
Finite Newton Method for Lagrangian Support

Vector Machine Classification

Glenn Fung & O. L. Mangasarian

Computer Sciences Department

University of Wisconsin

1210 West Dayton Street

Madison, WI 53706

gfung,olvi@cs.wisc.edu

Abstract

An implicit Lagrangian [19] formulation of a support vector ma-
chine classifier that led to a highly effective iterative scheme [18] is
solved here by a finite Newton method. The proposed method, which
is extremely fast and terminates in 6 or 7 iterations, can handle clas-
sification problems in very high dimensional spaces, e.g. over 28,000,
in a few seconds on a 400 MHz Pentium II machine. The method can
also handle problems with large datasets and requires no specialized
software other than a commonly available solver for a system of linear
equations. Finite termination of the proposed method is established
in this work.

Keywords classification, Lagrangian support vector machines, Newton
method, Myeloma

1 Introduction

This paper establishes finite termination of a Newton method for the un-
constrained minimization of a strongly convex, piecewise quadratic function,
underlying a linear or nonlinear kernel classifier [27, 3, 15, 4, 26]. Our piece-
wise quadratic function is the implicit Lagrangian, first proposed in [19] and
utilized in [18] for a highly effective iterative scheme, the Lagrangian Sup-
port Vector Machine (LSVM). In order to handle problems with very large
dimensional input spaces, we use here instead a fast finite Newton method

1

for finding the unconstrained unique global minimum solution of the im-
plicit Lagrangian associated with the classification problem. The solution is
obtained by solving a system of linear equations a finite number of times.

We outline now the contents of the paper. In Section 2 we describe the
linear and nonlinear kernel classification problems leading to a dual problem
consisting of minimizing a strongly convex function of nonnegative variables.
In Section 3 we give our implicit Lagrangian formulation which consists of
minimizing an unconstrained strongly convex piecewise quadratic function
and establish some properties of the implicit Lagrangian. In Section 4 we
give our Newton method with an Armijo stepsize and establish its finite
global termination to the unique solution. In Section 5 we give some com-
putational results including those for a gene expression problem with 28,032
variables, solved in seconds, as well as other publicly available datasets.

A word about our notation. All vectors will be column vectors unless
transposed to a row vector by a prime superscript ′. For a vector x in the
n-dimensional real space Rn, the plus function x+ is defined as (x+)i =
max {0, xi}, i = 1, . . . , n, while x∗ denotes the subgradient of x+ which is
the step function defined as (x∗)i = 1 if xi > 0, (x∗)i = 0 if xi < 0, and
(x∗)i ∈ [0, 1] if xi = 0, i = 1, . . . , n. Thus, (x∗)i is any value in the interval
[0, 1], when xi = 0 we typically take (x∗)i = 0.5 The scalar (inner) product
of two vectors x and y in the n-dimensional real space Rn will be denoted by
x′y and the 2-norm of x will be denoted by ‖x‖. For a matrix A ∈ Rm×n, Ai

is the ith row of A which is a row vector in Rn and ‖A‖ is the 2-norm
of A: max

‖x‖=1
‖Ax‖. A column vector of ones of arbitrary dimension will be

denoted by e and the identity matrix of arbitrary order will be denoted
by I. For A ∈ Rm×n and B ∈ Rn×l, the kernel K(A,B) [27, 3, 15] is an
arbitrary function which maps Rm×n × Rn×l into Rm×l. In particular, if x
and y are column vectors in Rn then, K(x′, y) is a real number, K(x′, A′)
is a row vector in Rm and K(A,A′) is an m × m matrix. If f is a real
valued function defined on the n-dimensional real space Rn, the gradient of
f at x is denoted by ∇f(x) which is a column vector in Rn and the n × n
matrix of second partial derivatives of f at x is denoted by ∇2f(x). For
a piecewise quadratic function such as, f(x) = 1

2 ||(Ax − b)+||
2 + 1

2x′Px,
where A ∈ Rm×n, P ∈ Rn×n, P = P ′, P positive semidefinite and b ∈ Rm,
the ordinary Hessian does not exist because its gradient, the n × 1 vector
∇f(x) = A′(Ax − b)+ + Px, is not differentiable. However, one can define
its generalized Hessian [9, 5, 16] which is the n × n symmetric positive

2

semidefinite matrix:

∂2f(x) = A′diag(Ax − b)∗A + P, (1)

where diag(Ax − b)∗ denotes an m × m diagonal matrix with diagonal ele-
ments (Aix − bi)∗, i = 1, . . . ,m. The generalized Hessian (1) has many of
the properties of the regular Hessian [9, 5, 16] in relation to f(x). If the
smallest eigenvalue of ∂f(x) is greater than some positive constant for all
x ∈ Rn, then f(x) is a strongly convex piecewise quadratic function on Rn.
Throughout this work, the notation := will denote definition.

2 Linear and Nonlinear Kernel Classification

We describe in this section the fundamental classification problems that lead
to minimizing a piecewise quadratic strongly convex function. We consider
the problem of classifying m points in the n-dimensional real space Rn,
represented by the m× n matrix A, according to membership of each point
Ai in the classes +1 or -1 as specified by a given m × m diagonal matrix D
with ones or minus ones along its diagonal. For this problem, the standard
support vector machine with a linear kernel AA′ [27, 3] is given by the
following quadratic program for some ν > 0:

min
(w,γ,y)∈Rn+1+m

νe′y + 1
2w′w

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0.

(2)

As depicted in Figure 1, w is the normal to the bounding planes:

x′w − γ = +1
x′w − γ = −1,

(3)

and γ determines their location relative to the origin. The first plane above
bounds the class +1 points and the second plane bounds the class -1 points
when the two classes are strictly linearly separable, that is when the slack
variable y = 0. The linear separating surface is the plane

x′w = γ, (4)

midway between the bounding planes (3). If the classes are linearly in-
separable then the two planes bound the two classes with a “soft margin”
determined by a nonnegative slack variable y, that is:

x′w − γ + yi ≥ +1, for x′ = Ai and Dii = +1,
x′w − γ − yi ≤ −1, for x′ = Ai and Dii = −1.

(5)

3

The 1-norm of the slack variable y is minimized with weight ν in (2). The
quadratic term in (2), which is twice the reciprocal of the square of the
2-norm distance 2

‖w‖ between the two bounding planes of (3) in the n-
dimensional space of w ∈ Rn for a fixed γ, maximizes that distance, of-
ten called the “margin”. Figure 1 depicts the points represented by A, the
bounding planes (3) with margin 2

‖w‖ , and the separating plane (4) which
separates A+, the points represented by rows of A with Dii = +1, from A−,
the points represented by rows of A with Dii = −1.

x
x
x
x

x

x
x

xx
x

x
x

x
x

x

x

x

x
x

x
x

x
x x x

x

A+

A-

PSfrag replacements

w

Margin= 2
‖w‖

x
′
w = γ − 1

x
′
w = γ + 1

Separating Surface: x
′
w = γ

Figure 1: The bounding planes (3) with margin 2

‖w‖
, and the plane (4) sepa-

rating A+, the points represented by rows of A with Dii = +1, from A−, the

points represented by rows of A with Dii = −1.

In many essentially equivalent formulations of the classification problem
[12, 11, 7, 6], the square of 2-norm of the slack variable y is minimized
with weight ν

2 instead of the 1-norm of y as in (2). In addition the dis-
tance between the planes (3) is measured in the (n + 1)-dimensional space
of (w, γ) ∈ Rn+1, that is 2

‖(w,γ)‖ . Measuring the margin in this (n + 1)-
dimensional space instead of Rn induces strong convexity and has little or
no effect in general on the problem as was shown in [17] experimentally.
Thus using twice the reciprocal squared of the margin instead, yields our
modified SVM problem as follows:

4

min
(w,γ,y)∈Rn+1+m

ν
2y′y + 1

2(w′w + γ2)

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0.

(6)

It has been shown computationally [18] that this reformulation (6) of the
conventional support vector machine formulation (2) often yields similar
results to (2). The dual of this problem is [13]:

min
0≤u∈Rm

1

2
u′(

I

ν
+ D(AA′ + ee′)D)u − e′u. (7)

The variables (w, γ) of the primal problem which determine the separating
surface (4) are recovered directly from the solution of the dual (7) above by
the relations:

w = A′Du, y =
u

ν
, γ = −e′Du. (8)

We immediately note that the matrix appearing in the dual objective func-
tion is positive definite. We simplify the formulation of the dual problem
(7) by defining two matrices as follows:

H = D[A − e], Q =
I

ν
+ HH ′. (9)

With these definitions the dual problem (7) becomes

min
0≤u∈Rm

f(u) :=
1

2
u′Qu − e′u. (10)

To develop the nonlinear kernel classifier we use the notation of [15].
For A ∈ Rm×n and B ∈ Rn×`, the kernel K(A,B) maps Rm×n ×Rn×` into
Rm×`. A typical kernel is the Gaussian kernel ε−µ‖A′

i−B·j‖
2

, i, j = 1, . . . ,m,
` = m, where ε is the base of natural logarithms, while a linear kernel is
K(A,B) = AB. For a column vector x in Rn, K(x′, A′) is a row vector
in Rm, and the linear separating surface (4) is replaced by the nonlinear
surface:

K(x′, A′)Du = γ, (11)

where u is the solution of the dual problem (7) with the linear kernel AA′

replaced by the nonlinear kernel product K(A,A′)K(A,A′)′ [15, Equation
(8.10)], that is:

min
0≤u∈Rm

1

2
u′(

I

ν
+ D(K(A,A′)K(A,A′)′ + ee′)D)u − e′u. (12)

5

This leads to a redefinition of the matrix Q of (10) as follows:

H = D[K(A,A′) − e], Q =
I

ν
+ HH ′. (13)

Note that the nonlinear separating surface (11) degenerates to the linear one
(4) if we let K(A,A′) = AA′ and make use of (8).

We describe now a general framework for generating a fast and effective
algorithm for solving the quadratic program (10) by solving a system of
linear equations a finite number of times.

3 Implicit Lagrangian Formulation

The implicit Lagrangian formulation [18, Equation (17)], [26, Section 10.6.2]
consists of replacing the nonnegativity constrained quadratic minimization
problem (10) by the equivalent unconstrained piecewise quadratic minimiza-
tion of the implicit Lagrangian L(u):

min
u∈Rm

L(u) = min
u∈Rm

1

2
u′Qu − e′u +

1

2α
(‖(−αu + Qu − e)+‖

2 − ‖Qu − e‖2),

(14)

where α is a sufficiently large but finite positive parameter, and the plus
function (·)+, defined in the Introduction, replaces negative components of
a vector by zeros. Reformulation of the constrained problem (10) as an un-
constrained problem (14) is based on ideas [19] of converting the optimality
conditions of (10) to an unconstrained minimization problem as follows. Be-
cause the Lagrange multipliers of the constraints u ≥ 0 of (10) turn out to be
components of the gradient Qu − e of the objective function, these compo-
nents of the gradient can be used as Lagrange multipliers in an Augmented
Lagrangian [25, 2] formulation of (10) which leads precisely to the uncon-
strained formulation (14). Our finite Newton method consists of applying
Newton’s method to this unconstrained minimization problem and showing
that it terminates in a finite number of steps at the global minimum. The
gradient of L(u) is:

∇L(u) = (Qu − e) + 1
α
(Q − αI)((Q − αI)u − e)+ − 1

α
Q(Qu − e)

= (αI−Q)
α

((Qu − e) − ((Q − αI)u − e)+).

(15)

In order to apply the Newton method we need the m×m Hessian matrix of
second partial derivatives of L(u), which does not exist in the ordinary sense

6

because its gradient, ∇L(u), is not differentiable. However, a generalized
Hessian of L(u) in the sense of [9, 5, 16] exists and is defined as the following
m × m matrix:

∂2L(u) =
(αI − Q)

α
(Q + diag((Q − αI)u − e)∗(αI − Q)), (16)

where, as defined in the Introduction, diag(·)∗ denotes a diagonal matrix and
(·)∗ denotes the step function. Our basic Newton step consists of solving
the system of m linear equations:

∇L(ui) + ∂2L(ui)(ui+1 − ui) = 0, (17)

for the unknown m× 1 vector ui+1 given a current iterate ui. We will show
in the next section that this iteration coupled with a stepsize, terminates
at the global minimum solution to the problem. For that we need the pos-
itive definiteness of ∂2L(u), which we establish now under the very simple
condition that Q is positive definite and that α > ||Q|| as follows.

Proposition 3.1 Positive Definiteness of the Generalized Hessian
Let Q be an arbitrary m × m symmetric positive definite matrix and let
α > ||Q||. Then:

(i) The generalized Hessian matrix ∂2L(u), defined by (16), is positive
definite.

(ii) The generally non-symmetric matrix factor P (u) of ∂2L(u) = (αI−Q)
α

P (u):

P (u) := Q + diag((Q − αI)u − e)∗(αI − Q), (18)

is positive definite.

Proof

(i) Since α > ||Q||, it follows that αI − Q is positive definite. Hence the
product (αI − Q)Q of the two positive definite matrices αI − Q and
Q is positive definite [23, Theorem 6.2.1]. Define the diagonal matrix:

E(u) := diag((Q − αI)u − e)∗. (19)

Since, by the definition of the step function (·)∗, each element of E(u)
is in the interval [0, 1], it follows that:

(αI − Q)E(u)(αI − Q) = (E(u)
1

2 (αI − Q))2 (20)

7

is positive semidefinite. Hence the generalized Hessian:

∂2L(u) =
(αI − Q)

α
Q +

(αI − Q)

α
E(u)(αI − Q), (21)

the sum of a positive definite and a positive semidefinite matrix is
positive definite.

(ii) Since:

P (u) = α(αI − Q)−1∂2L(u), (22)

is the product of two positive definite matrices, it follows again by [23,
Theorem 6.2.1] that P (u) is positive definite. 2

We note now that, since both ∇L(u) and ∂2L(u) contain the multiplicative

factor (αI−Q)
α

which is positive definite, it follows that the Newton iteration
(17) can be simplified to:

h(ui) + ∂h(ui)(ui+1 − ui) = 0, (23)

where

h(u) := (Qu − e) − ((Q − αI)u − e)+ = (
αI − Q

α
)−1∇L(u), (24)

and

∂h(u) := Q + E(u)(αI − Q) = P (u) = (
αI − Q

α
)−1∂2L(u). (25)

The simpler iteration (23) will be used in our implementation instead of the
equivalent iteration (17).

Another useful tool in our implementation will be the Sherman-Morrison-
Woodbury identity [8] when we are classifying large datasets with a linear
classifier. For such problems we have, with Q defined by (9) and E(u)
replaced by E for notational simplicity:

∂h(u) = αE + (I − E)Q = αE + I−E
ν

+ (I − E)HH ′

= F + (I − E)HH ′ = F (I + F−1(I − E)HH ′) = F (I + SHH ′),

(26)

where F and S are defined as the following positive and nonnegative diagonal
matrices respectively:

F := αE +
I − E

ν
, S := F−1(I − E). (27)

8

By using a special case of the Sherman-Morrison-Woodbury identity [8]:

(I + KH ′)−1 = I − K(I + H ′K)−1H ′, (28)

on the last expression of (26), with K := SH, we have:

∂h(u)−1 = (I + SHH ′)−1F−1 = (I − SH(I + H ′SH)−1H ′)F−1, (29)

where we need to invert the (n + 1) × (n + 1) matrix (I + H ′SH) instead
of the potentially much larger m × m matrix (I + SHH ′). This will be the
case whenever we generate a linear classifier for problems with m >> n.

We turn now to details of the Newton algorithm and its finite termination
properties.

4 Finite Newton Classification Method

We first state our Newton algorithm for solving the piecewise quadratic
minimization problem (14) for an arbitrary positive definite Q using the
simplified iteration (23) together with an Armijo stepsize [1, 12] defined
below in order to guarantee finite termination from any starting point.

Algorithm 4.1 Newton Algorithm for (14) Let h(u) and ∂h(u) be de-
fined by (24) and (25). Start with any u0 ∈ Rm. For i = 0, 1, . . . :

(i) Stop if h(ui − ∂h(ui)−1h(ui)) = 0.

(ii) ui+1 = ui − λi∂h(ui)−1h(ui) = ui + λid
i,

where λi = max{1, 1
2 , 1

4 , . . . } is the Armijo stepsize such that:

L(ui) − L(ui + λid
i) ≥ −δλi∇L(ui)′di, (30)

for some δ ∈ (0, 1
2), and di is the Newton direction:

di = −∂h(ui)−1h(ui), (31)

obtained by solving (23).

(iii) i = i + 1. Go to (i).

We state and prove now our finite termination result for this Newton
algorithm. A possible intuitive justification of the finite termination is that
as the iterates converge to the unique global solution, the correct quadratic
surfaces on whose intersection the solution lies are correctly identified, and
hence a single Newton step captures that solution.

9

Theorem 4.2 Finite Termination of Newton Algorithm For the sym-
metric positive definite matrix Q defined by (9) or (13), the sequence {ui}
of Algorithm 4.1 terminates at the global minimum solution ū of (14) and
hence that of (10) provided α > ‖Q‖.

Proof That the sequence {ui} converges to the global solution ū, for which
h(ū) = 0, follows from standard results (e.g.[14, Theorem 2.1, Example
2.1(ii), Example 2.4(iv)]) of unconstrained minimization of a strongly convex
function using a Newton direction with an Armijo stepsize. This is exactly
what is done in our Algorithm 4.1 above. We now establish finite termination
of the sequence {ui} at ū. Our Newton iteration (23) can be written as:

(Qui − e) − ((Q − αI)ui − e)+ + (Q + E(ui)(αI − Q))(ui+1 − ui) = 0,
(32)

which we rewrite by subtracting from it the equality h(ū) = 0 satisfied by
the solution ū:

(Qū − e) − ((Q − αI)ū − e)+ = h(ū) = 0. (33)

This results in the equivalent iteration:

((Q − αI)ū − e)+ − ((Q − αI)ui − e)+
−E(ui)(Q − αI)(ui+1 − ui) + Q(ui+1 − ū) = 0.

(34)

We show now that this Newton iteration is satisfied uniquely (since ∂h(ui)
is nonsingular) by ui+1 = ū when ui is sufficiently close to ū and hence
the Newton iteration terminates at ū at step (i) of Algorithm 4.1. Setting
ui+1 = ū in (34) and canceling the last term Q(ū − ū) = 0, gives:

((Q − αI)ū − e)+ − ((Q − αI)ui − e)+ − E(ui)(Q − αI)(ū − ui) = 0.
(35)

We verify now that that this equation is indeed satisfied when ui is suf-
ficiently close to ū by looking at each component j, j = 1, . . . ,m of the
equation (35). We consider the the following nine possible combinations
determined by the vector function r(u) appearing in (35) defined as:

rj(u) := ((Q − αI)u − e)j , j = 1, . . . ,m. (36)

Noting that every element of the diagonal matrix E(u) defined by (19), that
is Ejj(u) = (rj(u))∗, j = 1, . . . ,m, is in the interval [0, 1], we have:

10

(i) rj(ū) > 0, rj(u
i) > 0:

(Qj − αIj)ū − 1 − (Qj − αIj)u
i + 1 − 1 · (Qj − αIj)(ū − ui) = 0

(ii) rj(ū) > 0, rj(u
i) = 0: Cannot occur when ui is sufficiently close to ū.

(iii) rj(ū) > 0, rj(u
i) < 0: Cannot occur when ui is sufficiently close to ū.

(iv) rj(ū) = 0, rj(u
i) > 0:

0−(Qj−αIj)u
i+1−1·(Qj−αIj)(ū−ui) = 1−Qjū+αūj = −rj(ū) = 0

(v) rj(ū) = 0, rj(u
i) = 0:

0 + 0− [0, 1] · ((Qj −αIj)(ū− ui)− e + e) = [0, 1] · (rj(ū)− rj(u
i)) = 0

(vi) rj(ū) = 0, rj(u
i) < 0:

0 + 0 − 0 · (Qj − αIj)(ū − ui) = 0

(vii) rj(ū) < 0, rj(u
i) > 0: Cannot occur when ui is sufficiently close to ū.

(viii) rj(ū) < 0, rj(u
i) = 0: Cannot occur when ui is sufficiently close to ū.

(ix) rj(ū) < 0, rj(u
i) < 0:

0 + 0 − 0 · (Qj − αIj)(ū − ui) = 0

Consequently for ui is sufficiently close to ū, the Newton iteration is uniquely
satisfied by ū, and hence, terminates at ū. 2

We turn now to our computational results.

5 Numerical Experience

Our numerical tests and comparisons were carried out on a dataset with
a high dimensional input space and a moderate number of data points,
as well as on more conventional datasets where the dimensionality of the
input space is considerably smaller than the number of data points. All our
computations were performed on the University of Wisconsin Data Mining
Institute “locop1” machine, which utilizes a 400 Mhz Pentium II and allows
a maximum of 2 Gigabytes of memory for each process. This computer runs
on Windows NT server 4.0, with MATLAB 6 installed [20].

Because of the simplicity of our algorithm, we give below a simple MAT-
LAB implementation of the algorithm without the Armijo stepsize, which
does not seem to be needed in most applications. Although this is merely
an empirical observation in the present case, it considerably simplifies our
MATLAB Code 5.1. However, it has also been shown [16, Theorem 3.6] that

11

under a well conditioned assumption, not generally satisfied here, the pro-
posed Newton method indeed terminates in a finite number of steps without
an Armijo stepsize.

Code 5.1 NSVM: Finite Newton LSVM Code

function [w,gamma]=nsvm(A,d,nu);

% NSVM:linear and nonlinear classification without Armijo

% INPUT: A, D, nu. OUTPUT: w, gamma

% [w, gamma] = nsvm(A,d,nu);

[m,n]=size(A);iter=0;

u=zeros(m,1);e=ones(m,1);

H=[diag(d)*A -d]; Q=speye(m)/nu+H*H’;

alpha=1.1*((1/nu)+(norm(H’,2)^2));

hu=-max(((Q*u-e)-alpha*u),0)+Q*u-e;

while norm(hu)>10^(-5)

iter=iter+1

star=sign(max(((Q-alpha*eye(m))*u-e),0));

dhu=sparse((eye(m)-diag(star))*Q+alpha*diag(star));

delta=dhu\hu;

unew=u-delta;

u=unew;

hu=-max(((Q*u-e)-alpha*u),0)+Q*u-e;

end

w=A’*(d.*u);gamma=-sum(d.*u);

return

We further note that the MATLAB code above not only works for a
linear classifier, but also for a nonlinear classifier as well [15, Equations (1),
(10)]. In the nonlinear case, the matrix K(A,A′) is used as input instead of
A, and the pair (û, γ), where û = K(A,A′)Du, is returned instead of (w, γ).
The nonlinear separating surface is then given by (11) as:

K(x,A′)û − γ = 0. (37)

12

Our numerical testing and comparisons were carried out on the high
dimensional Multiple Myeloma dataset available at:

http : //lambertlab.uams.edu/publicdata.htm,

and processed by by David Page and his colleagues [24]. Further tests and
comparisons were also carried out on six moderately dimensioned, publicly
available datasets [21, 22].

We describe our tests and comparisons now.

5.1 Multiple Myeloma dataset

Multiple Myeloma is cancer of the plasma cell. The plasma cell normally
produces antibodies that destroy foreign bodies such as bacteria. As a prod-
uct of the Myeloma disease the plasma cells get out of control and produce
a tumor. These tumors can grow in several sites, usually in the soft middle
part of bone, the bone marrow. When these tumors appear in multiples sites
they are called Multiple Myeloma. A detailed description of the process used
to obtain the data can be found in [24].

5.1.1 Description of the dataset

The data consists of 105 data points, 74 of the points representing newly-
diagnosed multiple Myeloma patients while 31 points represent 31 healthy
donors. Each data point represents measurements taken from 7008 genes us-
ing plasma cells samples from the patients. For each one of the 7008 genes
there are two measurements. One measurement is called Absolute Call (AC)
and takes on one of three nominal values: A (Absent), M (Marginal) or P
(Present). The other measurement, the average difference (AD), is a float-
ing point number that can be either positive or negative. Since each one
of the 7008 AC features takes on nominal values from the set {A,M,P}, a
real valued representation is needed to utilize our classifier which requires
an input of real numbers. Thus, each nominal value is mapped into a three
dimensional binary vector depending on the value that is being represented.
This simple and widely used “1 of N” mapping scheme for converting nomi-
nal attributes into real-valued attributes is illustrated in Figure 2. Once this
simple conversion is applied to the dataset, the AC feature space is trans-
formed from a 7008-dimensional space with nominal values A,M,P into a
7008 × 3 = 21024 real-valued dimensional space. Adding the numerical AD
feature for each of the 7008 genes results in each data point being trans-
formed to a point in R28032, with 21024 coming from the AC transformation

13

mentioned above and 7008 from the AD values. This makes this dataset
very interesting for our method, since a main objective of this paper is to
show that our proposed algorithm can quickly classify points in very high
dimensional spaces.

1 0 0

0

0

0 1

10P

A

M

Figure 2: Real-valued representation of the AC features set {A, M, P} .

5.1.2 Numerical comparisons

Performance of our Newton SVM (NSVM) algorithm on the Myeloma
dataset, in terms of speed and generalization ability, is first compared with
two publicly available SVM solvers: LSVM [18] and SVMlight version 5.0
[10]. The comparison with LSVM was carried out because both LSVM and
NSVM minimize the same unconstrained differentiable convex implicit La-
grangian function (14) but using entirely different techniques. Reported
times for LSVM here differ from the ones reported in [18] because the cal-
culation time for the matrix H of (9) is considered as input time in [18],
whereas here it is counted as part of the computational time. The other al-
gorithm included in our comparisons, SVMlight, solves a different optimiza-
tion problem with a classification error measured using the 1-norm instead
of the 2-norm. This solver was included in our experiments because it is
widely cited in the literature and is often used as a benchmark for SVM
classification algorithms. Termination criteria for all methods was set to
0.001 which is the default for SVMlight. We outline some of the results of
our comparative testing.

• Both NSVM and SVMlight obtained 100% leave-one-out correctness
(looc). However, we note that SVMlight did not perform as well with
the default value of its parameter C which determines the trade-off be-
tween empirical and generalization errors. In order to find an optimal
value for both ν (NSVM and LSVM) and C (SVMlight) the following
tuning procedure was employed on each fold:

14

– A random tuning set of the the size of 10% of the training data
was chosen and separated from the training set.

– Several SVMs were trained on the remaining 90% of the training
data using values for C or ν equal to 2i where i = −12, . . . , 0, . . . , 12.

– The value of C or ν that gave the best SVM correctness on the
tuning set was chosen.

– A final SVM was trained using the chosen value of C and ν and all
the training data. The resulting SVM was tested on the testing
data.

• The average cpu time required by our algorithm for the leave-one-out
correctness (looc) computations was 4.11 seconds per case and total
time for all cases was 432.40 seconds. This outperformed the SVMlight

cpu times of 27.83 seconds average per case and total looc time of
2922.15 seconds.

• LSVM failed and reported an out of memory error.

These results are summarized in Table 1 below.

Table 1: NSVM, SVMlight & LSVM: leave-one-out correct-
ness (looc) and total running times using a linear classifier
for the Myeloma dataset. Best results are in bold. oom
stands for “out of memory”.

Data Set NSVM SVMlight LSVM

m × n looc looc looc

(points × dimensions) Time (Sec.) Time (Sec.) Time (Sec.)

Myeloma
105 × 28032 100.0% 100.0% oom

432.40 2922.15 oom

5.2 Six publicly available datasets

Even though our algorithm is primarily intended for datasets with very high
dimensional input space and a moderate number of points, it also performed
very well on more conventional datasets where the opposite is true. To
exhibit this fact we tested our algorithm on six publicly available datasets.

15

Five from the UCI Machine Learning Repository [21]: Ionosphere, Cleveland
Heart, Pima Indians, BUPA Liver and Housing. The sixth dataset is the
Galaxy Dim dataset available at [22]. The dimensionality and size of each
dataset is given in Table 2.

5.2.1 Numerical comparisons using a linear classifier

In this set of experiments we used a linear classifier to compare our method
NSVM with LSVM and SVMlight on the six datasets mentioned above. Be-
cause m >> n for these datasets, it was preferable to use (29) in solving the
Newton iteration (23) and inverting an (n + 1) × (n + 1) matrix instead of
an m×m matrix. The complexity of the original NSVM for a linear kernel
is O(km3) + O(m2n), where k is the number of iterations of NSVM and the
term O(m2n) reflects the time for computing the matrix Q of of (9). By
using the Sherman-Morrison-Woodbury formula, the complexity changes to
O(kn3) + O(m2n), which is obviously preferable when m >> n. However,
the explicit calculation of the matrix Q of equation (9) which is of the order
O(m2n) is very time consuming when m is large. Hence, instead of explicitly
calculating Q and then performing the matrix-vector product Qu, needed
in computing h(u), we calculate:

Qu = (
I

ν
+ HH ′)u =

1

ν
u + H(H ′u), (38)

where H ′u is calculated first then H(H ′u) is calculated next. This simple
but effective algebraic manipulation changes the complexity of the algorithm
to be linear in m that is, O(kn3) + O(mn). This makes our algorithm very
fast even when m >> n but n is relatively small.

The values for the parameters C and ν were again calculated using the
same tuning procedure explained in section 5.1.2

As shown in Table 2, the correctness of the three methods was very
similar, but the execution time including ten-fold cross validation for NSVM
was less for all the datasets tested.

5.2.2 Numerical comparisons using a nonlinear classifier

In order to show that our algorithm can also be used to find nonlinear clas-
sifiers, we chose three datasets from the UCI Machine Learning Repository
for which it is known that a nonlinear classifier performs better that a linear
classifier. We used NSVM, LSVM and SVMlight in order to find a nonlinear
classifier based on the Gaussian kernel:

16

(K(A,B))ij = ε−µ‖Ai
′−B·j‖

2

, i = 1 . . . ,m, j = 1 . . . , k, (39)

where A ∈ Rm×n, B ∈ Rn×k and µ is a positive constant. The value
of µ in the Gaussian kernel and the value of ν in NSVM and LSVM and
C in SVMlight were chosen all by tuning from the set of values 2i with i
an integer ranging from −12 to 12 following the same procedure described
in section 5.1.2. Because the nonlinear kernel matrix is square and since
both NSVM and LSVM preform better on rectangular matrices, we also
used a rectangular kernel formulation as described in the Reduced SVM
(RSVM) [11]. This resulted in as good or better correctness and much
faster running times. The size of the random sample used to calculate the
rectangular kernel was 10% of the size of the original dataset in all cases.
We refer to these variations of NSVM and LSVM as Reduced NSVM and
Reduced LSVM respectively. The results are summarized in Table 3 for
these nonlinear classifiers.

6 Conclusion

We have presented a fast and finitely terminating Newton method for solving
a fundamental classification problem of data mining and machine learning.
The method is simple and fast and can be applied to problems with a very
large dimensional input space, which is often the case on problems related
to analysis of gene expression microarray data. Even though the method is
intended to be applied to problems with very large dimensional input space,
it showed a excellent performance in other problems as well. Computational
testing on a variety of real-world test problems demonstrate the effectiveness
of the proposed method.

Acknowledgments

The research described in this Data Mining Institute Report 02-01, February
2002, was supported by National Science Foundation Grants CCR-9729842
and CDA-9623632, by Air Force Office of Scientific Research Grant F49620-
00-1-0085 and by the Microsoft Corporation. We are grateful to our col-
league David Page for making available to us the Multiple Myeloma dataset
as well as a preprint of his joint paper [24]. We are also grateful to three
anonymous referees for helpful constructive suggestions. Revised August
2002.

17

References

[1] L. Armijo. Minimization of functions having Lipschitz-continuous first
partial derivatives. Pacific Journal of Mathematics, 16:1–3, 1966.

[2] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont,
MA, second edition, 1999.

[3] V. Cherkassky and F. Mulier. Learning from Data - Concepts, Theory
and Methods. John Wiley & Sons, New York, 1998.

[4] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector
Machines. Cambridge University Press, Cambridge, 2000.

[5] F. Facchinei. Minimization of SC1 functions and the Maratos effect.
Operations Research Letters, 17:131–137, 1995.

[6] G. Fung and O. L. Mangasarian. Incremental support vector machine
classification. Technical Report 01-08, Data Mining Institute, Com-
puter Sciences Department, University of Wisconsin, Madison, Wiscon-
sin, September 2001. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-
08.ps.

[7] G. Fung and O. L. Mangasarian. Proximal support vector machine clas-
sifiers. In F. Provost and R. Srikant, editors, Proceedings KDD-2001:
Knowledge Discovery and Data Mining, August 26-29, 2001, San Fran-
cisco, CA, pages 77–86, New York, 2001. Asscociation for Computing
Machinery. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-02.ps.

[8] G. H. Golub and C. F. Van Loan. Matrix Computations. The John
Hopkins University Press, Baltimore, Maryland, 3rd edition, 1996.

[9] J.-B. Hiriart-Urruty, J. J. Strodiot, and V. H. Nguyen. Generalized hes-
sian matrix and second-order optimality conditions for problems with
CL1 data. Applied Mathematics and Optimization, 11:43–56, 1984.

[10] T. Joachims. Making large-scale support vector machine learning prac-
tical. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Ad-
vances in Kernel Methods - Support Vector Learning, pages 169–184.
MIT Press, 1999.

[11] Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced support vector
machines. Technical Report 00-07, Data Mining Institute, Computer

18

Sciences Department, University of Wisconsin, Madison, Wisconsin,
July 2000. Proceedings of the First SIAM International Conference
on Data Mining, Chicago, April 5-7, 2001, CD-ROM Proceedings.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-07.ps.

[12] Yuh-Jye Lee and O. L. Mangasarian. SSVM: A smooth support vector
machine. Computational Optimization and Applications, 20:5–22, 2001.
Data Mining Institute, University of Wisconsin, Technical Report 99-
03. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-03.ps.

[13] O. L. Mangasarian. Nonlinear Programming. SIAM, Philadelphia, PA,
1994.

[14] O. L. Mangasarian. Parallel gradient distribution in unconstrained op-
timization. SIAM Journal on Control and Optimization, 33(6):1916–
1925, 1995. ftp://ftp.cs.wisc.edu/tech-reports/reports/1993/tr1145.ps.

[15] O. L. Mangasarian. Generalized support vector machines. In A. Smola,
P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in
Large Margin Classifiers, pages 135–146, Cambridge, MA, 2000. MIT
Press. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-14.ps.

[16] O. L. Mangasarian. A finite Newton method for classification prob-
lems. Technical Report 01-11, Data Mining Institute, Computer
Sciences Department, University of Wisconsin, Madison, Wiscon-
sin, December 2001. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-
11.ps.Optimization Methods and Software, to appear.

[17] O. L. Mangasarian and D. R. Musicant. Successive overrelaxation
for support vector machines. IEEE Transactions on Neural Networks,
10:1032–1037, 1999. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-
18.ps.

[18] O. L. Mangasarian and D. R. Musicant. Lagrangian support vector
machines. Journal of Machine Learning Research, 1:161–177, 2001.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-06.ps.

[19] O. L. Mangasarian and M. V. Solodov. Nonlinear complementarity as
unconstrained and constrained minimization. Mathematical Program-
ming, Series B, 62:277–297, 1993.

[20] MATLAB. User’s Guide. The MathWorks, Inc., Natick, MA 01760,
1994-2001. http://www.mathworks.com.

19

[21] P. M. Murphy and D. W. Aha. UCI repository of machine learning
databases, 1992. www.ics.uci.edu/∼mlearn/MLRepository.html.

[22] S. Odewahn, E. Stockwell, R. Pennington, R. Humphreys, and W. Zu-
mach. Automated star/galaxy discrimination with neural networks.
Astronomical Journal, 103(1):318–331, 1992.

[23] J. M. Ortega. Numerical Analysis, A Second Course. Academic Press,
1972.

[24] D. Page, F. Zhan, J. Cussens, M. Waddell, J. Hardin, B. Barlogie, and
J. Shaughnessy,Jr. Comparative data mining for microarrays: A case
study based on multiple myeloma. Technical report, Department of Bio-
statistics and Medical Informatics, University of Wisconsin, Madison,
Wisconsin, January 2002.

[25] R. T. Rockafellar. Augmented Lagrange multiplier functions and dual-
ity in nonconvex programming. SIAM Journal on Control, 12:268–285,
1974.

[26] A. Smola and B. Schölkopf. Learning with Kernels. MIT Press, Cam-
bridge, MA, 2002.

[27] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer,
New York, second edition, 2000.

20

Table 2: NSVM, SVMlight & LSVM: Training correctness,
ten-fold testing correctness and ten-fold training times using
a LINEAR classifier. NSVM and LSVM parameter ν and
SVMlight parameter C, all chosen by tuning. Best results
are in bold.

Data Set NSVM SVMlight LSVM
m × n Train Train Train

Test Test Test

(points × dimensions) Time (Sec.) Time (Sec.) Time (Sec.)

Ionosphere 93.2% 92.0 % 93.2%
351 × 34 89.8% 88.3 % 89.8%

0.95 2.3 1.49

BUPA Liver 70.3% 70.1% 70.3%
345 × 6 70.2% 69.3% 70.2%

0.19 5.17 0.61

Pima Indians 77.7% 77.4% 77.7%
768 × 8 77.0% 77.1% 77.0%

0.48 3.87 2.04

Cleveland Heart 87.3% 87.1% 87.3%
297 × 13 86.3% 85.9% 86.3%

0.31 0.88 0.83

Housing 87.2% 87.6% 87.2%
506 × 13 86.6% 85.8% 86.6%

0.58 5.57 1.53

Galaxy Dim 95.0% 91.3% 95.0%
4192 × 14 95.3% 91.2% 95.3%

7.16 15.94 76.67

21

Table 3: NSVM, Reduced NSVM, SVMlight, LSVM & Re-
duced LSVM: Training correctness, ten-fold testing correct-
ness and ten-fold training times using a NONLINEAR clas-
sifier. Best results are in bold.

Data Set Ionosphere BUPA Liver Cleveland Heart

m × n 351× 34 345× 6 297× 13

(points × dimensions)

NSVM
Train 96.1 75.7 87.6
Test 95.0 73.1 86.8

Time (Sec.) 23.27 25.54 17.51

Reduced NSVM
Train 96.1 76.4 86.8
Test 94.5 73.9 87.1

Time (Sec.) 0.88 0.67 0.53

SVMlight

Train 94.4 77.2 87.1
Test 96.0 74.2 85.9

Time (Sec.) 2.42 2.74 0.74

LSVM
Train 96.1 75.7 87.6
Test 95.0 73.1 86.8

Time (Sec.) 23.76 27.01 12.98

Reduced LSVM
Train 96.1 75.1 87.1
Test 94.5 73.1 86.2

Time (Sec.) 2.09 1.81 1.09

22

