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Abstract

We show that the problem of minimizing the sum of arbitrary-norm
real distances to misclassified points, from a pair of parallel bounding
planes of a classification problem, divided by the margin (distance) be-
tween the two bounding planes, leads to a simple parameterless linear
program. This constitutes a linear support vector machine (SVM) that si-
multaneously minimizes empirical error of misclassified points while max-
imizing the margin between the bounding planes.Nonlinear kernel SVMs
can be similarly represented by a parameterless linear program in a typi-
cally higher dimensional feature space.

1 Introduction

Support vector machines (SVMs) [11, 5] constitute the method of choice for
classification problems. Constructing an SVM classifier typically entails the so-
lution of either a quadratic or a linear program that almost always involves at
least one parameter. Determining the size of this parameter is time consum-
ing and its size significantly affects the correctness of the classifier obtained.
Furthermore, distances to misclassified points from a bounding plane are not
represented correctly as distances in these formulations. We address both these
issues in this work, by taking as the objective of our optimization problem a
parameterless ratio of the sum of arbitrary-norm real distances from the bound-
ing planes to points lying on the wrong sides of these planes, divided by the
margin between these two planes, also measured by the same arbitrary norm.
This simple method of minimizing the error in data fitting while maximizing
the margin between the separating planes, leads to a simple linear programming
formulation first considered in [6] and later in [10, 2], even though none of these
formulations explicitly took into account the margin between the separating
planes of the problem. We will show in this work that the linear programming
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models of [10, 2] in fact can be considered to be effective and probably the
simplest models for a support vector machine.

In Section 2 we define our classification problem and give standard SVM
formulations involving a linear or a quadratic program with a parameter in the
objective function. In Section 3 we derive our parameterless linear formulation
with distances measured using any desired norm defined on the input space and
derive some properties of this formulation. In Section 4 we formulate nonlinear
kernel classifiers as parameterless linear programs. Section 5 concludes the
paper.

A word about our notation and background material. All vectors will be
column vectors unless transposed to a row vector by a prime superscript ′.
The scalar product of two vectors x and y in the n-dimensional real space
Rn will be denoted by x′y. For x ∈ Rn and p ∈ [1,∞), the norm ‖x‖p will

denote the p-norm: (

n
∑

i=1

|xi|
p)

1
p and ‖x‖∞ will denote max

1≤i≤n
|xi|. For x ∈ Rn,

(x+)i = max {0, xi}, i = 1, . . . , n. For an m×n matrix A, Ai will denote the ith
row of A, A·j will denote the jth column of A and Aij will denote the element in
row i and column j. The identity matrix in a real space of arbitrary dimension
will be denoted by I, while a column vector of ones of arbitrary dimension will
be denoted by e. For a general norm ‖ · ‖ on Rn, the dual norm ‖ · ‖′ on Rn is
defined as

‖x‖′ := max
‖y‖=1

x′y, (1)

from which follows the generalized Cauchy-Schwarz inequality,

±x′y ≤ |x′y| ≤ ‖x‖′‖y‖. (2)

For p, q ∈ [1,∞], 1
p

+ 1
q

= 1, the p-norm and q-norm are dual norms by the

classical Hölder inequality [1]. A norm ‖ · ‖ on Rn is said to be monotonic (or
absolute) if either of the following equivalent conditions hold:

x, y ∈ Rn, |x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖,
‖ |x| ‖ = ‖x‖ ∀x ∈ Rn.

(3)

For p ∈ [1,∞], the p-norm is monotonic. For A ∈ Rm×n and B ∈ Rn×k, a
kernel K(A, B) maps Rm×n × Rn×k into Rm×k. In particular, if x and y are
column vectors in Rn then, K(x′, y) is a real number, K(x′, A′) is a row vector
in Rm and K(A, A′) is an m × m matrix. The base of the natural logarithm
will be denoted by ε. A frequently used kernel in nonlinear classification is the
Gaussian kernel [12, 4, 9] whose ijth element, i = 1 . . . , m, j = 1 . . . , k, is

given by: (K(A, B))ij = ε−µ‖Ai
′−B·j‖

2

, where A ∈ Rm×n, B ∈ Rn×k and µ is a
positive constant.
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2 The Classification Problem

We consider the problem of classifying m points in the n-dimensional real space
Rn, represented by the m×n matrix A, according to membership of each point
Ai in the classes +1 or -1 as specified by a given m × m diagonal matrix D

with ones or minus ones along its diagonal. For this problem the standard
support vector machine with a linear kernel AA′ [12, 4] is given by the following
quadratic program for some ν > 0:

min
(w,γ,y)∈Rn+1+m

νe′y + 1
2‖w‖2

2

s.t. D(Aw − eγ) + y ≥ e,

y ≥ 0.

(4)

As depicted in Figure 1, w is the normal to the bounding planes:

x′w = γ + 1,

x′w = γ − 1,
(5)

and γ determines their location relative to the origin. The first plane above
bounds the class A+ points (circles) and the second plane bounds the class A−
points (asterisks) when the two classes are strictly linearly separable, that is
when the slack variable y = 0. The linear separating surface is the plane

x′w = γ, (6)

midway between the bounding planes (5). If the classes are linearly inseparable
(as is the case depicted in Figure 1), then the two planes bound the two classes
with a “soft margin” determined by a nonnegative slack variable y, that is:

x′w − γ + yi ≥ +1, for x′ = Ai and Dii = +1,

x′w − γ − yi ≤ −1, for x′ = Ai and Dii = −1.
(7)

The 1-norm of the slack variable y is minimized with parameter weight ν in
(4) relative to the quadratic term in (4). This latter term which is twice the
reciprocal of the square of the 2-norm distance 2

‖w‖2
between the two bounding

planes of (5) in the n-dimensional space of w ∈ Rn, maximizes that distance,
called the “margin”. We immediately note three shortcomings of this standard
SVM formulation:

(i) At a solution of (4), the error y is given by:

y = (e − D(Aw − eγ))+, (8)

which is a surrogate for the distance of misclassified points to their bound-
ing planes (5), that is:

y =
(e − D(Aw − eγ))+

‖w‖2
. (9)

A component of this error distance is depicted in Figure 1, for the dual
‖ · ‖′ of a general norm ‖ · ‖ on Rn.
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(ii) The margin is represented by its square in (4), whereas the misclassifica-
tion error surrogates are not squared.

(iii) The parameter ν typically requires extensive tuning experiments before
its optimal value is arrived at, which is typically critical in determining
correctness of the classifier.
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Figure 1: The bounding planes (5) with margin 2

‖w‖′
, and the plane (6) approxi-

mately separating A+, the points (circles) represented by rows of A with Dii = +1,

from A−, the points (asterisks) represented by rows of A with Dii = −1.

One way to overcome these shortcomings is to use instead of the standard
quadratic programming formulation (4) a linear programming formulation by
replacing the 2-norm in (4) by a 1-norm as follows [3, 9]:
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min
(w,γ,y)∈Rn+1+m

νe′y + ‖w‖1

s.t. D(Aw − eγ) + y ≥ e,

y ≥ 0.

(10)

This reformulation in effect maximizes the margin, the distance between the two
bounding planes of Figure 1, using a different norm, the ∞-norm, and results
with a margin in terms of the 1-norm, 2

‖w‖1
, instead of 2

‖w‖2
[8]. More generally,

the margin between the bounding planes (5) measured using a p-norm, is given
by 2

‖w‖q
[8], where 1

p
+ 1

q
= 1, that is the p-norm and q-norm are dual norms

for 1 ≤ p, q ≤ ∞. However this linear programming formulation still does not
rectify the shortcomings (i) and (iii) above. We propose instead the following
formulation that takes care of all these shortcomings. We minimize the ratio of
the sum of real distances of misclassified points to their bounding plane divided
by the margin between the bounding planes, with all distances measured using
the same arbitrary monotonic norm ‖·‖ on Rn. We require a monotonic norm in
order to ensure that larger violations have larger distances from their bounding
plane. This leads to the following fractional mathematical program:

min
(w,γ)∈Rn+1

e′(e−D(Aw−eγ))+
‖w‖′

2
‖w‖′

, (11)

which is equivalent to the following linear program:

min
(w,γ,y)∈Rn+1+m

e′y

s.t. D(Aw − eγ) + y ≥ e,

y ≥ 0,

(12)

with the somewhat surprising fact, that this mathematical program is invariant
with respect to the norm employed. That is, all norms lead to the same linear
program.

A linear programming formulation for the linearly separable case was first
introduced in [6], for the inseparable case in [10], and in more general form than
(12) in [2].

We turn now to properties of the proposed linear programming formulation
(12).

3 SVM as a Parameterless Linear Program and

its Properties

We show in this section, by techniques similar to those of [2], that our param-
eterless robust linear programming SVM (12) has a trivial solution w = 0 if
the arithmetic mean of points of A+ weighted by the number of points in A+,
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equals the arithmetic mean of points of A− weighted by the number of points
in A−, that is:

e′DA = m1 · (
e′A+

m1
) − m2 · (

e′A−

m2
) = 0. (13)

Here, with a slight abuse of notation, A+ and A− also denote respectively the
submatrices of rows of A that are in classes A+ and A−. We note however
that when (13) is satisfied, the trivial solution is not unique except in certain
circumstances as outlined below.

Proposition 3.1 Existence of the Trivial Solution w = 0

(i) For m1 ≥ m2, the robust linear program SVM (12) has a trivial solution
w = 0 if and only if:

∑

i∈I+

uiAi =
∑

j∈I−

Aj , for some ui ∈ [0, 1], i ∈ I+,
∑

i∈I+

ui = m2, (14)

where I+ is the index set with cardinality m1 of the rows of A that are in
the class A+ and I− is the index set with cardinality m2 of the rows of A

that are in the class A−. It follows in such a case that the minimum of
the linear program (12) is given by:

e′y = 2m2. (15)

(ii) Equality of the weighted means (13) implies (14).

Proof

(i) Note first that the linear program is solvable because it is feasible and the
objective function is bounded below by zero. Also, the assumption that
m1 ≥ m2 does not cause any loss of generality because the two classes
can be interchanged if that were not the case. Furthermore, (w = 0, γ, y)
solves the linear program (12) if and only if:

y = (e + Deγ)+, e′y = e′u, (16)

where u solves the dual of the linear program (12):

max
(u)∈Rm

e′u

s.t. A′Du = 0,

−e′Du = 0,

0 ≤ u ≤ e.

(17)

It follows from (16) that:

1 + Diiγ ≤ 0 =⇒ yi = 0,

1 + Diiγ > 0 =⇒ yi = 1 + Diiγ > 0.
(18)
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Under the assumption that m1 ≥ m2, it follows that there are only two
cases to be considered which satisfy (16) and (17), all other cases leading
to a contradiction in the choice of γ.

Case I We have in this case that:

1 + Diiγ ≤ 0, yi = 0, ∀i ∈ I+, γ ≤ −1,

1 + Djjγ > 0, yj = 1 + Djjγ > 0, ∀j ∈ I−, γ < 1,

uj = 1, ∀j ∈ I−,
∑

i∈I+

uiAi −
∑

j∈I−

Aj = 0,

0 ≤ ui ≤ 1, ∀i ∈ I+,

e′y = e′u = 2m2.

(19)

These conditions are equivalent to conditions (14) and (15) holding.

Case II We have in this case that:

1 + Diiγ > 0, yi = 1 + Diiγ > 0, ∀i ∈ I+, γ > −1,

1 + Djjγ > 0, yj = 1 + Djjγ > 0, ∀j ∈ I−, γ < 1,

ui = 1, ∀i ∈ I+,

uj = 1, ∀j ∈ I−,
∑

i∈I+

Ai −
∑

j∈I−

Aj = 0,

e′y = e′u = m1 + m2 = 2m1 = 2m2.

(20)

These conditions are equivalent to (14) and (15) if we set ui = 1,
i ∈ I−, in (14).

(ii) To see that equality of the weighted means (13) implies (14), just set
ui = m2

m1
, i ∈ I+ in Case I above, while in Case II, (14) is directly implied

by (13). 2

We give conditions that ensure that the linear program (12) has a nontrivial
solution w 6= 0 in addition to the trivial solution.

Proposition 3.2 Existence of Nontrivial Solution to (12) Let m1 ≥ m2

and let the conditions (14) that ensure the existence of a trivial solution w = 0
hold. There exists another solution to the linear program (12) with w 6= 0 if and
only if for some h ∈ Rn the following system has no solution (r, ξ):

A′Dr = h,

e′Dr = 0,

−r + eξ ≥ 0,

e′r − 2m2ξ ≥ 0,

(r, ξ) ≥ 0.

(21)

Proof By Proposition 3.1 the linear program (12) has a solution with a trivial
w = 0 if and only conditions (14) hold. Hence the linear program (12) has a
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nontrivial solution w 6= 0, if and only if:

e′y ≤ 2m2,

D(Aw − eγ) + y ≥ e,

y ≥ 0,

(22)

has a solution (w 6= 0, γ, y). This is equivalent to

−e′y + 2m2ζ ≥ 0,

DAw − Deγ + y − eζ ≥ 0,

y ≥ 0,

ζ > 0,

−h′w > 0,

(23)

has solution (w, γ, y, ζ) for some h ∈ Rn. By Motzkin’s Theorem of the alter-
native [7], this is equivalent to:

A′Dr − hσ = 0,

−e′Dr = 0,

−eξ + r + s = 0,

2m2ξ − e′r + ρ = 0,

(ξ, r, s) ≥ 0,

0 6= (ρ, σ) ≥ 0,

(24)

having no solution (ξ, r, s, ρ, σ) for some h ∈ Rn. The case that (24) has no
solution such that (σ = 0, ρ > 0) follows from the assumption that the linear
program (12) has a solution with w = 0, that is:

−Deγ + y ≥ e, y ≥ 0, e′y ≤ 2m2, (25)

which together with (24) having a solution with (σ = 0, ρ > 0) leads to the
contradiction:

0 ≤ −r′Deγ + r′y − r′e = e′yξ − s′y − 2m2ξ − ρ ≤ 2m2ξ − s′y − 2m2ξ − ρ ≤ −ρ < 0.

(26)

Hence, (σ > 0, ρ ≥ 0) in (24). Dividing all terms of (24) by σ and letting
r
σ
−→ r and ξ

σ
−→ ξ, reduces (24) not having a solution for some h ∈ Rn to

(21) not having a solution for some h ∈ Rn, which is the desired result.2

We consider now two examples that demonstrate the results given above.

Example 3.3 Exclusive-Or (XOR) This classical example in R2 for which
the data is not linearly separable is given by:

A =









1 0
0 1
0 0
1 1









, De =









−1
−1
1
1









. (27)
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For this example equality of the weighted means (13) holds, and hence by Propo-
sition 3.1 the linear program (12) has a solution with w = 0, γ ∈ [−1, 1] and
e′y = 4. However, for h ∈ R2 and h1 > h2, the system (21) can be shown (after
some algebra) to have no solution (r, ξ). Hence by Proposition 3.2, the linear
program (12) has another solution with w 6= 0. In fact such a solution is given
by w = [−2 − 2]′, γ = −1, y = [0 0 0 4]′, with a dual optimal solution of u = e.
This results in the separating surface:

−2x1 − 2x2 = −1, (28)

that misclassifies one point: [1 1]′. This is the best that a linear classifier can
do for this problem.

This example shows that the proposed robust parameterless linear program-
ming SVM (12) is capable of handling such standard “troublemaker” examples
for linear classifiers as the XOR example. However there are some synthetic
examples that do not satisfy the criteria of Proposition 3.2 for having nonzero
w for a solution. One such example is given in [2] which we cite now.

Example 3.4 Unique Trivial Solution This is a one dimensional example
with:

A =













1
2
−1
0
4













, De =













−1
−1
1
1
1













. (29)

For this example condition (14) is satisfied by u1 = 1, u2 = 0, u3 = 1, and hence
the linear programming SVM (12) has the trivial solution w = 0. However, it
can be checked for this example, that the system (21) has a solution for any
h ∈ R and hence the linear program (12) does not have a a solution with a
nontrivial w. To overcome this difficulty for this somewhat unusual example the
linear program (12) objective can be weighted by the reciprocal of the number of
points in each class resulting in an average error distance for each class instead
of the sum of the error distances. In fact this leads to the robust linear program
of [2] which we state explicitly now:

min
(w,γ,y)∈Rn+1+m

1

m1

∑

i∈I+

yi +
1

m2

∑

i∈I−

yi

s.t. D(Aw − eγ) + y ≥ e,

y ≥ 0,

(30)

which has a solution with nonzero w for this example. In fact, even though
(30) was not considered to be a support vector machine in [2], it is in fact an
SVM using the same fractional justification that we have utilized to derive linear
program (12).

We turn now to our nonlinear parameterless kernel formulation.
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4 Nonlinear SVM Classifiers

To generate a parameterless kernel-based nonlinear classifier we proceed in a
manner similar to that for the linear classifier, except that instead of measuring
errors by distances in the input space, we measure distances in a higher dimen-
sional space feature space [12, 11, 5] by utilizing a dual representation [9] as
follows.

We start with the linear 1-norm SVM (10) and use the dual representation
w = A′Du [9] which leads to the following linear program:

min
(u,γ,y)∈Rm+1+m

νe′y + ‖A′Du‖1

s.t. D(AA′Du − eγ) + y ≥ e,

y ≥ 0.

(31)

If we now replace AA′ by any nonlinear kernel K(A, A′) as defined in the In-
troduction and replace ‖A′Du‖1 by ‖u‖1 in the objective function we obtain a
standard linear programming nonlinear kernel SVM:

min
(u,γ,y)∈Rm+1+m

νe′y + ‖u‖1

s.t. D(K(A, A′)Du − eγ) + y ≥ e,

y ≥ 0.

(32)

Again this problem has a parameter ν in the objective function which balances
the surrogate distance error

e′y = e′(e − D(K(A, A′)Du − eγ))+, (33)

against the margin 2
‖u‖1

in the m-dimensional feature space represented by the

linear bounding planes:

z′u = γ + 1,

z′u = γ − 1,
(34)

where:

z = K(x′, A′)D. (35)

A parameterless linear program ensues if we minimize the ratio of the sum of
the real distances of misclassified points to their bounding planes planes divided
by the margin between the bounding planes in the m-dimensional space. We
have then the fractional mathematical program:

min
(u,γ)∈Rm+1

e′(e−D(K(A,A′)Du−e))+
‖u‖′

2
‖u‖′

. (36)

This is equivalent to the following linear program:

min
(u,γ,y)∈Rm+1+m

e′y

s.t. D(K(A, A′)Du − eγ) + y ≥ e,

y ≥ 0.

(37)
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This is the desired parameterless linear program for a nonlinear kernel SVM
classifier.

5 Summary & Conclusion

We have reduced both linear and nonlinear kernel classification to a parame-
terless linear programming problem which is independent of the norm used to
measure the margin between the bounding planes and the distance of misclas-
sified points to their bounding planes. Past work [2] has made use of these
formulations but without pointing out their support vector machine aspect of
implicitly maximizing the margin between bounding planes. It is hoped that
this connection will be investigated more thoroughly and computationally with
the possible outcome of generating of one of the simplest representations of a
support vector machine.
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