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Abstract. Given a dataset, each element of which labeled by one of k labels, we construct by a
very fast algorithm, a k-category proximal support vector machine (PSVM) classifier. Proximal
support vector machines and related approaches [13, 32] can be interpreted as ridge regression
applied to classification problems [11]. Extensive computational results have shown the effective-
ness of PSVM for two-class classification problems where the separating plane is constructed in
time that can be as little as two orders of magnitude shorter than that of conventional support
vector machines. When PSVM is applied to problems with more than two classes, the well known
one-from-the-rest approach is a natural choice in order to take advantage of its fast performance.
However, there is a drawback associated with this one-from-the-rest approach. The resulting
two-class problems are often very unbalanced, leading in some cases to poor performance. We
propose balancing the k classes and a novel Newton refinement modification to PSVM in order
to deal with this problem. Computational results indicate that these two modifications preserve
the speed of PSVM while often leading to significant test set improvement over a plain PSVM
one-from-the-rest application. The modified approach is considerably faster than other one-from-
the-rest methods that use conventional SVM formulations, while still giving comparable test set
correctness.

keywords: multicategory data classification, support vector machines, proximal
classifiers

1. Introduction

Standard support vector machines (SVMs) [36, 8, 4, 6, 23], which are powerful
tools for data classification, classify 2-category points by assigning them to one of
two disjoint halfspaces in either the original input space of the problem for linear
classifiers, or in a higher dimensional feature space for nonlinear classifiers [36, 8, 23].
Recently [32, 13] much simpler classifiers, the least squares and the proximal support
vector machine (PSVM), were implemented wherein each class of points is assigned
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to the closest of two parallel planes (in input or feature space) that are pushed apart
as far as possible. This formulation, which can also be interpreted as regularized
least squares [34] or in the more general context of regularized networks [11], leads
to an extremely fast and simple algorithm for generating a linear or nonlinear
classifier that is obtained by solving a single system of linear equations. For a
comprehensive approach to the related least squares support vector machines see
[30], where geometric and statistical interpretations as well as the link with the
Fischer discriminant analysis are given. It is the purpose of this work to apply this
simple 2-class PSVM classifier to k-category classification by using a one-from-rest
(OFR) separation for each class [3]. However, due to the fact that the number of
points belonging to one class is usually much smaller than the number of points
in the union of the remaining classes, the resulting two-class problems are very
unbalanced. PSVM fits each class with one of two distant parallel planes and
errors in both classes are penalized similarly in the objective function. Because of
the unbalanced classes, PSVM tends to fit better the the class with more data points
and it underestimates the overall error of the class with fewer data points. This often
results in a poor PSVM performance. In order to override this difficulty, we propose
a balanced modification of PSVM which weights each class equally no matter how
many points are in each class. In addition, we propose a very fast Newton refinement
algorithm, which is applicable to any SVM classification approach, and which leads
to a better classifier. Experimental results show that incorporation of these two
modifications into a plain PSVM one-from-the-rest approach, improves significantly
test set correctness while maintaining its speed.

In contrast, other one-from-the-rest and SVM k-class classifiers [3, 2, 5] require
the solution of either a large single or k smaller quadratic or linear programs that
need specialized optimization codes such as CPLEX [9]. On the other hand, ob-
taining a linear or nonlinear PSVM classifier as we propose here, requires nothing
more sophisticated than solving k systems of linear equations. Efficient and fast
linear equation solvers are freely available [1] or are part of standard commercial
packages such as MATLAB [24], and can solve very large systems. We note that in
[33, 31], multiclass least squares formulations are proposed that explicitly require
Mercer’s positive definiteness condition [36, 8] on the kernels used which is not
needed here. Another way to avoid the need for Mercer’s condition is to use the
product of an arbitrary kernel with its transpose as was proposed in [23, Problem
(8.10)]. In addition, the problem in [33] is formulated as single large constrained
optimization problem in contrast to the k smaller uncoupled and unconstrained
OFR approach used here. Various multiclass schemes are investigated in [15, 37].
We also note that, in concept, PSVM can be interpreted as ridge regression [17]
which is essentially regularized least squares [34]. However, ridge regression in its
general form lacks the geometric justification and interpretation of PSVM which
consists of constructing two parallel planes, each proximal to one of two classes of
data points, while simultaneously pushing these plane as far apart as possible. A
ridge regression application similar to PSVM is given in [35], which however uses
a variation of the EM-algorithm to solve the classification problem, whereas we
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use a straightforward solution of the normal equations of regularized least squares.
Interesting numerical comparison of multiclass methods is given in [18].

We summarize the contents of the paper now. In Section 2 we briefly review
the 2-category proximal linear support vector machine [13] and then introduce our
multicategory PSVM (MPSVM). MPSVM for a k-class problems consists of solving
k systems of nonsingular linear eqautions. We then give the linear MPSVM algo-
rithm. In Section 3 we introduce the nonlinear MPSVM with nonlinear separating
surfaces in the input space and give the corresponding nonlinear MPSVM algo-
rithm. In Section 2.3 we describe a simple 2-dimensional Newton refinement of the
algorithms presented in Sections 2 and 3. Section 4 contains numerical test results
on six public data sets for both the linear and nonlinear MPSVM. These tests show
a speedup of as high as 477-times, for our nonlinear MPSVM over conventional
SVM, with comparable or better test set correctness (Table 2, Segment Dataset).
These tests also show that a linear MPSVM with balancing and a Newton refine-
ment can improve tenfold test set correctness over a plain MPSVM from 83.3% to
97.3% (Table 1, Iris Dataset). Simple and short MATLAB [24] codes, very similar
to those of PSVM [13], underly the proposed MPSVM algorithms. Finally, we give
a 2-dimensional visual example that demonstrates the effectiveness of our balancing
and Newton refinements on a nonlinear classifier for a 3-class dataset, and exhibit
the computed classifiers in Figures 5 and 6.

A word about our notation and background material. All vectors will be column
vectors unless transposed to a row vector by a prime superscript ′. For a vector x
in the n-dimensional real space Rn, the plus function x+ defines a vector function
of x with all negative components of x set to zero, while the step function x∗

defines a vector function of x with all positive components set to 1 and nonpositive
components of x set to zero. The scalar (inner) product of two vectors x and y in
the n-dimensional real space Rn will be denoted by x′y and the 2-norm of x will
be denoted by ‖x‖. For a matrix A ∈ Rm×n, Ai is the ith row of A which is a row
vector in Rn, while A·j is the jth column of A. A column vector of ones of arbitrary
dimension will be denoted by e. For A ∈ Rm×n and B ∈ Rn×k, the kernel K(A, B)
maps Rm×n ×Rn×k into Rm×k. In particular, if x and y are column vectors in Rn

then, K(x′, y) is a real number, K(x′, A′) is a row vector in Rm and K(A, A′) is
an m×m matrix. The base of the natural logarithm will be denoted by ε. We will
make use of the following Gaussian kernel [36, 8, 23] that is frequently used in the
SVM literature:

K(A, B) = ε−µ‖Ai
′−B·j‖

2

, i = 1 . . . , m, j = 1 . . . , k, (1)

where A ∈ Rm×n, B ∈ Rn×k and µ is a positive constant. The identity matrix of
arbitrary dimension will be denoted by I . For a numerical function f(x) of x ∈ Rn,
the gradient ∇f(x) denotes the n × 1 vector of first partial derivatives of f , while
∂2f(x) denotes the generalized Hessian n × n matrix of second partial derivatives
of f if they exist, else each row of the generalized Hessian matrix is a subgradient
[26, 27] of the corresponding row element of the gradient vector ∇f(x) [21, 19].
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2. The Linear Multicategory Proximal Support Vector Machine (MPSVM)

2.1. Two-Category Proximal Support Machine Formulation

To motivate our MPSVM we begin with a brief description of the 2-category proxi-
mal support machine formulation [13]. We consider the problem, depicted in Figure
1, of classifying m points in the n-dimensional real space Rn, represented by the
m× n matrix A, according to membership of each point Ai in the class A+ or A−
as specified by a given m×m diagonal matrix D with plus ones or minus ones along
its diagonal. For this problem, the proximal support vector machine [13] with a
linear kernel is given by the following quadratic program with parameter ν > 0 and
linear equality constraint:

min
(w,γ,y)∈Rn+1+m

ν
2‖y‖

2 + 1
2

∥

∥

∥

[

w
γ

]

∥

∥

∥

2

s.t. D(Aw − eγ) + y = e,
(2)

where e is a vector of ones. As depicted in Figure 1,
[

w
γ

]

is normal to the proximal
planes:

x′w − 1 · γ = +1,
x′w + 1 · γ = −1,

(3)

which are proximal to points belonging to the sets A+ and A− respectively. The
error variable y in (2) is a measure of the distance from the plane x′w − 1 · γ = +1
of points of class A+ points and from the plane x′w − 1 · γ = −1 of points of class
A−. Consequently, the plane:

x′w − 1 · γ = 0, (4)

midway between and parallel to the proximal planes (3), is a separating plane that
approximately separates A+ from A− as depicted in Figure 1. (The separation is
only approximate, here and in general, because no plane can separate all points
of A+ from those of A− when their convex hulls intersect.) The second term in
the quadratic objective function of (2), which is twice the reciprocal of the square
of the 2-norm distance 2

‖[wγ ]‖
between the two proximal planes of (3) (see Figure

1), maximizes this distance, often called the “margin”. Maximizing the margin
enhances the generalization capability of a support vector machine [36, 8]. The
approximate separating plane (4) as depicted in Figure 1, acts as a linear classifier
as follows:

x′w − γ







> 0, then x ∈ A+,
< 0, then x ∈ A−,
= 0, then x ∈ A + or x ∈ A−

(5)

We note that the PSVM formulation (2) can be also interpreted as a regularized
least squares solution [34] of the system of linear equations D(Aw − eγ) = e, that
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Figure 1. The Proximal Support Vector Machine Classifier: The proximal planes x′w−

γ = ±1 around which points of the sets A+ and A− cluster and which are pushed
apart by the optimization problem (2).

is finding an approximate solution (w, γ) to D(Aw − eγ) = e, with least 2-norm.
PSVM can also be considered as a very special case of regularization networks [11].

Substituting for y in terms of w and γ from the linear constraint in the objective
function of (2) gives the unconstrained minimization problem:

min
(w,γ)∈Rn+1

ν

2
‖D(Aw − eγ) − e‖2 +

1

2

∥

∥

∥

∥

[

w

γ

]∥

∥

∥

∥

2

, (6)

Setting the gradient with respect to w and γ to zero and noting that D2 = I gives
the necessary and sufficient optimality conditions for (6):

νA′(Aw − eγ − De) + w = 0,
νe′(−Aw + eγ + De) + γ = 0.

(7)

2.2. PSVM Modification for Unbalanced Classes

In order to improve PSVM performance when one of classes has many more data
points than the other one, which is usually the case in the two-class subproblems
that the OFR approach generates, we propose the following simple balancing ap-
proach. A similar balancing approach was proposed in [14].

Let m1 and m2 be the number of points in classes 1 and −1 respectively. We first
define an m × m diagonal matrix N as follows:
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Nii =

{ 1
m1

, if dii = 1,
1

m2
, if dii = −1.

(8)

We then formulate the following balanced PSVM problem:

min
(w,γ)∈Rn+1

ν

2
(D(Aw − eγ) − e)′N(D(Aw − eγ) − e) +

1

2

∥

∥

∥

∥

[

w

γ

]∥

∥

∥

∥

2

. (9)

Setting the gradient with respect to w and γ equal to zero and noting that D2 = I
and DND = N we obtain the following necessary and sufficient optimality condi-
tions for (9):

νA′N(Aw − eγ − De) + w = 0,
νe′N(−Aw + eγ + De) + γ = 0.

(10)

We describe now a computational enhancement to PSVM which is also applicable
to other SVM classifiers as well.

2.3. Newton Refinement

The simple computational refinement that we have implemented, and which is
applicable to any type of SVM classifier, consists of taking a solution obtained by
either a linear or nonlinear classifier, say for simplicity a solution

[

w̄
γ̄

]

to the PSVM

problem (6), which generates a separating plane x′w̄ − 1 · γ̄ = 0 as shown in Figure
1. The idea here is to move this plane parallel to itself in such a way to improve the
separation of the two sets A+ and A−. One way to measure such improvement is
by counting the number of misclassified points as was done in [7]. A simpler way is
to slightly alter the objective function of (6) so that the first term is zero if all the
points are correctly classified by the separating plane. This is easily achieved by
setting nonnegative components of D(Aw − eγ)− e, which correspond to correctly
classified points, equal to zero, that is: (−D(Aw−eγ)+e)+ = 0, where as defined in
the Introduction, (z)+ = max{0, z}. Thus the minimization problem (6) becomes:

min
(w,γ)∈Rn+1

ν

2
‖((−D(Aw − eγ) + e)+‖

2 +
1

2

∥

∥

∥

∥

[

w

γ

]
∥

∥

∥

∥

2

, (11)

which is the optimization problem underlying the smooth support vector machine
algorithm [21]. Since we are only interested in merely refining our solution while
maximizing the margin

[

w̄
γ̄

]

of (6), we replace w by λw̄ in (11) and obtain our
refinement problem:

min
(λ,γ)∈Rn+1

f(λ, γ) =
ν

2
‖((−D(λAw̄ − eγ) + e)+‖

2 +
1

2

∥

∥

∥

∥

[

λw̄

γ

]
∥

∥

∥

∥

2

. (12)

This is a simple strongly convex problem in the 2-dimensional space of (λ, γ), that is
its objective function has a positive definite generalized Hessian [16, 22] which can
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be very quickly minimized by a fast Newton method. The quadratic convergence
and effectiveness of a Newton method for such a problem has been established in
[21] for the full problem (11) in the n + 1 dimensional space (w, γ). We briefly
describe the approach proposed here for minimizing (12) now. We first need the
expressions for the gradient and generalized Hessian matrix [12, 16] of f(λ, γ) as
follows. We first define:

d(λ, γ) = (−D(λAw̄ − eγ) + e), (13)

then the 2×1 gradient and the 2×2 generalized Hessian matrix of f(λ, γ) are given
by:

∇f(λ, γ) =

[

−νw̄′A′D(d(λ, γ))++ ‖ w̄ ‖2 λ

νe′D(d(λ, γ))+ + γ

]

, (14)

and,

∂2f(λ, γ) =

[

νw̄′A′EAw̄+ ‖ w̄ ‖2 −νw̄′A′Ee
−νe′EAw̄ νe′Ee + 1

]

, (15)

where E is the diagonal matrix:

E = Ddiag((d(λ, γ))∗)D = diag((d(λ, γ))∗), (16)

and the (·)∗ is the step function defined in the Introduction and which is taken here
as a specific subgradient [27, 26] of the plus function (·)+ and is used to generate
the generalized Hessian matrix in the same manner as in [21, 19].

A key difference between PSVM and SVM, is that with PSVM the conventional
concept of support vectors (the data points corresponding to the positive multipli-
ers) does not hold [13]. However, it is interesting to note that after this refinement
is applied to the PSVM solution, the concept of support vectors applies to the new
solution. If the pair (λ∗, γ∗) is the solution obtained by (12), then the corresponding
dual multipliers associated with this problems are given by [21]:

u = (−D(λ∗Aw̄ − eγ∗) + e)+. (17)

Then, the support vectors for the problem (12) are the data points of A corre-
sponding to positive components of u.

The Newton refinement procedure can then be summarized as follows, where the
iteration maximum of 30 and the tolerance of ≤ 10−3 are empirically arrived at.

Algorithm 1 Newton Refinement Given a solution
[

w̄
γ̄

]

to the PSVM 2-class

problem (6) refine it as follows:

(i) Start with λ0 = 1 and γ0 = γ̄.

(ii) Iterate (iii) until either j = 30 or:

∥

∥

∥

∥

[

λj

γj

]

−

[

λj+1

γj+1

]∥

∥

∥

∥

≤ 10−3, (18)

in which case
[

w
γ

]

=
[

λj+1w̄
γj+1

]

is the refined solution to (6).
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(iii) Calculate the new iterates:

[

λj+1

γj+1

]

=

[

λj

γj

]

−∇2f(λj , γj)−1∇f(λj , γj). (19)

With obvious modifications this algorithm can be applied to refine a solution
[

ū
γ̄

]

of the nonlinear PSVM (25) as well.
In order to illustrate the proposed modifications we generated a small unbalanced

artificial two-dimensional two-class dataset. The dataset consist of 100 points, 85
of which are in class A+ and 15 points in class A−. When the problem is solved
using plain PSVM (6), the influence of the 85 points in class A+ prevails over that
of the much smaller set of data points in A−. As a result, 14 out of 15 points
in class A− are misclassified. The total training set correctness is 86%, with only
6.6% correctness for the smaller class A− and 100% correctness for the larger class
A+. The resulting separating plane is shown in Figure 2. When a balanced PSVM
(9) is used we can see an improvement over the plain PSVM, in the sense that
a separating plane is obtained that correctly classifies all the points in class A−.
However due to the significant difference in the cardinality of the two classes and the
distribution of their points, a subset of 16 points in class A+ is now misclassified.
The total training set correctness is 84%, with 100% correctness for A− points
and 81.2% correctness for A+ points. The resulting separating plane is shown in
Figure 3. If now in addition to balancing, the Newton refinement is also applied,
we obtain a separating plane that misclassifies only two points. The total training
set correctness is 98%. The resulting separating plane is shown in Figure 4.

To extend this formulation to k classes, all we need is to redefine the following
for separating class r from the rest:

A =





A1

...
Ak



 ,

A+ = Ar,

A− =



















A1

...
Ar−1

Ar+1

...
Ak



















,

r ∈ {1, . . . , k},

(20)

where, Ar ∈ Rmr×n represents the mr points in class r. We then define for m =
m1 + . . . + mk the m × m diagonal matrix D of ±1 as follows:
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Figure 2. An unbalanced dataset consisting of 100 points, 85 of which in class A+
represented by hollow circles, and 15 points of which in class A− represented by
hollow diamonds. The separating plane is obtained by using a plain PSVM (6). The
class A− is practically ignored by the solution. The total training set correctness is
86% with 6.6% correctness for A− and 100% correctness for A+.

Dii = 1 for Ai ∈ Ar,

Dii = -1 for Ai 6∈ Ar,

r ∈ {1, . . . , k}.

(21)

We note that since the multicategory classification problem, A− has many more
rows than A+, a normalization is usually carried out by dividing the error vector
yi by mr for Ai ∈ Ar and by (m − mr) for Ai /∈ Ar. Here, mr is the number of
points in class r which is represented by the matrix Ar ∈ Rmr×n.

Once the k minimization problems (6) are solved (with A and D defined as in
(20) and (21)) by solving the linear system of equations (10), k unique separating
planes are generated:

x′wr − γr = 0, r = 1, . . . , k. (22)

A given new point x ∈ Rn is assigned to class s, depending on which of the k
halfspaces generated by the k planes (22) it lies deepest in, that is:

x′ws − γs = max
r=1,...,k

x′wr − γr. (23)
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Figure 3. Linear classifier improvement by balancing is demonstrated on the same
dataset of Figure 2. The separating plane is obtained by using a balanced PSVM (9).
Even though the class A− is correctly classified in its entirety, the overall performance
is still rather unsatisfactory due to significant difference in the distribution of points
in each of the classes. Total training set correctness is 84%.

0.8 1 1.2 1.4 1.6 1.8 2
−4
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x’w=γ 
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Figure 4. Very significant linear classifier improvement as a consequence of balancing
and the use of the Newton refinement is demonstrated on the same dataset of Fig-
ures 2 and 3. The separating plane is obtained using both modifications to PSVM:
balancing and Newton refinement . The total training set correctness is now 98%
compared to 86% for plain PSVM and 84% for balanced PSVM.
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For concreteness we explicitly state our multicategory PSVM algorithm.

Algorithm 2 Linear Multicategory Proximal SVM Given m data points in
Rn, each belonging to one of k classes and represented by k matrices Ar of order
mr ×n, r = 1, . . . , k, with m1 + . . .+mk = m, we generate the linear classifier (23)
as follows:

(i) Solve k independent nonsingular systems of (n + 1) linear equations (10) in
(n + 1) unknowns, with A and D defined as in (20) and (21), for some positive
value of ν. (Typically ν is chosen by means of a tuning set.)

(ii) Apply the Newton Refinement 1 to each solution (w̄r, γ̄r) , (r = 1 . . . k) obtained
on step (i) to get the refined solutions (wr , γr) .

(iii) The point x belongs to class s as determined by the criterion (23).

We extend now the above results to nonlinear proximal support vector machines
that result in nonlinear proximal surfaces instead of planes in the input space.

3. Nonlinear Proximal Support Vector Machines

To obtain our nonlinear proximal classifier we modify our proximal minimization
problem (6) as in [23, 13] by first replacing the primal variable w by its dual
equivalent , w = A′Du, and modifying the last term of the objective function to
be the norm of the new dual variable u and γ. This is based on the duality theory
underlying support vector machines described in [23]. We obtain then the following
problem:

min
(u,γ)∈Rm+1

ν

2
‖D(AA′Du − eγ) − e‖2 +

1

2

∥

∥

∥

∥

[

u

γ

]∥

∥

∥

∥

2

. (24)

If we now replace the linear kernel AA′ by a nonlinear kernel K(A, A′), as defined
in the Introduction, we obtain:

min
(u,γ)∈Rm+1

ν

2
‖D(K(A, A′)Du − eγ) − e‖2 +

1

2

∥

∥

∥

∥

[

u

γ

]∥

∥

∥

∥

2

. (25)

As in the linear kernel case, we extend the above two category case to k categories
by redefining A and D as in (20) and (21) to obtain k minimization problems.
Setting the gradient with respect to u and γ to zero and noting again that D2 = I
gives the following necessary and sufficient optimality conditions for (25):

νD(K(A, A′)′K(A, A′)Du − eγ − De) + u = 0,
νe′(−K(A, A′)Du + eγ + De) + γ = 0.

(26)

Once the k minimization problems (25) are solved (with A and D defined as in (20)
and (21)) by solving the k independent linear systems of equations (26), k unique
proximal surfaces are generated:
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K(x′, A′)Dur − γr = 0, r = 1, . . . , k. (27)

A given new point x ∈ Rn is assigned to class s depending on which of the k
nonlinear halfspaces generated by the k surfaces (27) it lies deepest in, that is:

K(x′, A′)Dus − γs = max
r=1,...,k

K(x′, A′)Dur − γr. (28)

For concreteness we explicitly state our multicategory nonlinear PSVM algorithm.

Algorithm 1 Nonlinear Multicategory Proximal SVM Given m data points
in Rn, each belonging to one of k classes and represented by k matrices Ar of order
mr × n, r = 1, . . . , k, with m1 + . . . + mk = m, we generate the nonlinear classifier
(28) as follows:

(i) Solve k independent nonsingular systems of (m + 1) linear equations (26) in
(m+1) unknowns, with A and D defined as in (20) and (21), for some positive
value of ν. (Typically ν is chosen by means of a tuning set.)

(ii) Apply the Newton refinement algorithm 1 to each solution (ūr, γ̄r) , (r = 1 . . . k)
obtained on step (i) to get the refined solutions (ur, γr) .

(ii) The point x belongs to class s as determined by the criterion (28).

When each of the k subproblems become large enough so as not to fit in memory,
then the m × m kernel K(A, A′) is replaced by the considerably smaller m × m̄
rectangular kernel K(A, Ā′), where Ā consists of as little as 15% of randomly chosen
rows of A. This leads to the extremely fast and effective Reduced Support Vector
Machine (RSVM) algorithm as described in [20] and presented in Algorithm 2
below. The RSVM approach can be interpreted as a random projection approach
[10]. Other related reduction approaches are given in [14, 28, 29, 38].

Algorithm 2 RSVM Algorithm

(i) Choose a random subset matrix Ā ∈ Rm̄×n of the original data matrix A ∈
Rm×n. Typically m̄ is 1% to 15% of m, and Ā consists of the union of random
samples of each class that maintain the original relative sizes of the k classes.

(ii) Solve the following modified version of the PSVM (25) where A′ only is replaced
by Ā′ with corresponding D̄ ⊂ D:

min
(ū,γ)∈Rm+1

ν

2
‖D(K(A, Ā′)D̄ū − eγ) − e‖2 +

1

2

∥

∥

∥

∥

[

ū

γ

]∥

∥

∥

∥

2

, (29)

which is equivalent to solving (25) with A′ only replaced by Ā′.

The separating k surface is given by (27) with A′ replaced by Ā′ as follows:

K(x′, Ā′)D̄ūr = γr, (30)

where (ū, γ) ∈ Rm̄+1 is the unique solution of (29), and x ∈ Rn is a free input
space variable of a new point.

We turn now to our numerical results.
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4. Numerical Implementation and Comparisons

All our computations were performed on the University of Wisconsin Data Mining
Institute “locop1” machine, which utilizes a 400 Mhz Pentium II and allows a
maximum of 2 Gigabytes of memory for each process. This computer runs on
Windows NT server 4.0, with MATLAB 6 installed. Even though “locop1” is a
multiprocessor machine, only one processor was used for all the experiments since
MATLAB is a single threaded application and does not distribute any load across
processors [24]. Our algorithms require the solution of k square systems of linear
equations, where k is the number of classes to be classified. Each one of the linear
systems of equations involved is of the size of the number of input attributes n plus
one in the linear case, and of the size of the number of data points m plus one in
the nonlinear case. When using a rectangular kernel [21], the size of the problem
can be reduced from m to m̄ with m̄ < m for the nonlinear case.

The real life datasets used for our numerical tests are the following:

• Four publicly available datasets from the UCI Machine Learning Repository
[25]: Wine, Glass, Iris, Vowel, with 3, 6, 3 and 11 categories respectively.

• Two publicly available datasets from the Statlog Project Databases, also avail-
able from UCI [25]: Vehicle and Segment, with 4 and 7 categories respectively.

Properties of each dataset such as number of points, number of features and
number of classes are given in Table 1.

4.1. Numerical experiments using linear classifiers

We compared the performances of the methods described below.

• Linear OFRQP: One-From-Rest Quadratic Programming classifier using a
standard support vector machine formulation for each subproblem and solved
using a MATLAB-CPLEX interface [9]. CPLEX is a state of the art software
widely employed to solve linear and quadratic programs that uses a finitely
terminating pivotal method of solution.

• Linear MPSVM : Multicategory Proximal SVM One-From-Rest classifier us-
ing a Linear Proximal support vector machine (PSVM) for each subproblem.
Usually, each one-from-rest problem is an unbalanced two-class classification
problem. This means that the number of points m− in A− is much larger than
the number of points m+ in A+. In order to address this problem, we apply
balancing, which is, a weight factor added to each error term in the objective
function of (6) that is inversely proportional to the number of points in each
class. We call this MPSVM modification Balanced MPSVM ( B-MPSVM)
and is given in (9). In order to further improve the performance of B-PSVM,
for each two-class classification subproblem we use the Newton Refinement 1.
Although the refinement step is very simple and fast, in almost all the tested
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cases this refinement combined with the balancing procedure improved test set
correctness of the MPSVM by as much as 16.8% (Table 1, Iris). We called this
MPSVM modification Balanced and Refined MPSVM ( BR-MPSVM). The
underlying method consists of solving a nonsingular system of linear equations.

The value of the parameter ν in each of these methods was chosen by using a
tuning set extracted from the training set. In order to find an optimal value for ν
the following tuning procedure was employed on each fold:

• A random tuning set of the the size of 10% of the training data was chosen and
separated from the training set.

• Several SVMs were trained on the remaining 90% of the training data using
values for ν equal to 2i, where i = 0, 1, . . . , 25.

• The value of ν that gave the best SVM correctness on the tuning set was chosen.

• A final SVM was trained using the chosen value of ν and all the training data.
The resulting SVM was tested on the testing data.

The linear BR-MPSVM running time was often one order of magnitude less than
the standard OFRQP time. Furthermore, there was no a significant statistical
difference between both methods as far test set correctness was concerned. This is
shown by the p-values obtained using a 95% confidence interval t-test for the tenfold
test set correctness. Experiments indicated that both modifications, balancing and
refinement achieved significant accuracy improvements over the plain MPSVM,
while maintaining relatively fast performances. Testing set correctness, training set
correctness, CPU times and p-values are given in Table 1.

4.2. Numerical experiments using nonlinear classifiers

For the nonlinear case, we compared again nonlinear OFRQP and nonlinear PSVM
and its modifications. In all experiments, a Gaussian kernel was used. In order
to find an optimal value for ν and the Gaussian kernel parameter µ, a tuning
procedure similar to that employed for the linear case was employed. Values for ν
where taken equal to 2i, where i = 5, 6, . . . , 35. Values for µ where taken equal to
2i, where i = −7,−6, . . . , 1. Since the difference between the plain MPSVM and
the modified MPSVM was not significant, Table 2 shows comparisons between the
following methods only:

• Nonlinear OFRQP: One-From-Rest Quadratic Programming classifier using
a standard nonlinear support vector machine for each subproblem which is
solved by a MATLAB-CPLEX that uses a finitely terminating pivotal method
of solution.

• Nonlinear BR-MPSVM : Balanced Refined Multicategory PSVM One-From-
Rest classifier using a nonlinear PSVM including both modifications, balancing
and Newton refinement. The underlying method consists of solving a nonsin-
gular system of linear equations.
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Table 1. OFRQP, MPSVM,B-MPSVM,BR-MPSVM linear classifier
training correctness, tenfold testing correctness and running times. Ex-
ecution times include tenfold training. Best results are in bold. The
p-values were calculated with respect to OFRQP for tenfold testing
correctness, using a t-test with 95% confidence interval.

Data Set OFRQP MPSVM B-MPSVM BR-MPSVM
m × n Train Train Train Train

# of Classes Test Test Test Test
Time (Sec.) Time (Sec.) Time (Sec.) Time (Sec.)

p-value p-value p-value

Wine 100.0% 100.0 % 99.9% 100.0%
178 × 13 96.1 % 98.9 % 98.9% 99.4%

3 1.39 0.02 0.02 0.11
0.20 0.80 0.10

Glass 72.9 % 66.5 % 68.29 % 68.9%
214 × 9 67.2 % 60.6 % 61.6 % 63.0 %

6 1.80 0.02 0.03 0.14
0.19 0.28 0.35

Iris 98.7 % 85.6% 86.9 % 97.6%
150 × 4 98.0 % 83.3% 86.7 % 97.3%

3 0.73 0.02 0.02 0.11
1.2e − 6 2.0e − 4 0.66

Vowel 68.7 % 54.6% 56.1% 64.5%
528 × 10 57.2 % 45.5 % 47.0% 57.6%

11 5.56 0.05 0.05 0.14
9.9e − 3 1.8e(−2) 0.93

Vehicle 83.3 % 79.1% 81.0% 81.1 %
846 × 18 79.0 % 76.2 % 77.4% 77.5 %

4 2.88 0.11 0.11 0.34
8.8e − 2 0.33 0.30

Segment 93.0 % 85.5% 90.3% 91.3%
2310 × 19 91.9 % 84.8 % 90.1% 90.8%

7 18.57 0.22 0.31 0.67
7.5e − 7 2.2e(−2) 0.14
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Table 2. Nonlinear OFRQP and Nonlinear BR-MPSVM
training correctness, tenfold testing correctness and run-
ning times. Execution times include tenfold training. The
p-values were calculated with respect to OFRQP for ten-
fold testing correctness, using a t-test with 95% confidence
interval. For the Vehicle dataset, RSVM [20] with an 85%
kernel reduction was used for the nonlinear MPSVM clas-
sifier here in order to obtain a smaller rectangular kernel
problem that would fit in memory (2310 × 350 instead of
2310×2310). Similarly for the Segment dataset, RSVM with
85% kernel reduction was used to obtain a smaller rectan-
gular kernel (2310 × 350 instead of 2310 × 2310.)

Data Set Nonlinear OFRQP Nonlinear BR-MPSVM
m × n Train Train

# of Classes Test Test
Time (Sec.) Time (Sec.)

p-value

Wine 99.2 % 100.0 %
178 × 13 97.7 % 100.0 %

3 5.39 0.45
2.5e − 2

Glass 88.5% 78.09%
214 × 9 70.0 % 69.1%

6 9.05 0.59
0.84

Iris 98.1 % 99.5%
150 × 4 98.0 % 98.7%

3 3.01 0.31
0.62

Vowel 100.0% 100.0%
528 × 10 94.3 % 98.5%

11 221.34 6.62
0.67

Vehicle 89.5% 88.6%
846 × 18 80.5 % 82.2%

4 148.01 1.17
0.78

Segment 99.9 % 98.3%
2310 × 19 96.1% 97.0%

7 5562.31 11.65
0.16
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On the larger datasets (Vehicle, Segment) a rectangular kernel [20] was used on
both methods in order to reduce even more the computational time while main-
taining the correctness achieved by using the full kernel.

The nonlinear BP-MPSVM classifier was obtained in shorter time than the non-
linear OFRQP classifier in all the datasets tested. Furthermore, the BR-MPSVM
algorithm was statistically better or equal to the nonlinear OFRQP on test set
correctness. CPU times and p-values are given in Table 2.

In order to show graphically for the nonlinear case that BP-MPSVM can produce
significant improvement over MPSVM, we created an artificial 2-dimensional ex-
ample where this improvement can be visually observed. The example consists of
500 data points in 2 dimensions belonging to one of three classes. Class 1 consists
of 400 points, class 2 consists of 50 points and class 3 consists of 50 points. Figure
5 depicts a nonlinear classification obtained using MSPVM without any modifica-
tions using a Gaussian kernel. Since the classes are unbalanced, we observe that the
majority of the x class is misclassified by the algorithm leading to 91.8% training
set correctness. On the other hand, Figure 6 depicts a nonlinear classification ob-
tained by BP-MPSVM that utilizes balancing and Newton refinement which gives
a significantly improved 98.8% training set correctness.

5. Concluding Remarks

We have proposed an extremely simple and fast procedure for generating linear
and nonlinear multicategory classifiers. The one-from-the-rest approach is based
on proximity of each class to one of two parallel planes that are pushed as far
apart as possible. This procedure, a multicategory proximal support vector ma-
chine (MPSVM) with balancing and Newton refinement, requires nothing more
sophisticated than solving k simple systems of linear equations, for either a linear
or nonlinear classifier, where k is the number of classes. In contrast, standard one-
from-the-rest support vector machine classifiers require the more costly solution of
a linear or quadratic program. For a linear classifier, all that is needed by MPSVM
is the solution of k nonsingular systems of linear equations of the order of the input
space dimension, typically of 100 or less, even if there are millions of data points
to classify. For a nonlinear classifier, a reduction method using rectangular kernels
such as [20] is utilized and k linear systems of the order of as small as 15% of the
data points are solved. Our computational results demonstrate that MPSVM clas-
sifiers obtain test set correctness comparable to that of standard one-from-the-rest
SVM classifiers at a fraction of the time, often orders of magnitude less.

We have also proposed a novel Newton refinement algorithm that can improve
classification accuracy for any two-class kernel classifier. This refinement is very
fast, since it is a minimization problem in only two variables and is easy to im-
plement. Future research plans include applying this refinement to other linear
and nonlinear kernel-based classification algorithms. We have also addressed the
problem of unbalanced datasets, which often occurs in one-from-rest classification
approaches, by applying a very simple balanced version of PSVM together with a
Newton refinement.
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Figure 5. Example consisting of 500 data points in 2 dimensions belonging to one of
three classes. Nonlinear Gaussian kernel classifiers using MSPVM without balanc-
ing or Newton refinement generated a torus containing mostly white diamonds, a
crescent containing black x’s, and an ellipse cotaining mostly yellow circles. Since
the classes are unbalanced, most of the x class is misclassified by the algorithm and
resulting in a 91.8% overall training set correctness.
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Figure 6. The same example as that of Figure 5 classified by a nonlinear BR-MPSVM
which uses MSPVM plus balancing and Newton refinement. This resulted in a torus
containing mostly white diamonds, another torus containing black x’s and an ellipse
containing mostly yellow circles. Overall training set correctness is 98.8%.
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A promising avenue for future research is that of incremental classification for
large scale multicategory datasets. This appears particularly promising in view of
the very simple explicit solutions and for the linear and nonlinear MPSVM classifiers
that can be updated incrementally as new data points come streaming in.

To sum up, the principal contribution of this work, is a very efficient classifier
that requires no specialized software. MPSVM can be easily incorporated into all
sorts of data mining and machine learning applications such as incremental and
online learning that require a fast, simple and effective multicategory classifier.
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