
Cross-Validation, Support Vector Machines

and Slice Models

Michael C. Ferris and Meta M. Voelker

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford,
OX1 3QD (ferris,voelker@cs.wisc.edu)
Permanent address: Computer Sciences Department, University of Wisconsin -
Madison, 1210 West Dayton Street, Madison, Wisconsin 53706, USA ?

Abstract. We show how to implement the cross-validation technique used in ma-
chine learning as a slice model. We describe the formulation in terms of support
vector machines and extend the GAMS/DEA interface to allow for efficient solu-
tions of linear, mixed integer and simple quadratic slice models under GAMS.

1 Introduction

Slice models are collections of mathematical programs with the same struc-
ture but different data. Mathematically, the k-th program in a slice model is
given by

minx fk(x) (objective slice)
subject to Akx = bk (slice constraints)

x ∈ X (core constraints)
(1)

Each problem differs from the next in the collection only in a subset of the
constraints, and possibly the objective function. We implicitly assume that
much of the difficulty in the problems is hidden in the core constraints; for
example, discrete variables, large numbers or difficult constraints may all
appear as core constraints.

In previous work [3], we described the GAMS/DEA interface that was
originally developed to solve large scale Data Envelopment Analysis (DEA)
models [2]. In fact, the GAMS/DEA interface provides a way to define and
solve more general slice models in GAMS efficiently. Normally, a slice model
would be defined and solved in a loop over k, requiring the model to be
generated multiple times. However, with the GAMS/DEA interface, the slice
constraints are identified by a special alias (slice) and are generated all at
once. The GAMS/DEA interface then defines the individual problems and
passes them to the underlying solver CPLEX [6]. In this way, individual prob-
lems are not re-generated, but are instead defined as data modifications of
each other, reducing overall model generation time. Furthermore, solutions

? This material is based on research partially supported by the National Science
Foundation Grant CCR-9972372, the Air Force Office of Scientific Research Grant
F49620-01-1-0040, Microsoft Corporation and the Guggenheim Foundation

2 Michael C. Ferris and Meta M. Voelker

can be used as starting points in subsequent solves to speed up overall exe-
cution time.

This paper extends the interface to allow efficient testing of support vector
machine problems using cross-validation. We have made two enhancements to
the interface that allow this technique to be implemented efficiently within a
modeling language. Firstly, we provide some simple tools and examples that
enable the collection of models arising in cross-validation to be efficiently
communicated to the solver. Secondly, we allow quadratic programs (and
hence standard support vector machines) to be explicitly formulated as slice
models, in addition to linear and mixed integer programs.

2 Example: Breast Cancer Diagnosis

We focus on an example involving the classification of patients’ breast tumors
as either malignant or benign. We make use of a support vector machine,
trained on a set of data for which the outcome is already known. For the
data, we use the Wisconsin Diagnosis Breast Cancer Database (WDBC) [7],
consisting of 569 patients and 30 features. In order to test the classifier, the
model makes use of cross-validation, leaving a portion of the data out of the
training for use as testing data.

We solve the standard linear support vector machine model from [1]:

minw,γ,z
1

2
‖w‖2

2
+ CeT z

subject to D(Aw − γ) + z ≥ 1, z ≥ 0
(2)

Here, A is a matrix containing the training data (patients by features) and D

is a diagonal matrix with values ±1, denoting benign tumors (+1) and malig-
nant tumors (−1) for the corresponding patients. C is a parameter weighting
the importance of maximizing the margin between the classes versus mini-
mizing the misclassification error (z). The solution w and γ are used to define
a separating hyperplane {x|wT x = γ} to distinguish between (unseen) benign
and malignant data points.

Prior to solving the quadratic programming (QP) model (2), we first
consider a modified version that can be converted into a linear program:

minw,γ,z ‖w‖1 + CeT z

subject to D(Aw − γ) + z ≥ 1, z ≥ 0
(3)

Model (3) replaces the Euclidean-norm margin measurement of (2) with the
sup-norm measurement (resulting in the minimization of the 1-norm) and
can be converted into a linear program by adding additional variables, y:

minw,γ,z,y eT y + CeT z

subject to D(Aw − γ) + z ≥ 1, z ≥ 0
y ≥ w ≥ −y

(4)

Cross-Validation, Support Vector Machines and Slice Models 3

3 GAMS Formulations for the Linear Model

Models (2) and (4) are not slice models per se. They become slice mod-
els under cross-validation, where they are solved multiple times on different
pieces of data. In these cases, only the data A and D vary between solves,
appropriately fitting the definition of slice models.

Figure 1 shows the original GAMS formulation for 10-fold cross-validation
applied to (4). Only training is carried out in this model, displaying values
that define the separating hyperplane (w, γ) for later testing. The equations
are defined over the training sets, generated dynamically from the testing
sets inside the solve loop. The testing sets are defined by calling the batch
include file gentestset.inc (figure 2). A and D are defined in wdbc.gms.

Figure 3 shows the GAMS/DEA formulation for the same model (where
identical lines above the problem definition have been omitted). The major
differences between the original and GAMS/DEA formulations are the lack
of the solve loop and training sets in the latter. Also, the GAMS/DEA solver
is used with an options file dea.opt (figure 4).

The solve loop is eliminated in the GAMS/DEA formulation by the way in
which the interface handles the data. All of the data is passed to the interface
initially and the key name slice is used to determine which equations/data
belong to which problems. slice is aliased to the set that defines the indi-
vidual problems (in this case, the fold set). Equations that change between
problems (such as sep def) must be declared over slice.

The training sets are eliminated from the formulation since they are de-
fined implicitly by deleting each testing set from the collection of testing sets
in turn. This is an example of a deletion-style slice model (denoted in the
options file by slicetype 0). DEA-style slice models are addition models:
models in which data is added to a core set in order to define a specific
problem; addition models are the default slice type in the interface. However,
cross-validation models are more appropriately defined by deleting slices from
the entire (core) set of data.

In the GAMS/DEA formulation, the testing sets are defined prior to the
solve statement (since all of the data is passed to the interface at once), and
are indexed by p. In addition, the equations sep def that depend upon the
testing sets are indexed by p. By creating a mapping from the slice/fold set
p to a subset of the patient set i, the corresponding (testing) equations are
deleted from each of the problems in turn.

Note that equation obj def changes from a sum over the training set to
a sum over the entire set in the GAMS/DEA formulation. Variables related
to the testing sets in obj def will be eliminated (since they do not appear
elsewhere in the model). By default, the GAMS/DEA interface ensures that
the number of equations in each problem is the same; most slice models have
this property. However, in cross-validation, card(p) may not evenly divide
card(i). The last problem may have fewer equations than the rest, so we
use the option eqnchk to turn off the automatic equation check.

4 Michael C. Ferris and Meta M. Voelker

$title Ten-fold cross-validation example

$eolcom !

$setglobal num_folds 10

set p /1*%num_folds%/; ! folds to perform

! set i /1*569/; ! patients (declared in data file)

! set k /1*30/; ! features (declared in data file)

! Read in data

$include "wdbc.gms"

parameter C /1/;

! Declare testing and training sets

set test(i);

set trai(i);

! Define problem

positive variables z(i), y(k);

variables obj, w(k), gamma;

equations obj_def, sep_def(i), bd1(k), bd2(k);

obj_def.. obj =e= C*sum(trai, z(trai)) + sum(k,y(k));

sep_def(trai)..

D(trai)*(sum(k, A(trai,k)*w(k)) - gamma) + z(trai) =g= 1;

bd1(k).. y(k) =g= -w(k);

bd2(k).. y(k) =g= w(k);

model train /all/;

! Solve

loop(p,

! Generate testing and training sets

$batinclude gentestset.inc i

trai(i) = not test(i);

solve train using lp minimizing obj;

display w.l,gamma.l;

);

Fig. 1. The original GAMS formulation for cross-validation applied to model (4).

Cross-Validation, Support Vector Machines and Slice Models 5

$set i_num floor(card(i) / %num_folds%)

test(%1) = no;

test(%1)$((ord(i) > %i_num%*(ord(p)-1)) and

(ord(i) <= %i_num%*ord(p))) = yes;

! put leftovers in last set

test(%1)$((ord(p) eq %num_folds%) and

(ord(i) > %i_num%*%num_folds%)) = yes;

Fig. 2. The batch include file gentestset.inc for generating the testing sets.

! Define problem

alias(p,slice);

positive variables z(i), y(k);

variables obj, w(k), gamma;

equations obj_def, sep_def(i,slice), bd1(k), bd2(k);

obj_def.. obj =e= C*sum(i, z(i)) + sum(k,y(k));

sep_def(i,p)$test(i,p)..

D(i)*(sum(k, A(i,k)*w(k)) - gamma) + z(i) =g= 1;

bd1(k).. y(k) =g= -w(k);

bd2(k).. y(k) =g= w(k);

model train /all/;

! Solve

option lp = dea; train.optfile = 1;

! Generate testing sets (to be deleted in each problem)

loop(p,

$batinclude gentestset.inc "i,p"

);

solve train using lp minimizing obj;

Fig. 3. The GAMS/DEA formulation for cross-validation applied to model (4).

slicetype 0

eqnchk 0

primval w,gamma

Fig. 4. The options file for the GAMS/DEA formulation.

6 Michael C. Ferris and Meta M. Voelker

4 Cross-Validation Testing

Since only one call is made to the solver, the resulting listing file will contain
only one set of solutions (for the last problem). Solutions for all of the prob-
lems are written to the file dea.sol. Inside dea.sol, the solutions are given
as GAMS parameters, indexed by the slice set. By default, the model status,
solver status, and the objective values are written to the solution file.

* Ten-fold cross-validation testing file

$eolcom !

$setglobal num_folds 10

set p /1*%num_folds%/; ! folds to perform

! Read in the data and solution values

$include "wdbc.gms"

$include "dea.sol"

! Declare testing sets

set test(i,p);

loop(p,

$batinclude gentestset.inc "i,p"

);

! Evaluate testing sets

parameter missclass(p);

missclass(p) = sum(i$test(i,p),

(D(i)*(sum(k,A(i,k)*wval(’prim’,p,k)) - gammaval(’prim’,p)) le 0));

display missclass;

Fig. 5. GAMS code for calculating the number of misclassified test points.

This means that cross-validation testing cannot be done inside of the
training program. Since we need to perform testing in the examples above,
we write out w and gamma through the option primval. A separate testing
file (figure 5) reads in the solution file dea.sol and calculates the number
of misclassified test points by counting the number of test points i with
Dii(Ai·w − γ) ≤ 0. Note that the string “val” is appended to the variable
name for the solution value.

5 The GAMS Formulation for the QP Model

We extend GAMS/QPWRAP [5] to solve the QP slice model (2). Under
GAMS/QPWRAP, a QP model is formulated as a combination of a linear
program (specified in the GAMS model) and a Q matrix (specified in a text
file). GAMS/QPWRAP passes the Q matrix to the solver.

Cross-Validation, Support Vector Machines and Slice Models 7

! Define the Q matrix

parameter q(k,k); q(k,k) = .5;

! Now write the Q matrix to a file named qmatrix.txt

file qp / qmatrix.txt /;

qp.pc=5; qp.nr=2; qp.nd=13; qp.nw=0; ! Some formatting options

put qp ’Q Matrix for svm’;

loop(k, put / ’w’ k.tl ’w’ k.tl q(k,k))

putclose;

! Define problem

alias(p,slice);

positive variables z(i);

variables obj, w(k), gamma;

equations obj_def, sep_def(i,slice);

obj_def.. obj =e= C*sum(i, z(i));

sep_def(i,p)$test(i,p)..

D(i)*(sum(k, A(i,k)*w(k)) - gamma) + z(i) =g= 1;

model train /all/;

! Solve

option lp = deaqp; train.optfile = 1;

! Generate testing sets (to be deleted in each problem)

loop(p,

$batinclude gentestset.inc "i,p"

);

solve train using lp minimizing obj;

Fig. 6. The GAMS/DEA formulation for cross-validation applied to model (2).

Figure 6 shows the GAMS formulation for 10-fold cross-validation applied
to model (2) (identical lines above the problem definition have been omitted).
This formulation is very similar to that of figure 3, with slice identifying
the slice constraints. It uses the same options file (figure 4). Only the linear
portion of model (2) is given explicitly; the quadratic portion is specified
by the Q matrix and written to the file qmatrix.txt prior to the solver
call. In addition, the solver has been changed from dea to deaqp, that calls
GAMS/QPWRAP to import the Q matrix into the model prior to calling
GAMS/DEA.

Since the file qmatrix.txt must exist prior to the solver call, the ability
for GAMS/DEA to solve QP slice models is limited. GAMS/DEA can only

8 Michael C. Ferris and Meta M. Voelker

solve QP models where the Q matrix does not change between solves, that
is, where the Q matrix is part of the core data.

On the WDBC data set, we ran all-but-one testing on both the linear and
the quadratic formulations. Since the quadratic model uses a barrier code,
previous solutions are not very useful in reducing computational times. For
completeness, we cite the following results. Testing of model (4) took 541.71
seconds under GAMS/CPLEX and 269.03 seconds under GAMS/DEA; test-
ing accuracy was 95.08%. Testing of model (2) took 7403.03 seconds under
GAMS/CPLEXQP and 7221.74 seconds under GAMS/DEAQP; testing ac-
curacy was 95.42%.

6 The GAMS/DEA Solver

The linear GAMS/DEA solver is specified with the option lp=dea state-
ment; the mixed integer GAMS/DEA solver is specified with the option

mip=dea statement; and the simple QP GAMS/DEA solver is specified with
the option lp=deaqp statement. Under any of these, GAMS will call the
GAMS/DEA interface, that defines and solves the individual problems (based
on the generated slice constraints). CPLEX is used as the underlying solver.

GAMS/DEA requires a properly installed GAMS system (distribution
20.1 or newer). In addition, you need a valid GAMS license as well as a
GAMS/CPLEX or an ILOG CPLEX 7.1 (or higher) callable library license.
It can be obtained from the GAMS Contributed Software web site [4].

References

1. K. P. Bennett and C. Campbell. Support vector machines: Hype or hallelujah?
SIGKDD Explorations, 2(2), 2000.

2. W. W. Cooper, L. M. Seiford, and K. Tone. Data Envelopment Analysis: A Com-

prehensive Text with Models, Applications, References and DEA-Solver Software.
Kluwer Acaemic Publishers, Boston, 2000.

3. M. C. Ferris and M. M. Voelker. Slice models in general purpose modeling sys-
tems. Data Mining Institute Technical Report 00-10, Computer Sciences Depart-
ment, University of Wisconsin, Madison, Wisconsin, December 2000. Available
from http://www.cs.wisc.edu/dmi/tech-reports/.

4. GAMS Development Corporation. Contributed software. HTML document.
http://www.gams.com/contrib/contrib.htm.

5. GAMS Development Corporation. Quadratic programs in GAMS. HTML doc-
ument. http://www.gams.com/contrib/qpwrap/qpwrap.htm.

6. ILOG. CPLEX 7.1 Reference Manual. Accessed as HTML document, distributed
with ILOG CPLEX 7.1 libraries.

7. W. H. Wolberg, W. N. Street, and O. L. Mangasarian. Wisconsin diag-
nosis breast cancer database (WDBC). FTP documents. Available from
http://www.cs.wisc.edu/~olvi/uwmp/cancer.html, among other sites.

