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Abstract

Prior knowledge, in the form of linear inequalities that déebe satisfied over multiple polyhedral

sets, is incorporated into a function approximation geteerdy a linear combination of linear or
nonlinear kernels. In addition, the approximation needsatisfy conventional conditions such as
having given exact or inexact function values at certaim{giDetermining such an approximation
leads to a linear programming formulation. By using nordinkernels and mapping the prior poly-
hedral knowledge in the input space to one defined by the lerite prior knowledge translates
into nonlinear inequalities in the original input spacerdugh a number of computational exam-
ples, including a real world breast cancer prognosis dgtase shown that prior knowledge can
significantly improve function approximation.

Keywords: function approximation, regression, prior knowledge,mrpvector machines, linear
programming

1. Introduction

Support vector machines (SVMs) play a major role in classification probaps(k, 2000, Cherkassky
and Mulier, 1998, Mangasarian, 2000). More recently, prior knogéeuas been incorporated into
SVM classifiers, both to improve the classification task and to handle probléergwonventional
data may be few or not available (Sitkopf et al., 1998, Fung et al., 2003b,a). Although SVMs
have also been extensively used for regression (Drucker et alf, 898ola and Sditkopf, 1998,
Evgeniou et al., 2000, Mangasarian and Musicant, 2002), prior kuig®len properties of the func-
tion to be approximated has not been incorporated into the SVM functionxdppation as has been
done for an SVM classifier (Fung et al., 2003b,a). In this work, we intcecgrior knowledge in the
form of linear inequalities to be satisfied by the function on polyhedral negad the input space
for linear kernels, and on similar regions of the feature space for namlk@rnels. These inequal-
ities, unlike point-wise inequalities or general convex constraints that alagady been treated
in approximation theory (Mangasarian and Schumaker, 1969, 1971h#icand Utreras, 1988,
Deutsch, 2001), are inequalities that need to be satisfied over spetyfiedml sets. Such “prior
knowledge” does not seem to have been treated in the extensive apatiox theory literature.

We outline the contents of the paper now. In Section 2 we define the prioviédge formu-
lation for a linear kernel approximation in the input space of the problemhwleizds to a linear
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programming formulation in that space. In Section 3 we approximate the furimtiariinear com-
bination of nonlinear kernel functions and explicitly map the polyhedralrgamwledge in the
input space to one defined by the kernel functions. This leads to a linegrapnming formulation
in that space. In Section 4 we demonstrate the utility of our results on a nuirdyertbetic approx-
imation problems as well as a real world breast cancer prognosis dataset we show that prior
knowledge can improve the approximation. Section 5 concludes the papea Witef summary
and some possible extensions and applications of the present work.

We describe our notation now. All vectors will be column vectors unlessp@sed to a row
vector by a primé. The scalar (inner) product of two vecto«andy in then-dimensional real space

R will be denoted by'y. Forx € R", |||, denotes the 1- normzl|x.| The notationA € R™" will

signify a realm x n matrix. For such a matrix)’ will denote the transpose éf A; will denote the-

th row of AandA j the j-th column ofA. A vector of ones in a real space of arbitrary dimension will
be denoted bg. Thus fore € R andy € R™ the notatiore'y will denote the sum of the components
of y. A vector of zeros in a real space of arbitrary dimension will be denotéd BorA € R™" and

B € Rk akernel K(A, B) mapsR™" x R™k into R™K, In particular, ifx andy are column vectors
in R" then,K(X,y) is a real numbeiK (X', A’) is a row vector irR™ andK (A, A’) is anm x m matrix.
We shall make no assumptions on our kernels other than symmetry, t&x'iy)’ = K(y',x),
and in particular we shall not assume or make use of Mercer’s positinglieniteness condition
(Vapnik, 2000, Scblkopf and Smola, 2002). The base of the natural logarithm will be denoted
by €. A frequently used kernel in nonlinear classification is the Gaussiarekévapnik, 2000,
Cherkassky and Mulier, 1998, Mangasarian, 2000) whpgeelementi =1...,m, j = 1... Kk,

is given by: (K(A B))ij = e MIA"-Bil’ whereA € R™", B ¢ Rk andy is a positive constant.
Approximate equality is denoted by, while the abbreviation “s.t.” stands for “subject to”. The
symbolA denotes the logical “and” while denotes the logical “or

2. Prior Knowledge for aLinear Kernel Approximation

We begin with a linear kernel model and show how to introduce prior knayeledto such an
approximation. We consider an unknown functibfrom R" to R for which approximate or exact
function values are given on a datasetnopoints inR" denoted by the matriA € R™". Thus,
corresponding to each poiAt we are given an exact or inexact valuefeflenoted by a real number
yi,i=1,...,m. We wish to approximaté& by some linear or nonlinear function of the mat#ixvith
unknown linear parameters. We first consider the simple linear approximation

f(X) ~ Wx+b, 1)

for some unknown weight vectav € R" and constanb € R which is determined by minimizing
some error criterion that leads to

Aw+be—y =~ 0. (2)

If we considemw to be a linear combination of the rows of A, ive= A'a, a € R™, which is similar
to the dual representation in a linear support vector machine for the weigiangasarian, 2000,
Sclolkopf and Smola, 2002), we then have

AN +be—y ~ 0. 3)
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This immediately suggests the much more general idea of replacing the lineat A&t by some
arbitrary nonlinear kerné{ (A, A’) : R™" x R™M —, R™M that leads to the following approxima-
tion, which is nonlinear iA but linear ina:

K(A,A)a +be—y=~0. 4
We will measure the error in (4) componentwise by a vestolR™ defined by
—s<K(AA)a+be-y<s. (5)

We now drive this error down by minimizing the 1-norm of the estwgether with the 1-norm af
for complexity reduction or stabilization. This leads to the following constraineiinization prob-
lem with positive parametd& that determines the relative weight of exact data fitting to complexity
reduction:

min [al|1+C[s]1

(a,b,s) (6)
st. —s < KAA)a+be-y < s

which can be represented as the following linear program:

min €a+Cé€s
(a,b,s,a)
st. —s < K(AA)a+be-y < s ()
—a < a < a

We note that the 1-norm formulation employed here leads to a linear progranfionmglation
without regard to whether the kerni€l A, A’) is positive semidefinite or not. This would not be
the case if we used a kernel-induced normoothat would lead to a quadratic program. This
guadratic program would be more difficult to solve than our linear progrsmeaally when it is
nonconvex, which would be an NP-hard problem, as is the case whertthel lemployed is not
positive semidefinite.

We now introduce prior knowledge for a linear kernel as follows. Ssppbat it is known
that the functionf represented by (1) satisfies the following condition. For all poirgsR", not
necessarily in the training set but lying in the nonempty polyhedral setrdieied by the linear
inequalities

Bx<d, (8)
for someB € R, the functionf, and hence its linear approximatiovix + b, must dominate a
given linear functiorYx+ B, for some user-provideth, ) € R**. That is, for afixed (w,b) we

have the implication
Bx<d = wWx+b>hx+p, 9)

or equivalently in terms oft, wherew = A'a:
Bx<d = o’Ax+b>hx+pB. (10)

Thus, the implication (10) needs to be added to the constraints of the linggapr¢7). To do that
we make use of the following equivalence relationship that converts the iniphdd0) to a set of
linear constraints that can be appended to the linear program (7). A sinttarigeie was used in
(Fung et al., 2003b, Proposition 2.1) to incorporate prior knowledge intatinlassifiers.
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Proposition 2.1 Prior Knowledge Equivalence. Let the set{x | Bx < d} be nonempty. Then for
a fixed(a, b, h,B), the implication (10) is equivalent to the following system of linear inequalities
having a solution & R¥:

Bu+Aa—-h=0, —du+b—-B>0,u>0. (11)
Proof The implication (10) is equivalent to the following system having no solutiog) € R
Bx—dZ <0, (a’A—h)x+(b—B){ <0, - <O0. (12)

By the Motzkin theorem of the alternative (Mangasarian, 1994, The@réid) we have that (12) is
equivalent to the following system of inequalities having a solutiom, 1):

Bu+(Aa—hn=0, —d'u+(b-B)n—-1=0,u>0,0# (n,1) >0. (13)

If n =0in (13), then we contradict the nonemptiness of the knowledggxgeddx < d}. Because,
for x € {x| Bx<d} and(u,T) that solve (13) witlm = 0, we obtain the contradiction

0>u(Bx—d)=xXBu-du=-du=1>0. (14)

Hencen > 0 in (13). Dividing (13) byn and redefininqu, a, 1) as(#, %, %) we obtain (11)]

Adding the constraints (11) to the linear programming formulation (7) with a likeanel
K(A,A') = AA, we obtain our desired linear program that incorporates the prior kadgelén-
plication (10) into our approximation problem:

min €a+Cé€s

(a,b,s,a,u>0)
st. —s < AAd +be—y < s,
-a < a < a (15)
Ao +B'u = h,
—d'u > B-bh

Note that in this linear programming formulation with a linear kernel approximakioth the
approximatiorw'x + b = a’Ax+ b to the unknown functiorf as well as the prior knowledge are
linear in the input daté of the problem. This is somewhat restrictive, and therefore we turn now to
our principal concern in this work, which is the incorporation of prior\hemige into anonlinear
kernel approximation.

3. Knowledge-Based Nonlinear Kernel Approximation

In this part of the paper we will incorporate prior knowledge by using @inear kernel inboth
the linear programming formulation (7) as well as in the prior knowledge implicdioh We
begin with the latter, the linear prior knowledge implication (10). If we agairsarx as a linear
combination of the rows oA, that is

x=Alt, (16)

then the implication (10) becomes

BAt <d = o’AAt+b>HWAt+B, (17)
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for a given fixed(a,b). The assumption (16) is not restrictive for the many problems where a
sufficiently large number of training data points are available so that agniednput space can
be represented as a linear combination of the training data points.
If we now "kernelize” the various matrix products in the above implication, asetthe impli-
cation
K(B,A)t<d = o'K(AA)t+b>hAt+B. (18)

We note that the two kernels appearing in (18) need not be the same and neitls to satisfy
Mercer’s positive semidefiniteness condition. In particular, the firsiddesf (18) could be a linear
kernel which renders the left side of the implication of (18) the same as tha7h We note
that for a nonlinear kernel, implication (18) is nonlinear in the input spats, dat is linear in

the implication variablé. We have thus mapped the polyhedral implication (9) into a nonlinear
one (18) in the input space data. Assuming for simplicity that the kd¢nislsymmetric, that is
K(B,A') = K(A,B'), it follows directly by Proposition 2.1 that the following equivalence relation
holds for implication (18).

Proposition 3.1 Nonlinear Kernel Prior Knowledge Equivalence. Let the set
{t | K(B,A')t < d} be nonempty. Then for a givéa, b, h,3), the implication (18) is equivalent to
the following system of linear inequalities having a solution BX:

K(A,B')u+K(A A)a—Ah=0, —d'u+b—p>0,u>0. (19)

We now append the constraints (19), which are equivalent to the nonkieeeel implication (18), to
the linear programming formulation (7). This gives the following linear progiar approximating
a given function with prior knowledge using a nonlinear kernel:

min da+Cé€s

(a,b,s,a,u>0)
st. —s < KAA)a+be-y < s
—a < a < a (20)
K(AB)u+K(AA)a = Ah,
—d'u > B-h

Since we are not certain that the prior knowledge implication (18) is satisfiaftesince we wish

to balance the influence of prior knowledge with that of fitting conventioatd goints, we need to
introduce error variablesand{ associated with the last two constraints of the linear program (20).
These error variables are then driven down by a modified objectiatifumas follows:

' da+Cés+ e
(G,b,&:ﬂl(%,z)zo) a+Ces+ hez+ il

st. —s < K(A,A)a+be—y < s,
—a < a < a (22)
-z < K(AB)u+K(A A )a —Ah <z
—d'u+¢ > B-b,

where (1, 1) are some positive parameters. This is our final linear program for a gimigle
knowledge implication. If we have more than one such implication, then the lastetgsmof con-
straints are repeated for each implication. For the sake of simplicity we omit tietsis. The
values of the paramete® |, andy are chosen so as to balance fitting conventional numerical
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data versus the given prior knowledge. One way to choose these paraisdo set aside a “tuning
set” of data points and then choose the parameters so as to give a bitidituning set. We also
note that all three kernels appearing in (21) could possibly be distineelefrom each other and
none needs to be positive semidefinite. In fact, the kefiél B') could be the linear kernédB'
which was was actually tried in some of our numerical experiments without aeablie change
from using a Gaussian kernel.

We now turn to our numerical experiments.

4. Numerical Experiments

The focus of this paper is mainly theoretical. However, in order to illustrateptiveer of the
proposed formulation, we tested our algorithm on three synthetic examplesrenreal world
example with and without prior knowledge. Two of the synthetic examplesasedoon the “sinc”
function which has been extensively used for kernel approximation ¢geétkpnik et al., 1997,
Baudat and Anouar, 2001), while the third synthetic example is a two-dimezidigperboloid.
All our results indicate significant improvement due to prior knowledge. gdrameters for the
synthetic examples were selected using a combination of exhaustive searehsimple variation
on the Nelder-Mead simplex algorithm (Nelder and Mead, 1965) that udgsr&flection, with
average error as the criterion. The chosen parameter values areilgitree captions of relevant
figures.

4.1 One-Dimensional Sinc Function

We consider the one-dimensional sinc function

f(x) = singx) = ﬂlx (22)

Given data for the sinc function includes approximate function valuesX@oits on the intervals

—3<x<-1.4303 and 4303< x < 3. The endpoints-1.4303 are approximate local minima of
the sinc function. The given approximate function valuesfog(x) are normally perturbed around
the true values, with mean 0 and standard deviation 0.5. In addition, thealsatbree given values
atx = 0. One of these values is 1, which is the
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-1.5

Figure 1: The one-dimensional sinc functisinax) = % (dashed curve) and its Gaussian kernel
approximatiorwithoutprior knowledge based on the 55 points shown by diamonds. The
nine solid diamonds depict the “support” points used by the nonlinear Gaussrnel
in generating the approximation eincx). That is, they are the row& of A for which
a; # 0 in the solution of the nonlinear Gaussian kernel approximation of (7¥ foy:

f(x) ~ K(X,A')a +b. The approximation has an average error 8103 over a grid of

100 points in the intervdl-3, 3]. Parameter values usgd:= 7,C = 5.

1

0.5

-0.5

15 L L L L I |

Figure 2: The one-dimensional sinc functisimax) = %‘X (dashed curve) and its Gaussian ker-
nel approximatiorwith prior knowledge based on 55 points, shown by diamonds, which
are the same as those of Figure 1. The seven solid diamonds depict tpertSygoints
used by the nonlinear Gaussian kernel in generating the approximatgncgf). The
prior knowledge consists of the implication; < x < 7 = f(x) > %%4), which is
implemented by replacind (x) by its nonlinear kernel approximation (23). The ap-
proximation has an average error aP901 over a grid of 100 points in the interval
[—3,3], which is less thani; times the error of Figure 1. Parameter values used:
p=1C =13 =5, = 450.
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Figure 3: The exact product sinc functidfxy, xp) = S s,

Figure 4: Gaussian kernel approximation of the product sinc fundtjan x,) = Si2 S%2 based

on 211 exact function values plus 2 incorrect function valueswithiout prior knowl-
edge. The approximation has an average errot@3@L over a grid of 2500 points in the
set{[—3,3] x [-3,3]}. Parameter values usgd= 0.2,C = 1(°.
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Figure 5: Gaussian kernel approximation of the product sinc functiaedan the same 213

function values as Figure glus prior knowledge consisting df,x2) € {[-0.1,0.1] x
[-0.1,0.1]}} = f(x1,%2) > (%)2. The approximation has an average error of
0.0045 over a grid of 2500 points in the sgt-3,3] x [—3,3]}, which is less thard;

times the error of Figure 4. Parameters jare 1,C = 16000y = 15000, = 5- 1CP. '
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actual limit of the sinc function at 0. The other valuexat 0 are 0 and-1 which are intended to
be misleading to the approximation.

Figure 1 depictsingx) by a dashed curve and its approximatisithout prior knowledge by
a solid curve based on the 55 points shown by diamonds. The nine solid dlardepict “sup-
port” points, that is rowg\ of A for which a; # 0 in the solution of the nonlinear Gaussian kernel
approximation of (7) forf (x):

f(x) ~ K(X,A)a +b. (23)

The approximation in Figure 1 has an average error.®103. This error is computed by averaging
over a grid of 100 equally spaced points in the intefve, 3.

Figure 2 depictsingx) by a dashed curve and its much better approximatiiim prior knowl-
edge by a solid curve based on the 55 points shown, which are the samasasothFigure 1.
The seven solid diamond points are “support” points, that is réwsf A for which a; # 0 in
the solution of the nonlinear Gaussian kernel approximation (23) of @1j (k). The approx-
imation in Figure 2 has an average error dd®1 computed over a grid of 100 equally spaced
points on[—3,3]. The prior knowledge used to approximate the one-dimensional sinc faristio
—1<x<i=f(x) > %%4). The value% is the minimum ofsingx) on the knowledge
interval [—%1,%1]. This prior knowledge is implemented by replacif(x) by its nonlinear kernel
approximation (23) and then using the implication (18) as follows:

sin(1t/4)

1 1
KILAE< > AK(—ILANt< = 'K(ALAt+b> 24
4.2 Two-Dimensional Sinc Function
Our second example is the two-dimensiosial(x) function forx € R?:
. . SiNTXy SiNMXo
f(X1,X2) = singXy)SiNngX2) = . 25
(X1,%2) o(x1)singxz) " (25)

The given data for the two-dimensional sinc function includes 210 pointgiretfion{ (X1, x2)|(—3 <

X1 < —1.4303v1.4303< X3 <3)A(—3<x < —-1V1<xp <3)}. This region excludes the largest
bump in the function centered @&, x2) = (0,0). The given values are exact function values. There
are also three values given(&i,x2) = (0,0), similar to the previous example with the one dimen-
sional sinc. The first value is the actual limit of the function@t0), which is 1. The other two
values are 0 and-1. These last two values are intended to mislead the approximation.

Figure 3 depicts the two-dimensional sinc function of (25). Figure 4 depittpproximation
of sindxz)singxz) withoutprior knowledge by a surface based on the 213 points described.above
The approximation in Figure 4 has an average error@@1. This value is computed by averaging
over a grid of 2500 equally spaced points{jr-3,3] x [—3,3]}.

Figure 5 depicts a much better approximationsf{x; )sinaxz) with prior knowledge by a
surface based on the same 213 points. The approximation in Figure 5 lza®rage error of
0.0045. This value is computed by averaging over 2500 equally spacets poin
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Figure 7: Gaussian kernel approximation of the hyperboloid fundtiom, x2) = x1x2 based on 11
exact function values along the line = x3,x; € {—5,—4,...,4,5}, but without prior
knowledge. The approximation has an average error88%l over 2500 points in the set
{[-5,5] x [-5,5]}. Parameter values usad= 0.361 C = 145110.

Figure 8: Gaussian kernel approximation of the hyperboloid fundtiem, x2) = x1x, based on the
same 11 function values as of Figurplédsprior knowledge consisting of the implications
(27) and (28). The approximation has an average error28fZB over 2500 points in the
set{[-5,5] x [-5,5]}, which is less tha@% times the error of Figure 7. Parameter
values usedp = 0.0052C = 5356 |3 = 685 |, = 670613.
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{[-3,3] x [-3,3]}. The prior knowledge consists of the implication

(x0.%) € {[~0.1,0.4] x [<0.1,0.1]} =  (xa, %) > (SMTV20) )2
/10
The value(%)2 is equal to the minimum value «findx;)singxz) on the knowledge set

{[-0.1,0.1] x [-0.1,0.1]}. This prior knowledge is implemented by replacifigi,X2) by its non-
linear kernel approximation (23) and then using the implication (18).

4.3 Two-Dimensional Hyperboloid Function

Our third example is the two-dimensional hyperboloid function
(X1, X2) = X1 Xo. (26)

For the two-dimensional hyperboloid function, the given data consist4 gioints along the
linex; =x,x1 € {—5,—4,...,4,5}. The given values at these points are the actual function values.
Figure 6 depicts the two-dimensional hyperboloid function of (26). Figutepicts an approx-
imation of the hyperboloid functiorwithout prior knowledge, by a surface based on the 11 points
described above. The approximation in Figure 7 has an average éd@3®1 computed over a

grid of 2500 equally spaced points{ii-5,5] x [—5,5]}.

Figure 8 depicts a much better approximation of the hyperboloid function bylanear surface
based on the same 11 points abgwas prior knowledge. The approximation in Figure 8 has an
average error of @023 computed over a grid of 2500 equally spaced poin{$-ih, 5] x [-5,5]}.

The prior knowledge consists of the following two implications:

1 2
(X1,X%2) € {(xl,xz)|—§x1 <X < —§x1} = f(xg,%2) < 10x; 27)

and
2 1
(x1,%2) € {(X1,%2)[—3X1 < Xe < —2X1} = f(x1,%) < 10%. (28)

These implications are implemented by replaciiig;, x2) by its nonlinear kernel approximation
(23) and then using the implication (18). The regions on which the knowlsdgeen are cones

on whichxixy is negative. Since the two implications are analogous, we explain (27) ohig. T
implication is justified on the basis thafx, < 10x; over the knowledge conﬁxl,x2)|—%x1 <X <
—%xl} for sufficiently largexy, that isx, > 10. This is intended to capture coarsely the global shape
of f(x1,X2) and succeeds in generating a more accurate overall approximation ahtih.

4.4 Predicting Lymph Node M etastasis

We conclude our numerical results with a potentially useful application olvladge-based ap-
proximation to breast cancer prognosis (Mangasarian et al., 1995eWatb al., 1995, Lee et al.,
2001). An important prognostic indicator for breast cancer recoerésthe number of metastasized
lymph nodes under a patient’s armpit, which could be as many as 30. To dezdimsimumber, a
patient must undergo optional surgery in addition to the removal of thetttgaor. If the predicted
number of metastasized lymph nodes is sufficiently small, then the oncologigabsumay decide
not to perform the additional surgery. Thus, it is useful to approximaetimber of metastasized
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lymph nodes as a function of thirty available cytological features and obt@dgécal feature. The
cytological features are obtained from a fine needle aspirate duringateastic procedure while
the histological feature is obtained during surgery. Our proposed lkdge-based approximation
can be used to improve the determination of such a funcfiolR®! — R, that predicts the num-
ber of metastasized lymph nodes. For example, in certain polyhedral segi®i’, past training
data indicate the existence of a substantial number of metastasized lymph wbdesas certain
other regions indicate the unlikely presence of any metastasis. This krgewaeh be applied to
obtain a hopefully more accurate lymph node functiothan that based on numerical function
approximation alone.

We have performed preliminary experiments with the Wisconsin Prognosti@sBfeancer
(WPBC) data available from (Murphy and Aha, 1992). In our experisiere reducedr®! to R*
and predicted the number of metastasized lymph nodes based on threeicgtdmures: mean
cell texture, worst cell smoothness, and worst cell area, as well dsdtedogical feature tumor
size. The tumor size is an obvious histological feature to include, while the tiher cytological
features were the same as those selected for breast cancer diagiidsingasarian, 2001). Thus,
we are approximating a functioh: R* — R. Note that the online version of the WPBC data con-
tains four entries with no lymph node information which were removed for ppements. After
removing these entries, we were left with 194 examples in our dataset.

To simulate the procedure of an expert obtaining prior knowledge fr@ahdsta we used the
following procedure. First we took a random 20% of the dataset to amalypast data”. Inspecting
this past data, we choose the following background knowledge:

X1 > 224 N\ X2 > 0.1 A X3 > 14589 A X4 > 3.1 = f(x1,X2,X3,%X4) > 1, (29)

wherexy, X2, X3, andxq denote mean texture, worst smoothness, worst area, and tumor sige-resp
tively. This prior knowledge is based on a typical oncological surgeadvice that larger values
of the variables are likely to result in more metastasized lymph nodes. The&antmm (29) were
chosen by taking the average valuesxgf..., x4 for the entries in the past data with at least one
metastasized lymph node.

We used ten-fold cross validation to compare the average absolute efin@dn an approxima-
tion without prior knowledge and an approximation with the prior knowledgEafation (29) on
the 80% of the data that was not used as “past data” to generate thentemstg29). Parameters
in (21) using a Gaussian kernel were chosen using the Nelder-Meaxitlaihg on a tuning set taken
from the training data for each fold. The average absolute error otitieibn approximation with
no prior knowledge was.35 while the average absolute error with prior knowledge was,3a
10.5% reduction. The mean function value of the data used in the ten-fold eabidation exper-
iments is 330, so neither approximation is accurate. However, these results indieatadiing
prior knowledge does indeed improve the function approximation substanttadipefully more
sophisticated prior knowledge, based on a more detailed analysis of thendiat@nsultation with
domain experts, will further reduce the error.

We close this section with a potential application to a reinforcement learnindSason and
Barto, 1998), where the goal is to predict the value of taking an actiorgaea state. Thus, the
domain of the function to be approximated is the Cartesian product of théstates and the set of
actions. In particular, we plan to use tkeep-Awaysubtask of the soccer game developed in (Stone
and Sutton, 2001). The state description includes measurements suckaasedis each of the
opposing players, distance to the soccer ball, distances to the edges$ieltthetc. Actions include
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holding the ball and attempting a pass to a teammate. It has been demonstratavitibg
prior knowledge can improve the choice of actions significantly (Kuhimaah 2004, Maclin and
Shavlik, 1996). One example of advice (that is, prior knowledge) trebkan successfully used in
this domain is the simple advice that “if no opponent is within 8 meters, holding this lsagood
idea.” In our approach we approximate a value functies a function of states and actions. Advice
can be stated as the following implication, assuming two opponents:

di>8Ad>8ANa=h— v>c, (30)

whered; denotes the distance to Opponenti the distance to Opponent 2,= h the action of
holding the ball,v the predicted value, antlis some constant. It is hoped that this “advice” can
help in generating an improved value functibased on the current description of the state of the
soccer game.

5. Conclusion and Outlook

We have presented a knowledge-based formulation of a nonlineal Efiveapproximation. The
approximation is obtained using a linear programming formulation with any nonlgygametric
kernel and with no positive semidefiniteness (Mercer) condition assuffied.issues associated
with sampling the knowledge sets in order to generate function values (thatnsitrix A and

a corresponding vectq) in situations where there are no conventional data points constitute an
interesting topic for future research. Additional future work includéseenent of prior knowledge

and applications to medical problems, computer vision, microarray genéickassn, and efficacy

of drug treatment, all of which have prior knowledge available.
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