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Abstract

The identification of breast cancer patients for whom chemother-
apy could prolong survival time is treated here as a data mining prob-
lem. This identification is achieved by clustering 253 breast cancer
patients into three prognostic groups: Good, Poor and Intermediate.
Each of the three groups has a significantly distinct Kaplan-Meier
survival curve. Of particular significance is the Intermediate group,
because patients with chemotherapy in this group do better than those
without chemotherapy in the same group. This is the reverse case to
that of the overall population of 253 patients for which patients un-
dergoing chemotherapy have worse survival than those who do not.
We also prescribe a procedure that utilizes three nonlinear smooth
support vector machines (SSVMs) for classifying breast cancer pa-
tients into the three above prognostic groups. These results suggest
that the patients in the Good group should not receive chemotherapy
while those in the Intermediate group should receive chemotherapy
based on our survival curve analysis. To our knowledge this is the
first instance of a classifiable group of breast cancer patients for which
chemotherapy can possibly enhance survival.
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1 Introduction

In this work we introduce an important application of data mining to breast
cancer prognosis. The principal objective of this work is to try to identify
breast cancer patients for whom chemotherapy prolongs survival time. By
chemotherapy we mean adjuvant chemotherapy, that is chemotherapy admin-
istered shortly following the initial surgery when the patient has no evidence
of distant metastatic disease. This should be distinguished from chemother-
apy that is given when the patient has evidence of distant metastatic disease
at some later time, that is when cancer has spread to other organs of the body.
Because we cannot carry out comparative tests on human subjects, similar
breast cancer patients must be treated similarly. Here the similarity is based
on physicians’ knowledge. In our approach instead, we utilize data mining
techniques such as support vector machine classification, feature selection and
clustering to identify a group of patients who could benefit from chemother-
apy. This identification is achieved by clustering 253 breast cancer patients
listed in the publicly available [19] WPBCC dataset into three prognostic
groups: a Good group consisting of 69 patients all without chemotherapy
and which collectively have the best survival curve; a Poor group consisting
of 73 patients all with chemotherapy and which collectively have the worst
survival curve; and an Intermediate group consisting of 44 patients without
chemotherapy and 67 patients with chemotherapy. Each of the three groups
has a significantly distinct Kaplan-Meier survival curve [6, 7]. Of particular
significance is the Intermediate group, because patients with chemotherapy
do better than those without chemotherapy in this group. This is the re-
verse case to that of the overall population of 253 patients for which patients
undergoing chemotherapy have worse survival than those who do not.

We use a support vector machine classification procedure to classify each
patient into one of these three groups. Because of the complexity of this
multicategory classification problem, a simple application of even a nonlinear
support vector machine does not yield satisfactory test set correctness. In-
stead we perform a preliminary classification in a 6-feature space consisting
of 5 cytological features (mean of area, standard error of area, worst area,
worst texture and worst of perimeter) [17, 16] and one pathology feature
(tumor size) tumor size. We then compute 2 additional dependent features
based on this preliminary separation and use the combined 8 features (6 orig-
inal ones and 2 dependent ones) to achieve our final separation. We are able
to achieve an 82.7% test set correctness using this classification procedure.

2



The final result is the Prognostic Procedure 4.1 that assigns a new patient
to one of three groups without making use of the lymph node status. Here
by lymph node status we mean the number of metastasized lymph nodes.
Lymph nodes are removed during surgery in conjunction with the removal
of the malignant tumor from the breast. This potentially risky procedure
which can cause arm swelling and increased susceptibility to infection can be
eliminated by using the classification procedures we propose here.

The paper is organized as follows. In Section 2 we introduce the support
vector machine that will be used in the classification process of Section 4 of
the paper. An efficient computational algorithm, the smooth support vec-
tor machine (SSVM) [9] is also described in this section of the paper that
implements the generation of a support vector machine classifier. Section 3
describes our clustering procedure which generates the three survival groups
while Section 4 implements our approach and uses the SSVM algorithm to
generate a nonlinear SVM procedure to classify the patients into three sur-
vival groups. Section 5 concludes the paper.

A word about background material and notation. Kaplan Meier survival
curves [6, 7], used extensively in quantifying survival rates, give the per-
centage of surviving patients as a function of time. Two survival curves are
considered to be distinct by the log-rank statistic if the p-value is less than
0.05 [7]. Turning to our notation, all vectors will be column vectors unless
transposed to a row vector by a prime superscript ′. For a vector x in the
n-dimensional real space Rn, the plus function x+ is defined as (x+)i = xi if
xi > 0 else (x+)i = 0 if xi ≤ 0 for i = 1, . . . , n. The scalar (inner) product of
two vectors x and y in the n-dimensional real space Rn will be denoted by
x′y and the 2-norm of x will be denoted by ‖x‖2. For a matrix A ∈ Rm×n, Ai

is the ith row of A which is a row vector in Rn. A column vector of ones
of arbitrary dimension will be denoted by e. For A ∈ Rm×n and B ∈ Rn×k,

the kernel K(A, B) maps Rm×n × Rn×k into Rm×k. In particular, if x and y

are column vectors in Rn then, K(x′, y) is a real number, K(x′, A′) is a row
vector in Rm and K(A, A′) is an m × m matrix. The base of the natural
logarithm will be denoted by ε. We will make use of the following Gaussian
kernel [18, 5, 11] that is frequently used in the SVM literature:

K(A, A′)ij = ε−µ‖Ai−Aj‖
2
2 , i = 1 . . . , m, j = 1 . . . , m, (1)

where A ∈ Rm×n and µ is a positive constant usually determined by a tuning
set.
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2 The Smooth Support Vector Machine (SSVM)

In this section of the paper we give a brief description of SSVM [9] that is
used for our classification procedure. We consider the problem of classifying
m points in the n-dimensional real space Rn, represented by the m × n

matrix A, according to membership of each point Ai in the classes +1 or -1
as specified by a given m × m diagonal matrix D with ones or minus ones
along its diagonal. For this problem the standard support vector machine
with a linear kernel AA′ [18, 5] is given by the following for some ν > 0:

min
(w,γ,y)∈Rn+1+m

νe′y + 1
2
w′w

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0.

(2)

Here w is the normal to the bounding planes:

x′w − γ = ±1 (3)

and γ determines their location relative to the origin. The first plane above
bounds the class +1 points and the second plane bounds the class -1 points
when the two classes are strictly linearly separable, that is when the slack
variable y = 0. The linear separating surface is the plane:

x′w = γ, (4)

midway between the bounding planes (3). See Figure 1. If the classes are
linearly inseparable then the two planes bound the two classes with a “soft
margin” determined by a nonnegative slack variable y, that is:

x′w − γ + yi ≥ +1, for x′ = Ai and Dii = +1,
x′w − γ − yi ≤ −1, for x′ = Ai and Dii = −1.

(5)

The 1-norm of the slack variable y is minimized with weight ν in (2). The
quadratic term in (2), which is twice the reciprocal of the square of the 2-norm
distance 2

‖w‖2
between the two bounding planes of (3) in the n-dimensional

space of w ∈ Rn for a fixed γ, maximizes that distance, often called the
“margin”. Figure 1 depicts the points represented by A, the bounding planes
(3) with margin 2

‖w‖2
, and the separating plane (4) which separates A+,

the points represented by rows of A with Dii = +1, from A−, the points
represented by rows of A with Dii = −1.

4



x
x
x
x

x

x
x

xx
x

x
x

x
x

x

x

x

x
x

x
x

x
x x x

x

A+

A-PSfrag replacements

w

Margin= 2
‖w‖2

x′w = γ − 1

x′w = γ + 1

Separating Surface: x′w = γ

Figure 1: The bounding planes (3) with margin 2
‖w‖2

, and the plane (4) separating

A+, points represented by rows of A with Dii = +1, from A−, points represented

by rows of A with Dii = −1.

In our smooth approach, the square of 2-norm of the slack variable y is
minimized with weight ν

2
instead of the 1-norm of y as in (2). In addition

the distance between the planes (3) is measured in the (n + 1)-dimensional
space of (w, γ) ∈ Rn+1, that is 2

‖(w,γ)‖2
. Measuring the margin in this (n+1)-

dimensional space instead of Rn induces strong convexity and has little or no
effect on the problem as was shown in [12]. Thus using twice the reciprocal
squared of the margin instead, yields our modified SVM problem as follows:

min
(w,γ,y)∈Rn+1+m

ν
2
y′y + 1

2
(w′w + γ2)

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0.

(6)

At a solution of problem (6), y is given by

y = (e − D(Aw − eγ))+, (7)

where, as defined earlier, (·)+ replaces negative components of a vector by
zeros. Thus, we can replace y in (6) by (e − D(Aw − eγ))+ and convert the
SVM (6) into an equivalent SVM which is an unconstrained optimization
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problem as follows:

min
(w,γ)∈Rn+1

ν
2
‖(e − D(Aw − eγ))+‖

2
2 + 1

2
(w′w + γ2). (8)

This problem is a strongly convex minimization problem without any con-
straints. It is easy to show that it has a unique solution. However, the
objective function in (8) is not twice differentiable which precludes the use
of a fast Newton method. We thus apply the smoothing techniques of [3, 4]
and replace x+ by a very accurate smooth approximation that is given by
p(x, α), the integral of the sigmoid function 1

1+ε−αx of neural networks [10],
that is

p(x, α) = x +
1

α
log(1 + ε−αx), α > 0. (9)

This p-function with a smoothing parameter α is used here to replace the
plus function of (8) to obtain a smooth support vector machine (SSVM) :

min
(w,γ)∈Rn+1

Φα(w, γ) := min
(w,γ)∈Rn+1

ν

2
‖p(e − D(Aw − eγ), α)‖2

2 +
1

2
(w′w + γ2).

(10)
It was shown in [9] that the solution of problem (6) is obtained by solving
problem (10) with α approaching infinity. The twice differentiable property
of the objective function of (10) was utilized in [9] to obtain a globally and
quadratically convergent algorithm for solving the smooth support vector
machine (10). This was implemented computationally in [9] and here as
follows. When we computed the Newton descent direction, we used the limit
values of both the sigmoid function 1

1+ε−αx and the p-function (9) as the
smoothing parameter α goes to infinity, that is the unit step function with
value 1

2
at zero and the plus function (·)+, respectively.

We briefly describe how the generalized support vector machine (GSVM)
[11] generates a nonlinear separating surface by using a completely

arbitrary kernel. GSVM solves the following problem for a general kernel
K(A, A′):

min
(u,γ,y)∈Rm+1+m

νe′y + f(u)

s.t. D(K(A, A′)Du − eγ) + y ≥ e

y ≥ 0.

(11)

Here f(u) is some convex function on Rm which suppresses the parameter
u and ν is some positive number that weights the classification error e′y
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versus the suppression of u. A solution of this problem, u and γ, leads to the
nonlinear separating surface:

K(x′, A′)Du − γ = 0. (12)

The linear formulation (2) is obtained if we let K(A, A′) = AA′, w =
A′Du and f(u) = 1

2
u′DAA′Du. We now use a different classification ob-

jective which not only suppresses the parameter u but also suppresses γ in
our nonlinear formulation:

min
(u,γ,y)∈Rm+1+m

ν
2
y′y + 1

2
(u′u + γ2)

s.t. D(K(A, A′)Du − eγ) + y ≥ e

y ≥ 0.

(13)

We repeat here the earlier arguments used to smooth the linear SVM to
obtain the following SSVM with a nonlinear kernel K(A, A′):

min
(u,γ)∈Rm+1

ν
2
‖p(e − D(K(A, A′)Du − eγ), α)‖2

2 + 1
2
(u′u + γ2), (14)

where K(A, A′) is a kernel map from Rm×n × Rn×m to Rm×m. We note
that this problem, which is capable of generating highly nonlinear separating
surfaces, still retains the strong convexity and differentiability properties for
any arbitrary kernel. Hence a very fast Newton algorithm [9] applies to it as
well.

With the help of the above tools we turn to the problems of clustering
and classifying breast cancer patients.

3 Clustering Procedure: Determining Patient

Groups

In this section we try to identify the group of patients who could benefit
from chemotherapy by using k-Median clustering algorithm [2]. We will
cluster the 253 breast cancer patients listed in the publicly available dataset
[19] into three groups: Good, Intermediate and Poor, that will strongly re-
flect distinct patient survival times. We obtained our groupings using five
cytological features (mean area, standard error of area, worst area, worst
texture and worst perimeter) determined from a fine needle aspirate taken
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during diagnosis using the XCYT diagnostic system [17, 20, 21, 13] and one
pathology feature (tumor size) determined from the surgical removal of the
tumor. These six features were the same as those used in [8] and arrived
at using feature selection techniques [1]. One additional feature determined
from surgery, lymph node status (number of metastasized lymph nodes) will
be used only as a criterion in determining the groups but not as a feature
in the final classification of patients into these groups. The reason for not
including lymph node status in the final classification is that determining it
necessitates a possibly debilitating procedure for the patient which consists
of removing the lymph nodes from the armpit of the patient. We note that
lymph node status, which varies between 0 and 30 in number, is often used as
a guide whether to use or not to use chemotherapy. A similar role is played
by tumor size, which varies between 0.4 and 10 centimeters.

We term patients who have received chemotherapy as chemo-patients and
those who have not received chemotherapy as nochemo-patients. Intuitively,
the group that we want to identify should consist of the chemo-patients
who have a good survival rate and the nochemo-patients who have a poor
survival rate. Thus if we can cluster the chemo-patients and the nochemo-
patients into two groups, “good” and “poor” groups, respectively, and merge
the “good” chemo-patients and the “poor” nochemo-patients, then we have
the desired group of patients for which chemotherapy might prolong survival.
Based on physicians’ knowledge and experience, we use tumor size and lymph
node status as criteria to define a “good condition” and a “poor condition”
for breast cancer patients as follows:

• Good condition: Patients who have no metastasized lymph node and
their tumor size < 2 centimeters.

• Poor condition: Patients either have more than 5 metastasized lymph
nodes or their tumor size ≥ 4 centimeters.

We then compute the median centers of good condition patients and poor
condition patients in the 6-feature space respectively. The median centers
are used as the initial cluster centers in a k-Median clustering algorithm [2]
because clustering results are highly dependent on the initial cluster centers
and we want the final clusters to inherit the same good and poor conditions
of the cluster centers. Next we use the k-Median algorithm to cluster the
113 nochemo-patients into two groups. The group that is clustered around
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the median of the good condition patients is called NoChemoGood. The
group that is clustered around the median of the poor condition patients
is called NoChemoPoor. We then cluster the 140 chemo-patients using the
same initial cluster centers that were used in no-chemo patients. This gener-
ates ChemoGood, the group of chemo-patients clustered around the median
of the good condition patients, and ChemoPoor, the group of chemo-patients
clustered around the median of the poor condition patients. We finally merge
NoChemoPoor and ChemoGood together to obtain the Intermediate group.
All the computations were run on the University of Wisconsin Computer
Sciences Department Ironsides cluster. This cluster of four Sun Enterprise
E6000 machines, each machine consisting of 16 UltraSPARC II 250MHz pro-
cessors and 2 gigabytes of RAM, resulting in a total of 64 processors and 8
gigabytes of RAM.

We now summarize the above clustering procedure for generating our
three groups in the following three steps:

Step 1: Compute the initial cluster centers:

• Compute the median of the good condition patients (Patients that
do not have metastasized lymph node and their tumor size < 2
centimeters)

• Compute the median of the poor condition patients (Patients that
either have more than 5 metastasized lymph nodes or their tumor
size ≥ 4 centimeters)

Step 2: Use as initial cluster centers the medians of good condition patients
and poor condition patients from Step1, in the k-Median clustering
algorithm [2] to:

• Cluster the 113 nochemo-patients into:

– NoChemoGood (clustered around the median of good condi-
tion patients)

– NoChemoPoor (clustered around the median of poor condi-
tion patients)

• Cluster the 140 chemo-patients into:

– ChemoGood (clustered around the median of good condition
patients)
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– ChemoPoor (clustered around the median of poor condition
patients)

Step 3: Obtain the final three groups as follows:

• Good: NoChemoGood from Step 2

• Poor: ChemoPoor from Step 2

• Intermediate: NoChemoPoor and ChemoGood from Step 2

These three steps are depicted in the flow chart of Figure 2.
The three groups obtained in Step 3 above have very well separated sur-

vival curves as shown in Figure 3. In addition, the p-value of the logrank
statistic [7] between any two groups is less than 0.0076. Thus, we tend to
reject the null-hypothesis (survival curves are the same) and conclude that
these survival curves are indeed significantly different from each other.

We note that a principal objective of this grouping is to generate the Inter-
mediate group in Step 3 which contains 67 chemo-patients and 44 nochemo-
patients. The chemo-patients have a better survival curve than the nochemo-
patients in this group, as shown in Figure 4. This property is the reverse case
to that of the entire 253 patients population as depicted in Figure 5, where the
nochemo-patients have a better survival curve than the chemo-patients. To
our knowledge such explicit benefit of chemotherapy over no-chemotherapy
has not been quantified in the literature.

Another interesting property of the Intermediate group is the reversal
of survival curves for the chemo-patients with lymph node positive and
nochemo-patients with lymph node negative. That is, in the Intermediate
group the subgroup with chemo-patients with lymph node positive has better
survival than the subgroup with nochemo-patients with lymph node negative
as shown in Figure 6. In contrast, in the overall population the reverse is true
as shown in Figure 7. All above comparisons between the survival curves are
significantly different based on the logrank statistic.

We note that the clustering procedure above cannot be utilized on a new
patient since we want to exclude both chemotherapy (because it is unavail-
able) and lymph node status (because we want to forgo this risky procedure)
in assigning a patient to a survival group. Therefore we turn now to classi-
fying all 253 patients into three groups, Good, Intermediate and Poor, using
a procedure consisting of three nonlinear support vector machine classifiers.
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Figure 2: Clustering flow chart of 253 breast patients into three groups: Good,
Intermediate and Poor
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Figure 3: Kaplan-Meier survival curves for the Good, Intermediate and Poor
groups.
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Figure 4: Kaplan-Meier survival curves for patients in the Intermediate group
split into two groups: those who have had chemotherapy and those who have not.
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Figure 5: Kaplan-Meier survival curves for the overall patients split into two
groups: those who have had chemotherapy and those who have not.
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Figure 6: Kaplan-Meier survival curves for patients in the Intermediate group split
into two groups: those with lymph node positive who have had chemotherapy and
those lymph node negative who have not had chemotherapy.
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Figure 7: Kaplan-Meier survival curves for the overall patients split into two
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4 A Support Vector Machine Prognostic Clas-

sification Procedure

In this section, we describe a procedure for classifying breast cancer pa-
tients into the three prognostic groups: Good (NoChemoGood), Interme-
diate (ChemoGood and NoChemoPoor) and Poor (ChemoPoor), generated
by clustering in the previous section (i.e., we assign each patient a class
label according to our clustering results) based only on the 6 available fea-
tures at time of diagnosis and selected by a support vector machine. This
is a multicategory classification problem that cannot be solved by a single
SVM classifier. Our proposed classification procedure described below is
very similar to DAGSVM, the directed acyclic graph SVM procedure of [15].
The classification process utilizes three classifiers (Good vs. Poor; Good vs.
ChemoGood; and NoChemoPoor vs. Poor) described in the following steps.
We use the 5 cytological features (mean area, standard error of the area,
worst area, worst texture and worst perimeter) and tumor size in our pro-
cedure. In order to exclude both lymph node status and the chemotherapy
indicators in assigning a patient to a survival group, we define the lymph
node index LI and the chemo index CI in our classification procedure to
simulate the patient’s lymph node status and the chemotherapy indicators
respectively. Both LI and CI are generated by a nonlinear SSVM classifier
and depend only on the 6 selected features. All classification was carried out
using the nonlinear SSVM with the Gaussian kernel (1) that was described
in Section 2 and implemented by using standard native MATLAB commands
[14]. The whole procedure includes seven nonlinear SSVM classifiers (three
for solving the multicategory classification problem and four for generating
the lymph node index and the chemo index). The largest case of these seven
classifiers is generated by solving a nonlinear SSVM in R139 real space and
each classifier can be generated less than 3 CPU seconds. We outline our
classification procedure now.

Step 1: Separate the Good group from the Poor group by a nonlinear SSVM
with a Gaussian kernel. We call this nonlinear classifier SVM1. SVM1
achieves 92% tenfold test set correctness for this classification.

Step 2: Label patients Good1 and Poor1 as follows:

• Good1: ChemoGood and NoChemoGood (obtained in the clus-
tering Step 2 of Section 3) consisting of 136 patients
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• Poor1: ChemoPoor and NoChemoPoor (obtained in the clustering
Step 2 of Section 3) consisting of 117 patients

Step 3: Generate a lymph node index LI(x) for each of the two groups, Good1
and Poor1 above, by separating within each group lymph node posi-
tive patients from lymph node negative patients using the 6 features
specified above:

• LI(x):=K(x′, A1′)D1u1 − γ1 for x in Good1

– LI(x) > 0 surrogate for lymph node positive

– LI(x) ≤ 0 surrogate for lymph node negative

• LI(x)=K(x′, A2′)D2u2 − γ2 for x in Poor1

– LI(x) > 0 surrogate for lymph node positive

– LI(x) ≤ 0 surrogate for lymph node negative

Here and in Step 4 below, K(·, Ai′) is the Gaussian kernel (1), the
matrix A1 ∈ R136×6 represents the patients in Good1 and A2 ∈ R117×6

those in Poor1, while the diagonal matrix D1 of ±1 labels lymph node
positive and lymph node negative patients respectively in Good1. D2

does the same for patients in Poor1. Furthermore, (ui, γi), i = 1, . . . , 4,
is a solution of (14) with A = Ai and D = Di.

Step 4: Generate a chemo index CI(x) for each group, Good1 and Poor1 above
by separating within each group chemo-patients from nochemo-patients
using the same 6 features:

• CI(x)=K(x′, A1′)D3u3 − γ3 for x in Good1

• CI(x)=K(x′, A2′)D4u4 − γ4 for x in Poor1

Here, the diagonal matrix D3 of ±1 labels patients with and without
chemotherapy respectively in Good1 and D4 does the same for patients
in Poor1.

Step 5: Separate NoChemoGood from ChemoGood in Good1 and NoChemoPoor
from ChemoPoor in Poor1 respectively. These two classifiers are ob-
tained by using a Gaussian kernel on the 6 original features combined
with a linear kernel on the lymph node index LI and the chemo index
CI (using 8 features in all, two of which LI and CI dependent on the
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original 6 features) on each of the sets Good1 and Poor1. The nonlin-
ear classifier that is used for classifying Good1 is called SVM2 and the
classifier used for classifying Poor1 is called SVM3.

Step 6: Obtain the final three groups:

• Good = The NoChemoGood separated from ChemoGood within
Good1

• Poor = The ChemoPoor separated from the NoChemoPoor within
Poor1

• Intermediate = ChemoGood within Good1 AND NoChemoPoor
within Poor1

We summarize the classification procedure above in the flow chart de-
picted in Figure 8.

Intermediate
(Chemo Good)

Intermediate
(NoChemo Poor)

PoorGood

Determine which 

Compute the Compute the
Lymp node idex: LI(x) Lymp node idex: LI(x) 

Good1: Poor1:
NoChemo Poor & PoorGood & ChemoGood

Good Intermediate Poor

& Chemo index: CI(x) & Chemo index: CI(x)

SVM should be used on 
new patient

SVM1

SVM2 SVM3

Figure 8: Flow chart for classifying 253 breast cancer patients into the three
groups using three SVMs, Good, Intermediate and Poor groups that were gener-
ated in Section 3.

Having separated the above three groups, with tenfold test set correctness
of 82.7%, we prescribe the following procedure for classifying a new patient
into one of the three groups: Good, Intermediate and Poor. This leads to
the following prognostic procedure.
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Prognostic Procedure 4.1: Given 6 features: 5 cytological features (mean
area, standard error of the area, worst area, worst texture and worst perime-
ter) and tumor size for a new patient:

(i) Label the patient as Good1 or Poor1 as defined in Step 2 by using the
SVM1 classifier of Step 1.

(ii) Generate a lymph node index LI(x) and a chemo index CI(x) for the
patient as defined in Steps 3 and 4 which depends on the 6 features
only.

(iii) Classify the patient into Good, Poor or Intermediate by using one of
the two classifiers, of Step 5 above, depending on whether the patient
has been classified into Good1 or Poor1 in (i) above.

We summarize the overall prognostic procedure above in the flow chart
depicted in Figure 9.

Determine which 

Lymp node idex: LI(x) Lymp node idex: LI(x) 

Good Intermediate Poor

& Chemo index: CI(x) & Chemo index: CI(x)

SVM should be used on 
new patient

SVM1

SVM2 SVM3

patient
New breast cancer

Compute: Compute:

Figure 9: Flow chart for the overall classification procedure for a new breast
cancer patient into one of the three groups: Good, Intermediate and Poor.

This procedure works for any new patient without knowing whether
chemotherapy will be given to this patient, nor do we want to make the
assumption that lymph node status is automatically available for that pa-
tient.
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5 Conclusion

We have obtained a classification, with 82.7% test set correctness, of a pub-
licly available 253 breast cancer patient dataset into three survival categories:
Good, Poor and Intermediate. The survival curve for each group is very dis-
tinct from the others with the following additional properties:

• The Good group patients are all without chemotherapy.

• The Poor group patients are all with chemotherapy.

• The patients in the Intermediate group with chemotherapy have better
survival than those in the same group without chemotherapy, which is
the reverse that for the total population.

Based on the prognostic procedure we associate with the patient one of
three survival, Good, Intermediate, and Poor, in Figure 3 with the corre-
sponding longevity. These curves suggest that:

1. Good group patients should not receive chemotherapy.

2. Intermediate group patients should receive chemotherapy based on the
two survival curves Figure 4 and Figure 5.

We believe that these are novel findings which will hopefully help doctors
and patients in assessing post-operative longevity.
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