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ABSTRACT

We solve a simulation optimization using a deterministic nonlinear solver based on the
sample-path concept. The method used a quadratic model built from a collection of surrounding
simulation points. The scheme does not require the modification of the original simulation source
code and is carried out automatically. Due to the large number of simulation runs, the high-
throughput computing environment, Condor, is used. Simulation computations are distributed
over a network of heterogeneous machines and execute on entirely different computer
architectures. Additionally, a resource failure is automatically handled using the checkpoint and
migration feature of the Condor environment. To reduce the scheduling overhead, we use a
Master-Worker Condor PVM implementation that improves overall execution times.

Keywords: Simulation optimization, sample-path concept, nonlinear program, high-throughput
computing, Master-Worker implementation.

INTRODUCTION

Many practical engineering problems give rise to mathematical models that are intractable
for current algorithmic schemes. The complex nature of the system or the real-world process
motivates researchers to employ simulation modeling as an alternative method to draw
conclusions about the system behavior. A simulation model is used to describe and analyze both
the existing and the conceptual system, sometimes helping in the design of improvements for the
real system. Good summaries on simulation components and the advantages and disadvantages
of using simulation models can be found in ‘Shannon [20] and ‘Banks [3]'.

The popularity of simulation models comes from their use as decision aids for determining
possible outputs under various assumptions. A common use of simulation models is in goal-
driven analyses that determine values of the decision variables to allow the model to achieve
specific goals. This goal-driven simulation is used in many fields of economics, business and
engineering. Moreover, the decision variables are typically constrained by other relationships, for
example, budgetary or feasibility restrictions. These constraints give rise to an optimization
model using the goal as an objective function.

There are two classes of goal-driven simulation optimization. The first class is the level
crossing which tries to identify the values of the decision variables of a simulation that produces
a simulation output with the specified valug, We can cast an optimization of this class of
problems asnin||S(x) - d|, whereS(x) is the simulation functiond is the target value, [l is
the p-norm measure function, usually using the Euclidean norm (p=2)xasdhe decision
variable. The second class is a straightforward optimization that tries to determine the best
possible values of the decision variable of the simulation. This problem can easily be cast as a
mathematical programming problem.

From the optimization perspective, the simulation model is simply a function that takes
input values and derives one or more output values. In reality, most optimization algorithms also
rely on the first order or second order derivative of the simulation function. Due to random
effects and the stochastic nature of the simulation, the exactness of the gradient of the simulation
function may misguide the optimization algorithm to search along incorrect direction. More
reliable methods to estimate derivatives must be used.



In addition to the noise of the simulation, the long running time of a simulation model is
also an unfavorable situation. Even though the use of the simulation model is cheaper than
building the real system, it is very time-consuming to run and analyze. One simulation run may
consume hours of execution time on a single computer. Furthermore, multiple simulation runs
are required in order to reliably estimate a steady state simulation function or estimate its
gradient. Many methods have been used to reduce the execution time of this problem, such as
infinitesimal perturbation analysis which approximates the gradient evaluation using one
simulation run, see ‘Glasserman [7], ‘Ho and Cao [13], ‘Plambeck et. al. [16]" or the score
function method (also called Likelihood Ratio method), see ‘Rubinstein and Shapiro [19]'.

The paper is organized as followed. In the next section, a simulation optimization model is
defined and illustrated. In the third section, a serial version of the quadratic simulation
optimization is explained, while the following section describes a parallel implementation of the
guadratic simulation optimizer that uses Condor and a Master-Worker server. After detailing
some computational results, the last section provides conclusions and outlines future research.

SIMULATION OPTIMIZATION

The optimization of simulations is a challenging problem that researchers have attacked for
many years from as long ago as 1950 until the present day. In this paper, we apply a
deterministic optimization method based on the sample-path optimization from ‘Robinson [18]’
and ‘Plambeck et al [16]'. However we apply a very different gradient evaluation procedure. The
simulation is assumed to be cast as a mathematical mode§ (x) wherey is a vector of a
system responsg,is a vector of decision variables aBdis the simulation model.

There are other popular methods such as the stochastic optimization from ‘Robbins and
Monro [17], ‘Glynn [9], ‘Spall [22], or heuristic optimization approaches such as genetic
algorithms from ‘Azadivar and Tompkins [2]" and ‘Hill [12], simulated annealing from
‘Haddock and Mittenthal [11]’, nested partitions from ‘Shi [21]’, or the tabu search method from
‘Glover et al [8]'. Even though these methods converge to the solution in the presence of noise,
they are usually slower than deterministic mathematical programming methods.

The aim of our work is to use pre-existing algorithms available within a modeling
language to determine an optimal solution of a sample path simulation model. We regard the
simulation functionS: R" - R™ as a mapping from a decision variabk]JR", to a simulation
responseyJR™. The goal-driven simulation problem can be cast as

min  f(Xy)

st. y=5((X ,(xyOB
wheref:R™" - R is an objective functiony is a variable that holds the simulation output @d
specifies additional constraints imposed on the variables.

Based on the sample-path optimization, the simulation program must use the same stream
of random numbers for a fixed simulation length. Since most simulation implementations use
pseudo random number generators from a fixed seed, the simulation function with the same
random seed will generate the same output values. Hence, the simulation is deterministic and we
can apply a deterministic optimization algorithm to find the minimizer of this function which is
close to some minimizer of the steady-state function as described in ‘Ferris et al [6] .



OVERVIEW OF THE QUADRATIC SIMULATION OPTIMIZATION ALGORITHM
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Figure 1: Overview of the simulation optimization via a modeling
language system and the external simulation computations.

A practitioner supplies a nonlinear model written in the GAMS modeling language ‘Brooke
et al [4] and a simulation module written in traditional programming language such as
FORTRAN or C as an external routine, see figure 1. The simulation optimization problem is
solved by executing the simulation within the modeling language system. The modeling system
first constructs an internal nonlinear model and passes the information to the nonlinear solver.
Except for the function and gradient of the external equation (in our case the simulation
function), all function and derivative evaluations are supplied by the modeling language using its
internal evaluation and automatic differentiation as appropriate. For the evaluation of the
external function call, the modeling language system gives control to the quadratic simulation
module that calls the simulation module for function computation. However, the derivative
computation is different. The module constructs the quadratic model using surrounding
simulation points computed by the simulation module. It refines the model using a statistical test.
If appropriate termination criteria are met, the nonlinear solver returns the result to the modeling
language system. The modeling language system then reports the final result to the modeler. This
approach is modular because it can easily apply a new state-of-the-art nonlinear programming
solver without recoding additional information about the simulation. This is accomplished by a
solver link and dynamic linked library routines within the modeling language system. To deal
with a stochastic function such as a simulation, we use a model building technique that relies on
surrounding points that are randomly and independently generated. For a linear madel of
independent variables, this technique requires at leelssampling points, the same requirement
as the finite difference method. For the quadratic model ioidependent variables, it requires at
leastn(n+1)/2+n+1 for a symmetric model and?+n+1 for a non-symmetric model. For higher
order polynomial models of independent variables, the sampling point requirement grows in
the order of the degree of the polynomial. We use a quadratic model because of its nonlinear
nature and its smaller sampling point requirement. In addition, a higher order polynomial model
can cause an over-fitting problem that incorporates simulation noise in the model.

After the simulation runs are complete, we build a small-scale quadratic model using least
squares approximation. The aim is to find the best quadratic fitting model of the simulation
points that exhibits a similar derivative to the gradient of the simulation function. The least



squares approximation of finding the quadratic fitting model is equivalent to performing a linear
regression on the coefficients of the quadratic model using the simulation points as the regression
data. Analysis of regression can then be used to determine the best quadratic fitting model.

We use the coefficient of determinatid?, to test the fithess of our quadratic model to the
simulation dataR* can be interpreted as the ratio of the regression variation and the total
variation in the data points, where the regression variation is the difference between the total
variation and the error variation. I’ is close to 1, then the regression variation is approximately
equal to the total variation. In another words, the error variation is close to zero. We can use the
guadratic model to predict all simulation points so that the derivative of this quadratic model is
close to the gradient of the simulation function within that neighborhodg i$ close to 0, then
the total variation is close to the error variation. That means the quadratic model could not be
used to predict any of the data points within that neighborhood.
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Figure 2: Derivative computation using the QSO algorithm.



Because of the stochastic behavior of the simulation, the quadratic model always has error
variation even though it perfectly fits the trend of the simulation function. Instead of rejecting the
model, we derive an additional statistical test to be able to accept this type of quadratic model.
Figure 2 shows our QSO algorithm in more detail.

In this paper, we propose that the acceptable quadratic model in the neighborhood of the
point can be (1) a quadratic model that shows acceptable fitness, i€ ihelose to 1, or (2) a
guadratic model with white noise error. The white noise error is defined as having an error
distribution that is normal with unknown mean and unknown variance. This can be determined
using goodness-of-fit test statistics.

Goodness-of-fit test statistics from ‘Stephens [23] relate to the problem of determining
whether the samples, X, ..., % are extracted from a population with known distributiBfx).
Generally, the Chi-square test is used because it can be easily adapted to any distribution, both
discrete and continuous. Because we are interested in the goodness-of-fit test statistics with the
normal distributionF(x), a more powerful test such as the Cramér-von Mises statistic in
‘Stephens [24]' (herein termed th&” statistic), can be used. TIW® statistic is designed to test
the null hypothesis that the (error) distribution of data fits a general distribution such as a normal
or an exponential. When the null hypothesis is rejected, then with high probability the error
distribution reveals that some simulation points do not fit with the current quadratic model.

In this case, the quadratic model is not acceptable. In particular, for noisy functions, a
guadratic model using least squares approximation may not always fit the function. The error
distribution of the fit may exhibit a non-symmetric distribution that is caused by some extreme
values. In order to fit the quadratic model with this noisy function, we want to exclude these
points from our quadratic model building.

To determine extreme points or outliers from the simulation data, we use a skewness
measure of the distribution shape. If there are outliers or extreme points in the sample, then the
shape of the distribution is not symmetric with respect to the mean or the distribution skews. A
distribution is said to be skewed to the right if the mean is larger than the median and it is said to
be skewed to the left if the mean is smaller than the median. The coefficient of skewness in
‘Allen [1]' can be used to determine the lack of the symmetry in data. It is computed as

Zi”: l(xi - 2)3/(n —1)32, the ratio of the expectation of the third power of the sample from its

means to the third power of the standard deviation. If the data is distributed symmetrically from
the left and the right of the center point, then the skewness is zero. For example, the normal and
uniform distribution have zero skewness. If the distribution is skewed to the left, the skewness is
negative. The positive skewness indicates that the distribution is skewed to the right.

The skewness can be used to determine the group of extreme points or outliers that we need
to exclude from our model building. By reducing the radius, we can exclude some undesirable
point from our model. The strategy is to obtain the largest radius so the model building can use
as many points as possible.

We sort all points according to their values and group them in a fixed number of blocks. If
the coefficient of skewness is negative or the distribution is skewed to the left, the highest block
is discarded because it contains extreme points. However, if the derivative point is in this block,
we rebuild the quadratic model within this block. Otherwise, we discard the block by computing
the largest radius that all points in that block are excluded.



PARALLEL COMPUTATION OF QUADRATIC MODEL

An increasing need for large amount of computational power to solve real-life problems
causes researchers to search for a robust computational tool that supplies massive computational
power with ease of expandability. The use of one centralized supercomputer machine is limited
and becoming less popular because of the cost of buying and maintaining the machine. Condor
‘Epema et al [5] is an environment that is developed to exploit the computational resources of
idle heterogeneous machines within a network. It is an efficient and reliable high-throughput
computer system that manages the dynamic and heterogeneous resources in a computer network
environment. Condor uses a notion of ClassAd’s to match a resource request from a client
(which defines the resource requirements needed to run a job) to a resource offer from a machine
in the network (which advertises its resources such as an available memory, computer type, etc.)
To preserve the computational work that has been performed on each machine, Condor offers a
checkpointing and migration feature, see ‘Litzkow et al [14]'. Condor periodically checkpoints a
job during the execution of the program to protect the computational results in the event of an
owner of the machine returning or a system failure, e.g. a machine crashing or a power outrage.

To take advantage of the heterogeneous machines within the Condor pool, we compile our
simulation module on different operating systems on different machines. The simulation code is
re-linked to the Condor library to be able to utilize the checkpoint and migration facilities.
Internally, this maintains a trace of the execution of the task so that another machine can restart
the execution of the program when the task has been interrupted. Thus, the simulation runs can
be performed in parallel on separate machines, with Condor guaranteeing that each simulation
task sent out will be eventually completed.

We solve the tandem production line problems appearing in ‘Plambeck et al [15] but with
longer simulation runs. Each simulation collects data from a 100,000 products with a warm-up of
1,000 products using the same random seed. This example was generated so that the time for
each simulation is significant.

Case Serial QSO Condor QSO
Total runs| Usagetime| Totalruns Mastertime Condortime

la 239 515 239 118 2527
1b 256 581 256 106 2315
2a 176 51 176 13 2742
2b 149 43 281 3( 3910
3a 801 4251 749 155p 2618
3b 955 5168 91( 100p 13061
4a 3648 46824 6528 28545 38612
5a 4355 4313 4092 1137 29150
5b 11408 15514 639) 3496 32943

Table 1: Total simulation runs between the serial and the parallel program using Condor.

Unfortunately, the computational results of Table 1 are disappointing since each time a
derivative evaluation is requested, the Condor matching algorithm requests new machines that
may not be received for a long time. To alleviate this problem, we use a Master-Worker (MW)
server paradigm, adopted from ‘Goux et al [10]. The key idea in this approach is to maintain
hold over a cluster of machines throughout the complete optimization process, rather than
requesting new computational resources ‘on-the-fly’.



Typical use of the MW framework generates either an initial list of tasks to perform, or
generates new tasks based on the solution of previous tasks (e.g. branch and bound procedures).
Once the task list is empty, the program terminates. In contrast, our server is assumed to be
persistent, only terminating when a particular flag is set. In order to effect this, we have
implemented a “idlewait” task that just spins for a certain amount of time. Thus whenever the
server has no work (simulations) to perform, it just idles. Whenever new work is generated, the
server already has enough computational resources to perform many tasks in parallel.

The MW server runs as a separate process along with the optimization solver and maintains
control of the collection of computational resources throughout the process in the manner
described above. The master and worker processes use the file system to exchange information.
This significantly reduces the overhead of waiting and rescheduling time that occurs within the
Condor environment. We will explain how our gradient approximation based on a quadratic
model fits in this framework. This quadratic model requires at ledist1)/2++1 sampling
simulation runs. These work loads can take an enormously long time to compute serially.
Because these points are randomly and independently generated, it is a perfect fit for the MW
paradigm of parallel computation. In this paradigm, the master generates the work for each
worker (in this case simulation runs at different point) and waits for the results from each
worker. The master will wait for a preset amount of time. If some workers do not finish the jobs
within this time period, then the master will cancel the current running jobs and resubmit the
incomplete job to the workers again. After all workers have completed their tasks, the master
then reports the simulation results and stops.

The MW server runs as a separate program that monitors a request of computations from
the file system. A practitioner executes a model in GAMS that passes the control to the nonlinear
solver. If the nonlinear solver requests a function or derivative evaluation of the external
equation, then it passes a request to QSO module. The QSO module writes an input file that
contains all simulation points and updates the status file to trigger the MW server. After the MW
server receives a request, it reads the input file and assigns all points to the Tasks To-Do List. It
takes care of requesting workers from the Condor pool, assigning tasks to workers, and
reassigning tasks if workers fail. Upon completing the last task in the Tasks To-Do List, the MW
server writes the output to a file and then updates the status file to inform the QSO module,
which has been waiting for the output simulations. The QSO module passes the result back to the
nonlinear solver.

RESULTS

The following table demonstrates the effectiveness of our approach. The results are again
reported for the tandem production line simulations.

Case Serial QSO MW QSO

Runs Grad. Time| Runs Grad. Time Saving
la 432 20 589 432 20 314 275
1b 424 20 584 424 20 275 309
2a 248 16 36 248 16 20 16
2b 316 23 48 316 23 24 24
3a 796 45 2983 862 55 2626 357
3b 1490 238 4963 1504 45 3583 1380
da 4016 204 3207 5772 402 19885 12190




Case Serial QSO MW QSO
Runs Grad. Time| Runs Grad. Time Saving
4b 4840 214 40641 6650 309 17856 22785
5a 10712 435 563D 12904 209 3888 1742
5b 8170 429 4500 7824 188 2875 1625
Table 2: Total simulation runs/times for the serial and the MW-server QSO.

We achieve savings in overall time using the MW server for two reasons. First, simulation
computations can be performed concurrently, and second, we may be fortunate to run of some
very fast machines in the heterogeneous network environment. A chart detailing the
computational time savings is shown in Figure 3.
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Figure 3: Percentage of saving time comparison between the
MW server and its serial version.

Figure 3 shows that we gain savings on all problems. In problems 3a, 4a and 4b, the MW-
server QSO uses more derivative computations than the serial QSO. However, it achieves a
better running time due to the parallel computation. In the remaining problems, the MW-server
QSO uses less derivative computations so that we would expect a faster running time.

In general, the parallel computation does not effect the savings in time for the MW-server
scheme as much as we would expect. In part, this is due to the fact that the nonlinear
programming solver we are using, CONOPT, performs relatively few gradient evaluations as
compared to function evaluations. Only gradient evaluations give rise to concurrent parallel
execution of simulations. A side effect of our MW-server implementation is that even for this
nonlinear programming solver (that does not require many derivative computations) we achieve
a better running time due to the availability of faster machines within the Condor pool.

CONCLUSIONS AND FUTURE RESEARCH
We have exhibited a method for simulation optimization based on the sample-path

technique using a gradient based optimization solver. A key feature of our technique is to build a
model of the simulation that can then be used to estimate appropriate derivative information.



Our method is applicable for solving engineering simulation design problems that incorporate
constraints within a modeling language such as GAMS, commonly used in many areas of
economics, business and engineering. Our work also exhibits how modular implementations of
different components such as the optimization solver, the external simulation module, and the
gradient approximation module can be replaced by new technologies without affecting other
components of the solution process. This shows the potential of applying the new state-of-the-art
optimization solvers to deal with even more difficult problems. In our simulation optimization
method, we treat the simulation module as a black-box that is implemented outside the modeling
language system. Its implementation can be written in a standard programming language such as
C, FORTRAN or JAVA or in a shell script that extracts data directly from the system. This
opens the opportunity for researchers to make use of optimization algorithm without re-
implementing the optimization module. They can concentrate on the validity and verification of
the simulation model, the analysis of the optimization results and its interpretation. They can also
add or modify the constraints to help the optimization algorithm to find suitable solutions for
their real problems.

In using Condor, the algorithm makes use of all available computing resources within a
network to solve large computational simulation optimizations. The implementation is
transparent in that a practitioner does not have to understand anything about Condor. In fact, a
practitioner can specify to use Condor via an option file from our solver implementation. To use
a MW server, a practitioner needs to start a server as a separate process before executing the
GAMS model. The MW server terminates only when the practitioner changes the status file to
contain the termination code. The major advantage of using the MW server over using a standard
Condor submit file is the reduction in the time spent waiting for an idle machine to become
available. We believe that the mechanism to hold onto these resources within the MW
framework has significant ramifications in other applications. The overall mechanism gives the
illusion of a large scale parallel machine, but at a substantially reduced cost. In many practical
cases, this may be an effective way to solve difficult problems.

There are still many research directions that can enhance the capability of the simulation
optimization solver to solve large stochastic optimizations, such as the applicability of this
method to problems involving a mixture of discrete and continuous decision variables. A method
for solving simulation optimization (with discrete design variables) could use gradient based
optimization together with search algorithms such as the branch and bound method, genetic
algorithms, nested partitions, tabu search or other search techniques. In this paper, we only
consider single-stage deterministic simulation optimization problems. Multi-stage,
nondeterministic and nonparametric simulation optimization is the subject of further research.
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