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Abstract

A fundamental classification problem of data mining and machine
learning is that of minimizing a strongly convex, piecewise quadratic
function on the n-dimensional real space Rn. We show finite termina-
tion of a Newton method to the unique global solution starting from
any point in Rn. If the function is well conditioned, then no stepsize
is required from the start, and if not, an Armijo stepsize is used. In
either case finite termination is guaranteed to the unique global mini-
mum solution.

1 Introduction

This paper establishes finite termination of a Newton method for minimizing
a strongly convex, piecewise quadratic function on the n-dimensional real
space Rn. Such a problem is a fundamental one in generating a linear or non-
linear kernel classifier for data mining and machine learning [23, 2, 16, 17,
18, 10, 11, 19, 4]. This work is motivated by [11], where a smoothed version
of the present algorithm was shown to converge globally and quadratically
but was observed to terminate in a few steps even when the smoothing and
stepsize were removed. Another motivating work is [8], where finite termi-
nation of a Newton method was established for the least 2-norm solution of
a linear program. In fact our algorithm is similar to that of [8], but has a
global finite termination property without a stepsize under a well condition-
ing property. This well conditioning property, (26) below, which is sufficient
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for finite termination without a stepsize, does not appear to be necessary
for a wide range of classification problems tested in [11].

Other related work using a finite Newton method to solve quadratic
programs with bound constraints appears in [12, 13, 14, 15]. Our approach
differs from this previous work in its finite termination property with or
without an Armijo stepsize, in the analysis we present, and in the application
to support vector machine classification.

We outline now the contents of the paper. In Section 2 we describe the
linear and nonlinear classification problems leading to a piecewise quadratic
strongly convex minimization problem. In Section 3 we establish finite global
termination of a Newton algorithm without a stepsize but under a well con-
ditioning property. In Section 4 we remove the well conditioning assumption
but add the Armijo stepsize and obtain again finite global termination at
the unique solution. In Section 5 we briefly discuss some previous numerical
results with the proposed method. Section 6 concludes the paper.

A word about our notation. All vectors will be column vectors unless
transposed to a row vector by a prime superscript ′. For a vector x in the
n-dimensional real space Rn, the plus function x+ is defined as (x+)i =
max {0, xi}, i = 1, . . . , n, while x∗ denotes the subgradient of x+ which is
the step function defined as (x∗)i = 1 if xi > 0, (x∗)i = 0 if xi < 0, and
(x∗)i ∈ [0, 1] if xi = 0, i = 1, . . . , n. The scalar (inner) product of two
vectors x and y in the n-dimensional real space Rn will be denoted by x′y

and the 2-norm of x will be denoted by ‖x‖. For a matrix A ∈ Rm×n, Ai

is the ith row of A which is a row vector in Rn and ‖A‖ is 2-norm of A:
max
‖x‖=1

‖Ax‖. A column vector of ones of arbitrary dimension will be denoted

by e. For A ∈ Rm×n and B ∈ Rn×l, the kernel K(A,B) [23, 2, 16] is an
arbitrary function which maps Rm×n × Rn×l into Rm×l. In particular, if x

and y are column vectors in Rn then, K(x′, y) is a real number, K(x′, A′) is
a row vector in Rm and K(A,A′) is an m × m matrix. If f is a real valued
function defined on the n-dimensional real space Rn, the gradient of f at x

is denoted by ∇f(x) which is a column vector in Rn and the n × n Hessian
matrix of second partial derivatives of f at x is denoted by ∇2f(x). The
convex hull of a set S is denoted by co{S}. The identity matrix of arbitrary
order will be denoted by I.

2 Linear and Nonlinear Kernel Classification

We describe in this section the fundamental classification problems that lead
to minimizing a piecewise quadratic strongly convex function. We consider
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the problem of classifying m points in the n-dimensional real space Rn,
represented by the m× n matrix A, according to membership of each point
Ai in the classes +1 or -1 as specified by a given m × m diagonal matrix D

with ones or minus ones along its diagonal. For this problem, the standard
support vector machine with a linear kernel AA′ [23, 2] is given by the
following quadratic program for some ν > 0:

min
(w,γ,y)∈Rn+1+m

νe′y + 1
2w′w

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0.

(1)

As depicted in Figure 1, w is the normal to the bounding planes:

x′w − γ = +1
x′w − γ = −1,

(2)

and γ determines their location relative to the origin. The first plane above
bounds the class +1 points and the second plane bounds the class -1 points
when the two classes are strictly linearly separable, that is when the slack
variable y = 0. The linear separating surface is the plane

x′w = γ, (3)

midway between the bounding planes (2). If the classes are linearly in-
separable then the two planes bound the two classes with a “soft margin”
determined by a nonnegative slack variable y, that is:

x′w − γ + yi ≥ +1, for x′ = Ai and Dii = +1,
x′w − γ − yi ≤ −1, for x′ = Ai and Dii = −1.

(4)

The 1-norm of the slack variable y is minimized with weight ν in (1). The
quadratic term in (1), which is twice the reciprocal of the square of the
2-norm distance 2

‖w‖ between the two bounding planes of (2) in the n-
dimensional space of w ∈ Rn for a fixed γ, maximizes that distance, of-
ten called the “margin”. Figure 1 depicts the points represented by A, the
bounding planes (2) with margin 2

‖w‖ , and the separating plane (3) which
separates A+, the points represented by rows of A with Dii = +1, from A−,
the points represented by rows of A with Dii = −1.
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Figure 1: The bounding planes (2) with margin 2

‖w‖
, and the plane (3) sepa-

rating A+, the points represented by rows of A with Dii = +1, from A−, the

points represented by rows of A with Dii = −1.

In many essentially equivalent formulations of the classification problem
[11, 10, 4, 5], the square of 2-norm of the slack variable y is minimized
with weight ν

2 instead of the 1-norm of y as in (1). In addition the dis-
tance between the planes (2) is measured in the (n + 1)-dimensional space
of (w, γ) ∈ Rn+1, that is 2

‖(w,γ)‖ . Measuring the margin in this (n + 1)-
dimensional space instead of Rn induces strong convexity and has little or
no effect on the problem as was shown in [17]. Thus using twice the recip-
rocal squared of the margin instead, yields our modified SVM problem as
follows:
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min
(w,γ,y)∈Rn+1+m

ν
2y′y + 1

2(w′w + γ2)

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0.

(5)

It has been shown computationally [19] that this reformulation (5) of the
conventional support vector machine formulation (1) yields similar results
to (1). At a solution of problem (5), y is given by

y = (e − D(Aw − eγ))+, (6)

where, as defined in the Introduction, (·)+ replaces negative components of
a vector by zeros. Thus, we can replace y in (5) by (e − D(Aw − eγ))+

and convert the SVM problem (5) into an equivalent SVM which is an
unconstrained optimization problem as follows:

min
(w,γ)∈Rn+1

ν
2‖(e − D(Aw − eγ))+‖

2 + 1
2 (w′w + γ2). (7)

This problem is the strongly convex piecewise quadratic minimization prob-
lem. Note however that its objective function is not twice differentiable
which precludes the use of a regular Newton method. In [11] we smoothed
this problem and applied a fast Newton method to solve it. Problem (7) is
one of the nonsmooth problems that we shall provide a direct finite Newton
method for. The other nonsmooth problem that we will treat is the non-
linear kernel problem, (12) below, which generates a nonlinear classifier as
described below.

We now describe how the generalized support vector machine (GSVM)
[16] generates a nonlinear separating surface by using a completely arbitrary
kernel. The GSVM solves the following mathematical program for a general
kernel K(A,A′), defined in the Introduction:

min
(u,γ,y)∈R2m+1

νe′y + f(u)

s.t. D(K(A,A′)Du − eγ) + y ≥ e

y ≥ 0.

(8)

Here f(u) is some convex function on Rm which suppresses the parameter u

and ν is some positive number that weights the classification error e′y versus
the suppression of u. A solution of this mathematical program for u and γ

leads to the nonlinear separating surface

K(x′, A′)Du = γ. (9)
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The linear formulation (1) of Section 2 is obtained if we let K(A,A′) =
AA′, w = A′Du and f(u) = 1

2u′DAA′Du. We now use a different classifica-
tion objective which not only suppresses the parameter u but also suppresses
γ in our nonlinear formulation:

min
(u,γ,y)∈R2m+1

ν
2y′y + 1

2(u′u + γ2)

s.t. D(K(A,A′)Du − eγ) + y ≥ e

y ≥ 0.

(10)

At a solution of (10), y is given by

y = (e − D(K(A,A′)Du − eγ))+, (11)

where, as defined earlier, (·)+ replaces negative components of a vector by
zeros. Thus, we can replace y in (10) by (e − D(K(A,A′)Du − eγ))+ and
convert the SVM problem (10) into an equivalent SVM which is an uncon-
strained optimization problem as follows:

min
(u,γ)∈Rm+1

ν

2
‖(e − D(K(A,A′)Du − eγ))+‖

2 +
1

2
(u′u + γ2). (12)

Again, as in (7), this problem is a strongly convex unconstrained minimiza-
tion problem which has a unique solution but its objective function is not
twice differentiable. It is for this problem, that generates the nonlinear sep-
arating surface (9), and for problem (7) that generates the linear separating
surface (3), that we shall develop the finite Newton methods that we describe
in the next two sections of the paper.

3 Finite Stepless Newton Method

We shall consider in the rest of the paper the following piecewise quadratic
strongly convex problem which subsumes both problems (7) and (12):

min
z∈Rp

f(z) :=
ν

2
‖(Cz − h))+‖

2 +
1

2
(z′z), (13)

where C ∈ Rm×p, h ∈ Rm and ν is a fixed positive parameter. We note
immediately that, since ‖(r − t)+‖ ≤ ‖(r − t)‖ for r, t ∈ Rm, the gradient of
f :

∇f(z) = νC ′(Cz − h)+ + z, (14)
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is globally Lipschitz continuous with constant K as follows:

‖∇f(s) −∇f(z)‖ ≤ K‖s − z‖, ∀s, z ∈ Rp, whereK = ν‖C ′‖‖C‖ + 1. (15)

The ordinary Hessian of f does not exist everywhere. However, since ∇f(z)
is Lipschitzian, f belongs to the class LC1 of functions with locally Lip-
schitzian gradients, and a generalized Hessian exists everywhere [7]. LC 1

functions were introduced in [7] and used in subsequent papers such as
[9, 22, 21, 3]. The generalized Hessian is defined as follows [7, 3]:

Definition 3.1 Generalized Hessian Let f : Rp −→ R have a Lipschitz
continuous gradient on Rp. The generalized Hessian of f at x is the set of
∂2f(z) of p × p matrices defined as [7, 3]:

∂2f(z) := co{H ∈ Rp×p | ∃xk −→ x such that :
∇f is differentiable at xk and ∇2f(xk) −→ H}.

(16)

Furthermore, a generalization of the mean value theorem for the Lipschitzian
gradient ∇f(z) holds [6, 3]:

Proposition 3.2 Generalized Mean Value Theorem Let f : Rp −→ R

have a Lipschitz continuous gradient on Rp. Then for z, s ∈ Rp:

∇f(z) = ∇f(s) +

p
∑

j=1

tjH
j(z − s) (17)

where Hj ∈ ∂2f(yj), for some yj ∈ (s, z), tj ≥ 0, j = 1, . . . , p and
p

∑

j=1

tj = 1.

We shall also need the following lemma [20, 8.1.5] that gives a quadratic
bound on a linear Taylor expansion:

Lemma 3.3 Quadratic Bound Lemma Let f : Rn −→ R have a Lips-
chitz continuous gradient on Rp with constant K. Then for z, s ∈ Rp:

|f(z) − f(s) −∇f(s)′(z − s)| ≤
K

2
‖z − s‖2. (18)

We summarize now properties of the function f(z) in the following lemma
and omit the straightforward proof of these properties.

Lemma 3.4 Properties of f(z) The function f(z) defined by (13) has the
following properties for all s, z ∈ Rp:
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(i) f(z) is strongly convex with constant k = 1:

(∇f(s) −∇f(z))′(s − z) ≥ k · ‖s − z‖2 = ‖s − z‖2. (19)

(ii) ∇f(z) is Lipschitz continuous with constant K:

‖∇f(s) −∇f(z)‖ ≤ K‖s − z‖, ∀s, z ∈ Rp, where K = ν‖C ′‖‖C‖ + 1.
(20)

(iii) The generalized Hessian of f(z) [7] is:

∂2f(z) = νC ′diag(Cz − h)∗C + I, (21)

where diag(Cz − h)∗ denotes the p × p diagonal matrix whose j th di-
agonal entry is the subgradient of the step function (·)+ as follows:

(diag(Cz − h)∗)jj











= 1, if Cjz − hj > 0,

= [0, 1], if Cjz − hj = 0,

= 0, if Cjz − hj < 0,

j = 1, . . . , p. (22)

(iv)

K‖s‖2 ≥ s′(νC ′C + I)s ≥ s′∂2f(z)s ≥ ‖s‖2, where K = ν‖C ′‖‖C‖ + 1.
(23)

(v)

1

K
‖s‖2 ≤ s′∂2f(z)−1s ≤ ‖s‖2. (24)

(vi)

‖∂2f(s) − ∂2f(z)‖ ≤ ν‖C ′‖ · ‖C‖. (25)

We note that the inverse ∂2f(z)−1 appearing in (24) and elsewhere refers to
the inverse of ∂2f(z) defined by (21)-(22) for an arbitrary but specific value
of (diag(Cz − h)∗)jj, j = 1, . . . , p in the interval [0, 1] when Cjz − hj = 0.

We are ready now to state and establish global finite termination of a
Newton algorithm without a stepsize starting from any point.

Algorithm 3.5 Stepless Newton Algorithm for (13) Start with any
z0 ∈ Rp. For i = 0, 1, . . . :
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(i) zi+1 = zi − ∂2f(zi)−1∇f(zi).

(ii) Stop if ∇f(zi+1) = 0.

(iii) i = i + 1. Go to (i).

Theorem 3.6 Finite Termination of Stepless Newton Let f(z) be well
conditioned, that is:

K

k
=

ν‖C ′‖‖C‖ + 1

1
< 2, i.e. ν‖C ′‖‖C‖ < 1. (26)

(i) The sequence {zi} of Algorithm 3.5 terminates at the global minimum
solution z̄ of (13).

(ii) The error decreases linearly at each step as follows:

‖zi+1 − z̄‖ ≤ ν‖C ′‖‖C‖‖zi − z̄‖. (27)

Proof

(i) We first establish convergence and then finite termination of the se-
quence {zi}. By the Quadratic Bound Lemma (18):

f(zi) − f(zi+1) ≥ ∇f(zi)′∂2f(zi)−1∇f(zi) − K
2 ∇f(zi)′∂2f(zi)−2∇f(zi)

= ∇f(zi)′(∂2f(zi)−1 − K
2 ∂2f(zi)−2)∇f(zi)

= K
2 ∇f(zi)′∂2f(zi)−

1

2 (2I
K

− ∂2f(zi)−1)∂2f(zi)−
1

2∇f(zi)

≥ K
2

1−ν‖C′‖‖C‖
1+ν‖C′‖‖C‖∇f(zi)′∂2f(zi)−1∇f(zi)

≥ 1
2

1−ν‖C′‖‖C‖
1+ν‖C′‖‖C‖‖∇f(zi)‖2 ≥ 0,

(28)

where the first inequality above follows from Quadratic Bound Lemma
(18), the next to the last inequality follows from the well conditioned
assumption (26) and (24), and the last inequality from (24).

By (28) and the strong convexity of f(z) we have that:

0 ≥ f(zi) − f(z0)
≥ ∇f(z0)′(zi − z0) + 1

2‖z
i − z0‖2

≥ −‖∇f(z0)‖‖zi − z0‖ + 1
2‖z

i − z0‖2.

(29)
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Hence,

‖zi − z0‖ ≤
2

‖∇f(z0)‖
, i = 1, 2, . . . , (30)

and consequently the bounded sequence {zi} has an accumulation
point z̄ such that lim

j−→∞
zij = z̄. Since {f(zi)} is nonincreasing by (28)

and bounded below by min
z∈Rp

f(z), it converges and lim
i−→∞

f(zi) = f(z̄).

Thus:

0 = lim
j−→∞

(f(zij ) − f(zij+1)) ≥
1

2

1 − ν‖C ′‖‖C‖

1 + ν‖C ′‖‖C‖
lim

j−→∞
‖∇f(zij )‖2 ≥ 0.

(31)

Hence lim
j−→∞

‖∇f(zij )‖ = ‖∇f(z̄)‖ = 0. Since all accumulation points

are stationary, they must all equal the unique minimizer of f(z) on Rp.
It follows that the whole sequence {zi} must converge to the unique z̄

such that ∇f(z̄) = 0.

We now show finite termination by using an argument similar to that
of [8].

Our Newton iteration is:

νC ′(Czi − h)+ + zi + (νC ′diag(Czi − h)∗C + I)(zi+1 − zi) = 0,
(32)

which we rewrite by subtracting from it the equality:

νC ′(Cz̄ − h)+ + z̄ = ∇f(z̄) = 0. (33)

This results in the equivalent iteration:

νC ′[(Czi − h)+ − (Cz̄ − h)+] + [zi − z̄]+
(νC ′diag(Czi − h)∗C + I)(zi+1 − zi) = 0.

(34)

We establish now that this Newton iteration is satisfied uniquely (since
∂2f(zi) is nonsingular) by zi+1 = z̄ when zi is sufficiently close to z̄ and
hence the Newton iteration terminates at z̄ at step (ii) of Algorithm
3.5. Setting zi+1 = z̄ in (34) and canceling terms gives:

νC ′[(Czi − h)+ − (Cz̄ − h)+ + diag(Czi − h)∗((Cz̄ − h) − (Czi − h))] = 0.
(35)
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We verify now that the term in the square bracket in (35) is zero when
zi is sufficiently close to z̄ by looking at each component j, j = 1, . . . , p,
of the vector enclosed in the square brackets. We consider the nine
possible combinations:

(i) Cj z̄ − hj > 0, Cjz
i − hj > 0:

Cjz
i − hj − Cj z̄ + hj + 1 · (Cj z̄ − hj) − Cjz

i + hj = 0.

(ii) Cj z̄ − hj > 0, Cjz
i − hj = 0:

Cannot occur when zi is sufficiently close to z̄.

(iii) Cj z̄ − hj > 0, Cjz
i − hj < 0:

Cannot occur when zi is sufficiently close to z̄.

(iv) Cj z̄ − hj = 0, Cjz
i − hj > 0:

Cjz
i − hj − 0 + 1 · (0 − Cjz

i + hj) = 0.

(v) Cj z̄ − hj = 0, Cjz
i − hj = 0:

0 + 0 + [0, 1](0 + 0) = 0.

(vi) Cj z̄ − hj = 0, Cjz
i − hj < 0:

0 + 0 + 0 · (0 − Cjz
i + hj) = 0.

(vii) Cj z̄ − hj < 0, Cjz
i − hj > 0:

Cannot occur when zi is sufficiently close to z̄.

(viii) Cj z̄ − hj < 0, Cjz
i − hj = 0:

Cannot occur when zi is sufficiently close to z̄.

(ix) Cj z̄ − hj < 0, Cjz
i − hj < 0:

0 − 0 + 0 · (Cj z̄ − hj − Cjz
i + hj) = 0.

Hence for zi is sufficiently close to z̄, the Newton iteration is uniquely
satisfied by z̄ and terminates.
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(ii) We establish now the linear termination rate by using the generaliza-
tion of the mean value theorem Proposition 3.2 as follows:

(zi+1 − z̄) = zi − z̄ − ∂2f(zi)−1(∇f(zi) −∇f(z̄))

= zi − z̄ − ∂2f(zi)−1

p
∑

j=1

tjHj(zi − z̄)

= (zi − z̄) − ∂2f(zi)−1[

p
∑

j=1

tjHj + ∂2f(zi) − ∂2f(zi)](zi − z̄)

= −∂2f(zi)−1[

p
∑

j=1

tj(Hj − ∂2f(zi))](zi − z̄),

(36)

where the second equality above follows from the generalization of the
mean value theorem Proposition 3.2. Taking norms of the first and
last terms above gives:

‖zi+1 − z̄‖ ≤ ‖∂2f(zi)−1‖‖

p
∑

j=1

tj(Hj − ∂2f(zi))‖‖zi − z̄‖

≤ ‖∂2f(zi)−1‖ν‖C ′‖‖C‖‖zi − z̄‖
≤ ν‖C ′‖‖C‖‖zi − z̄‖,

(37)

where use has been made of (24) and (25) of Lemma 3.4 in the last
two inequalities above.2

We turn now to a Newton algorithm with an Armijo stepsize.

4 Finite Armijo Newton Method

We now drop the well conditioning assumption (26) but add an Armijo
stepsize [1] in order guarantee global finite termination of the following al-
gorithm.

Algorithm 4.1 Armijo Newton Algorithm for (13) Start with any
z0 ∈ Rp. For i = 0, 1, . . . :

(i) Stop if ∇f(zi − ∂2f(zi)−1∇f(zi)) = 0.

(ii) zi+1 = zi − λi∂
2f(zi)−1∇f(zi) = zi + λid

i,
where λi = max{1, 1

2 , 1
4 , . . . } such that:

f(zi) − f(zi + λid
i) ≥ −δλi∇f(zi)′di, (38)
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for some δ ∈ (0, 1
2), and di is the Newton direction:

di = −∂2f(zi)−1∇f(zi). (39)

(iii) i = i + 1. Go to (i).

Theorem 4.2 Finite Termination of Armijo Newton The sequence
{zi} of Algorithm 4.1 terminates at the global minimum solution z̄ of (13).

Proof As in the proof of the Stepless Newton Algorithm 3.5, we first estab-
lish global convergence of {zi} to the global solution z̄, but without using
the well conditioned assumption (26). By the Quadratic Bound Lemma 3.3
we have the first inequality below:

f(zi) − f(zi + λid
i) + δλi∇f(zi)′di ≥ −K

2 λ2
i ‖d

i‖2 − (1 − δ)λi∇f(zi)′di

= −K
2 λ2

i∇f(zi)′∂2f(zi)−2∇f(zi)
+(1 − δ)λi∇f(zi)′∂2f(zi)−1∇f(zi)

≥ λi(−
K
2 λi + 1−δ

K
)‖∇f(zi)‖2,

(40)

where the equality above makes use of the definition of di and the last
inequality makes use of (24) of Lemma 3.4. Hence if λi is small enough,

that is λi ≤
2(1−δ)

K2 then the Armijo inequality (38) is satisfied. However by
the definition of the Armijo stepsize, 2λi violates the Armijo inequality (38)
and hence by (40):

(−
K

2
2λi +

1 − δ

K
) < 0, or equivalently λi >

1 − δ

K2
. (41)

It follows that:

λi ≥ min{1,
1 − δ

K2
} =: τ > 0, (42)

and by the Armijo inequality (38) and (24) of Lemma 3.4 that:

f(zi) − f(zi+1) ≥ −δλi∇f(zi)′di ≥ δτ∇f(zi)′∂2f(zi)−1∇f(zi) ≥
δτ

K
‖∇f(zi)‖2.

(43)

By exactly the same arguments following inequalities (28), we have that the
sequence {zi} converges to unique minimum solution z̄ of (13).

Having established convergence of {zi} to z̄, finite termination of the
Armijo Newton to z̄ again follows exactly the finiteness proof of Theorem
3.6 because of step (i) of the current algorithm which checks whether the
next iterate obtained by a stepless Newton is stationary.2
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5 Numerical Experience

Our numerical experience is based on 16 test problems of [11] for which a
smoothed version of (7) and (12) was solved using a regular Newton method
with an Armijo step size. However all of these test problems were also solved
in [11] using the proposed Stepless Newton Algorithm 3.5 here and gave the
same results as the smoothed method and with the number of Newton steps
varying between 5 and 8 for all problems. The test problems were all of
type of (7) or (12), and varied in size with m between 110 and 32,562 and
n between 2 and 123. Running times varied between 1 and 85 seconds on
a 200 MHz PentiumPro with 64 megabytes of RAM. Linear classifiers were
used for the largest problems, m = 32, 562, so that the Newton method
solved the minimization problem (7) in Rn+1 with n = 123 for these large
problems.

6 Conclusion

We have presented fast, finitely terminating Newton methods for solving
a fundamental classification problem of data mining and machine learning.
The methods are simple and fast and can be applied to other problems such
as linear programming [8]. An interesting open question is whether these
finite methods can be shown to have polynomial run time and whether they
can be applied to an even broader class of problems.
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