified Newton direction:

d' = —(0*f(u) + 6I) "'V f(ub). (16)



(I1) Stop if ||u® — u**1|| < tol or i =imax. Else, seti=i+1, a =2« and go
to (I).

(ITI) Define the least 2-norm solution of the linear programming SVM (6) by
(10) with v = u'.

Convergence of this algorithm was established in [8, Theorem 3.1] together
with very encouraging computational results. We shall apply this algorithm to
generate our classifier in Section 4.

3 The Chemotherapy Classification Problem

The classification problem considered here is described in detail in [2]. The data
for the problem is available at [5]. We briefly outline the problem now.

Thirty-five patients were diagnosed, by a core needle biopsy, as having breast
cancer. Chemotherapy was administered to these patients before and after
surgery. Of these 35 patients, 9 patients were partial-responders, that is their
tumor size decreased by 50% or more after four cycles of chemotherapy, and 26
were nonresponders, that is their tumor size decreased by less than 50% after
four cycles of chemotherapy. For each patient, a 25-gene expression profile was
extracted from a macroarray of cancer-associated gene fragments [2].

The novel aspect of this dataset is that each patient is represented by one
or more points in R?>. Each point represents the transcript of the 25-gene
expression. Points associated with a single patient are called replicates. Most
patients, 25 in this dataset, are represented by three replicates, 8 patients by two
replicates and 2 patients by one replicate. Since each patient can be represented
by either the convex hull of their replicates or, more typically by the average of
these replicates, we decided to use the motivation of knowledge-based support
vector machines [9, 10] and treat each convex hull as a knowledge set. Having
such a knowledge set be on the correct side of a separating plane in the input
space turns out to be equivalent to having all the replicates on that side of the
plane. With this motivation in mind, we settled on the following, apparently
novel leave-one-out-correctness (looc) measure. Leave the replicates representing
one patient out, find a separating plane using the replicates of all other patients,
test correctness on the average of the replicates for the patient left out. The
motivation for this approach is a practical one. A patient who has a number
of gene expression measurements, is in general classified on the basis of the
average of these gene expressions. Thus when a new patient is encountered with
a number of gene expression replicates, our classifier will classify that patient
based on the average of the replicates with an expected correctness similar to
that of the looc of the classifier obtained by our stand-alone LPSVM Newton
Algorithm 2.2.

Figure 2 depicts a linear SVM classifier obtained in R? for a synthetic case
consisting of ten nonresponders and five partial responders, each with various
numbers of replicates between one and three. In this example the linear classifier
misclassifies the average of the two replicates of the patient left out.
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Figure 2: Linear classifier for convex hulls of synthetic replicates in R? based on
10 nonresponder patients and 4 partial responder patients. The linear classifier
generated here misclassifies the average of the two replicates for the patient left

out who happened to be a partial responder.

4 Generation and Evaluation of the SVM Clas-
sifier

We started our linear classifier computations by applying the LPSVM Algo-
rithm 2.2 to the Chemotherapy Dataset [5] which consists of 93 replicate points
in R?. LPSVM immediately suppressed 11 of the 25 features and obtained
a linear classifier in R' with a looc of 80.0%. In order to improve this looc
and further suppress features we utilized LPSVM in an incremental greedy ap-
proach on the remaining 14 features as follows. We used LPSVM to obtain 14
linear classifiers in R', one classifier for each of the 14 gene expression features
selected by LPSVM in the first step. We kept the gene expression with the
best looc classifier. We then used LPSVM to obtain 13 linear classifiers in R?
by combining the feature we had kept with each of the remaining 13 features.
We then kept the classifier in R? with the best looc. We continued this greedy
approach until there was no further improvement in the looc, which took place
when we went from R® to RS as depicted in Figure 3. Figure 3 plots the number
of leave-one-out misclassifications versus the dimensionality of the input space,
that is the number of gene expressions used. The smallest dimension achieving
the best leave-one-out-error of 2, was dimension 5. This corresponds to a looc
94.2%.

All our computations were performed on the University of Wisconsin Data
Mining Institute “locopl” machine, which utilizes a 400 Mhz Pentium II and
allows a maximum of 2 Gigabytes of memory for each process. This computer
runs a Windows NT Server 4.0, with MATLAB 6 installed [18]. We summarize
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Figure 3: Leave-one-out-error of the SVM classifier for 35 patients versus number

of gene expressions used to generate the classifier.

now the tuning procedure for the LPSVM Algorithm 2.2.

e A random tuning set consisting of 10% of the training data was chosen
and separated from the training set.

e LPSVM was trained on the remaining 90% of the training data using

values of v equal to 2° with ¢ = —7,...,0,...,7, and § equal to 107 with
j = -3,...,0,...,3. This resulted in a search grid for the pair (v,d)
consisting of 15 x 7 points. The remaining parameters of LPSVM were set

to the following values: € = 1071, tol = 1073, & = 103, imaz = 50.

e Values of v and 0 that gave the best SVM average replicate correctness
on the tuning set were chosen.

e A final SVM was trained using the chosen values of v, § and all the training
data including the tuning set. The resulting SVM was then tested on the
average of the replicates of the one patient left out.

A single run of LPSVM for our problem in R?® takes about 0.2 seconds
and about 0.09 seconds in R®. MATLAB codes for LPSVM are available at
http://www.cs.wisc.edu/dmi/svm/Ipsvm/.

An example of a linear classifier obtained by LPSVM, is depicted in Figure
4 in an R? space of three gene expressions. All 93 replicates for the 35 patients
were used in this visual illustration. Training set correctness for this example



was 94.2%, as measured by the average replicates of two patients, out of 35,
that were misclassified.
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Figure 4: A linear SVM classifier obtained by LPSVM in an R? space of three gene
expressions using all 93 replicates for the 35 patients. Training set correctness for
this example was 94.2%, as measured by the average replicates of two patients,
out of 35, that were misclassified. Nonresponders are represented by circles and
partial responders by asterisks.

5 Conclusion

We have proposed a knowledge-based approach for classifying breast cancer pa-
tients as partial-responders or nonresponders to chemotherapy. The support
vector machine classifier is based on multiple measurements of 25 gene expres-
sions for each patient. Of these 25 gene expressions, only 5 were needed in
order to achieve a 94.2% leave-one-out-correctness by a linear SVM classifier.
The classifier was generated in a 5-dimensional space of 5 gene expressions by
all replicates of all patients except one. The classifier was tested on the average
of replicates for the patient left out. The novel approach utilized here is that the
convex hull of the replicates, treated as a knowledge set, is required to be on the
correct side of the classifier. Furthermore, the stand-alone Newton algorithm
employed here, efficiently generates the classifier while suppressing many of the
unnecessary features for accurate classification. It is hoped that this combined
approach will be useful in other applications where repeated measurements lead
to different input space points associated with a single person or event.
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