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ABSTRACT

We propose solving continuous parametric simulation
optimizations using a deterministic nonlinear optimiza-
tion algorithm and sample-path simulations. The op-
timization problem is written in a modeling language
with a simulation module accessed with an external
function call. Since we allow no changes to the sim-
ulation code at all, we propose using a quadratic ap-
proximation of the simulation function to obtain deriva-
tives. Results on three different queueing models are
presented that show our method to be effective on a
variety of practical problems.

KEYWORDS

Simulation optimization, nonlinear programming,
quadratic approximation, modeling

1 INTRODUCTION

Simulation is a standard computational tool for under-
standing or predicting the behaviour of a complex sys-
tem when exposed to a variety of realistic, stochastic
input scenarios (Shannon, 1998). Analytic investiga-
tions of these systems are typically impossible due to
the complexity of the underlying models. The simula-
tion code can be very large, complicated, and difficult to
understand, while in some cases, the source code might
even be unavailable.

In many practical contexts, the simulation affords
a few design parameters that can be modified to im-
prove the performance of the system being modeled.
Typically, these design parameters are constrained by
other relationships, for example, budgetary or feasibil-
ity restrictions. Thus, an optimization model arises for
which some of the defining relationships are the result
of simulations. From the perspective of the optimiza-
tion problem, the simulation is simply a function that

takes the aforementioned input parameters and derives
one or more output values from a simulation run.

This paper addresses a practical approach for solv-
ing such problems, allowing the optimization model to
be formulated in the GAMS modeling system (Brooke
et al., 1988) and the simulation to be provided essen-
tially as a black-box routine. Our examples are drawn
from problems whose parameters vary continuously,
rather that discretely. The approach exploits state-
of-the-art (gradient based) optimization approaches,
rather than the stochastic neighbourhood search al-
gorithms that are commonplace in the literature (An-
dradéttir, 1996; Andradéttir, 1995; Haddock and Mit-
tenthal, 1992).

Two classes of methods have been commonly used to
solve the continuous parametric simulation optimiza-
tion, namely stochastic and deterministic optimization.
Stochastic approaches estimate the optimal solution by
generating a sequences {x,,} where

Tpt1 = co(Tn + ang(zn,0))

for all n > 1, where g(z,, ) is an estimate of the Ja-
cobian of the simulation function at x,. The sequence
a, has infinite sum with a finite second moment. Ex-
amples include (Robbins and Monro, 1951) and (Keifer
and Wolfowitz, 1952).

Another technique uses deterministic optimization to
exploit a gradient evaluation in a sample-path method
(Plambeck et al., 1993; Plambeck et al., 1996; Robin-
son, 1996). The gradient evaluation of the simulation
function can be estimated using finite differences, in-
finitesimal perturbation analysis (Glasserman, 1991) or
the derivative of a simple polynomial fitting model, as
in this paper.

The first method, finite differences, is very general
and easy to implement. It relies on the simulation com-
putation of at least two proximal points. To increase the
numerical accuracy of the derivative, both computed
simulation points must be within a very small distance
of each other. This closeness leads to difficulty of han-



dling derivatives when the function is noisy (as can be
the case for simulation runs).

The second method, infinitesimal perturbation analy-
sis (IPA), uses one sample-path simulation run to collect
gradient information and the simulation value. This
method requires a modification of the simulation source
code to incorporate the gradient computation during
a simulation run. For this reason, and the difficulty
of computing the actual gradient for each new simula-
tion, we do not consider this approach here. Similar
approaches based on automatic differentiation (AD) of
the simulation code are also not used here, mainly due
to the fact that source code of the simulation is re-
quired. Furthermore, in many cases, the AD codes do
not provide meaningful derivatives since many simula-
tion codes involve at least some integer variables, which
are not differentiated, and complex logic.

Unlike approaches that require access to the source
code, our method relies solely on executing the simula-
tion repeatedly and building up a (small-scale) model
that is fed into a standard (nonlinear) optimization
code. While this approach may be inefficient from the
standpoint of requiring many (potentially costly) sim-
ulation runs, we believe it is (in general) more reliable
and efficient than other competing methods. Reliabil-
ity derives from the fact that building the model does
not require changes to the simulation code, and is car-
ried out entirely automatically (and hence does not
introduce programming error). Efficiency stems from
the fact that the time to update a simulation for our
approach is vastly shorter than, for example, IPA ap-
proaches, and affords the potential for parallelism in
building the local model. For example, the local model
can be built in parallel by executing the simulations on
entirely separate processors.

This paper documents and explains our approach.
We first describe the type of optimization model that
we will address and explain how the simulation is incor-
porated into the optimization model. We then outline
our procedure to generate a model of the simulation
that can be used by an optimization code to solve the
optimization problem. We pay particular attention to
the treatment of noise in the simulation and introduce
a statistical testing mechanism to determine when our
model has captured the underlying simulation function
excluding the noise. We detail how simulations are au-
tomatically reused in model building and justify several
choices made in our experimentation. The strength of
this work is to allow standard modeling and optimiza-
tion tools to be easily and conveniently used to optimize
existing simulation systems.

2 SIMULATION OPTIMIZATION

The aim of our work is to use pre-existing algorithms
available from within a modeling language to determine
an optimal system design. In this section, we discuss
the mechanisms used within GAMS to communicate
information about the system being considered to the
solver.

We will think of the (simulated) system as a function,
S : R™ — R™, mapping design choices, x € R", to
outputs, y € R™. We are then interested in solving the
optimization problem:

min  f(z,y)
st. y=S(x) (1)
(z,y) € B

where f : R™™ — R models the design quality
and B specifies additional constraints on the problem
variables. As a simple motivating example, consider
an M/M/1 queue with exponentially distributed inter-
arrival and service times. We might want to improve
the service rate by providing additional training to an
employee, resulting in a decrease in the amount of time
customers spend waiting in the queue. An optimization
problem might be to determine the amount of training
to provide that minimizes total costs; that is the fixed
cost for training and an additional penalty for lost cus-
tomer goodwill.

We will assume that S is not available analytically;
the system function is provided as an oracle that is given
the design choices and produces some outputs. In order
to write the optimization problem in GAMS, we need
to use the external function syntax as illustrated in the
following example.

Variables obj,
mu ’sim. input, service rate’,
W ’sim. output, waiting time’;
Equations cost,
extcall ’external function’;

Scalar c ’constant’ /4.0/;
cost..

obj =e= sqr(mu-c) + w;

* declare external equation: w - S(mu) = 0
extcall.. 1xmu + 2%y =x= 1;

* Select CONOPTX as the solver
option nlp = conoptx;

* Set a lower bound on service rate
mu.lo = 3.0;



* Construct the model and solve
Model mml /expect,cost/;
Solve mml using nlp minimizing obj;

Most of the model consists of standard GAMS syn-
tax. The key to our approach is the exploitation of
the external function interface of the modeling language
that is signified by the =x= notation. The optimiza-
tion model identifies that equation, extcall, as a special
nonlinear constraint to be implemented by the modeler.
Some explanation is required concerning the format of
the external function definition, in this case,

extcall.. 1*mu + 2*w =x= 1;

The coefficients on the variables, mu and w, determine
the mapping of the GAMS variables to the order re-
quired for the external function. In this case, mu is
passed as the first input variable and w as the sec-
ond. The right hand side is a unique identifier for the
function, as any model can have many external func-
tions. For complete details of how to interface to exter-
nal functions see the GAMS documentation available at
http://webster.gams.com/extfunc/extfunc.html.

We have now informed GAMS that there is an ex-
ternal function. The modeling language then calls a
nonlinear optimizer, such as CONOPT (Drud, 1985)
that requires evaluations for each constraint and objec-
tive function. When the solver requests an evaluation of
an external function, control is passed to a user defined
function with the appropriate arguments. This func-
tion knows how to call the simulation with the correct
input arguments. For the example above, a simulation
is called with mu as input, producing an output S(u).
The external function returns the value w — S(u), that
the solver will subsequently attempt to drive to zero by
modifying w and mu.

The diagram in Figure 1 shows how the various pieces
of our optimization model are joined together. Note
that each time the nonlinear programming solver re-
quires a function evaluation, the simulation oracle is
called at the given point. The nonlinear programming
solvers we use also require gradient information about
each of the constraints, including the externally defined
ones. The algebraically defined functions have gradi-
ents that are generated by the modeling system using
automatic differentiation. For the simulation function,
we construct a quadratic model of the function and use
this model to produce gradient information as detailed
in the next section.

3 APPROXIMATING THE SIMULATION

Standard nonlinear programming software typically re-
quires that a user provide at least first order deriva-
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Figure 1: Overview of Simulation Optimization System

tives for each of the functions appearing in the model
(1). Automatic differentiation is used to construct the
derivatives for constraints defined analytically in the
GAMS model. However, the system function S, is not
defined analytically, but is only available as an oracle.
We must therefore construct a meaningful derivative
using only function evaluations. Instead of using finite
differences, we advocate fitting a low order polynomial
to observed simulation output.

The nonlinear programming software makes a re-
quest for the derivative of the simulation function at
a particular point, xg. Our implementation evaluates
the simulation at a number of random points chosen
in a neighbourhood of xg, and then fits a quadratic
model, A(z) := 27Qx + ¢z + d, in the least squares
sense, to the observed function values. The derivative
passed back to the nonlinear programming software, is
% = 227Q + ¢”. Clearly, the appropriateness of the
model depends on the error in the simulation and the
size of the neighbourhood. We use a variety of statisti-
cal tests to check the validity of the model, while allow-
ing some white noise. If the approximation is deemed
poor, we reduce the size of the neighbourhood and con-
struct a new model.

Note that while the evaluation of S(z¢) may be noisy,
we always return this as the function value of the simu-
lation, rather than the value of the quadratic model at
xg. The principal reason is that regardless of the path
of the algorithm, this value will always be the same (if
we use the same sample-path). However, if we were to
choose different random points in the neighbourhood
of g, the quadratic model could change. Thus, A(xq)
might have a different value depending upon this choice
of points.



One problem with this approach is that, by assump-
tion, the simulation evaluations are expensive. There-
fore, the code collects (and stores) all previously com-
puted values for points in the neighborhood of xg to re-
duce the number of simulation evaluations performed.
If the total number of points is not enough to fit the
quadratic function, then an appropriate number of uni-
formly distributed random points in the neighborhood
of x¢ within a radius r are generated. The simulation
is called to compute each of the function values at the
newly generated points.

3.1 Least Squares Problem

Once all of the simulation evaluations have been col-
lected, we fit the quadratic model in a least squares
sense. Let S be the simulation function from R"™ —
R™. The quadratic approximation of S for each com-
ponent [ =1,...,mis

Si(z) ~ Ay(z) == 2T Q'w + o+ d.

Let ', 22,23,...,2™ be the sampling points used to
approximate .S;, where np > w +n + 1. The least
squares problem we solve is
np

min (")T'Qx* + T2k +d - sl(:ck))2 ,

@edi
The coefficients, @), ¢ and d, are the variables of the
problem and that z* is given data. Since @ is symmet-
ric, only the upper triangular elements of ) are needed.
Therefore, we minimize

np n n
Z Z Qi)i(l'?)z +2 Z Q17J$f$§ + CiJJ? +d— by
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Let z = (Q117Q127"'7anuclu"'7cn7d) with p =
2t 4 41 and define CT by

1,1 2,.2 np_np
:vllxll :10129012 U AN
np _np
2rixy  2x{Ts ... 2%y T4
2zixl 22222 .. 227PamP
1,.1 2,2 np,.np
Tgky  TETS ... Ty Ty

1.1 2,2 np _.np
2z5x, 2x57; 25 Ty

1,.1 2,.2 np .np

7 7 T,

1 2 np

Tn Tn L

The optimality conditions of the least squares problem
are the normal equations

CTCz=C"b. (2)

We use the LAPACK library (Anderson et al., 1995) to
solve this symmetric (positive-definite) system of lin-
ear equations. When m > 1, the system is repeatedly
solved, once for each different value of b.

3.2 Statistical Tests

If R?, the coefficient of determination (Allen, 1990), is
small, then the approximation is poor. We then test
a null hypothesis using the Cramér-von Mises statistic
(Stephens, 1974; Stephens, 1976) (herein termed the
W? statistic) to determine if the error is due to white
noise, that is noise with normal distribution and un-
known mean and variance.

3.2.1 Cramér-von Mises Statistic

Given ey, ..., e, from a continuous population distribu-
tion G(-), let F,(-) be the empirical distribution func-
tion of e;. The null hypothesis test is

Hy : G(e) = F(e;0)

where F'(-;6) is a given distribution (typically normal
or exponential) with the parameter 6.

To test this null hypothesis, we use the Cramér-von
Mises statistic computed as

+o0
W2 = n / (Fu(e) — Fle: 0)}2dF(e: ).

For the normal distribution with unknown mean and
variance, we have F(-;0) = N(:;¢€,s.) where € is the
sample mean and s, is the sample standard deviation.
We test the distribution of the difference between the
simulation run and the quadratic model to determine
whether it is white noise or not.

During the testing step we perform the following:

1. Sort the data (errors between simulation and
quadratic model prediction) as e; < eg < ... < e,.

2. Compute the sample mean € and sample standard
deviation s,.

3. Calculate w; = (e; — €)/se.

4. Compute z; = CDF(w;) where CDF(-) is the cu-
mulative probability of a standard normal distri-
bution.



5. Calculate the W? statistic from these (sorted) z-
values where

2t —1 1
W2 =3z~ =)+

2n 12n

6. Update W? to reflect the assumption of unknown
mean and unknown variance, W? = W?2(1 + %)

7. Compare this value against the T statistical table
(see (Stephens, 1974)). Note that T} ;5 = 0.091,
1510 = 0.104, T§ g5 = 0.126, T g95 = 0.148, and
1501 = 0.178.

If W2 is larger than T, then we reject the null hypoth-
esis Hy at the significance level a.

In our procedure, we fix the significance level o =
0.05, then compute W? and compare it with T 5.
If the null hypothesis is accepted, that is the error is
due to white noise, the trend in the approximation is
deemed to coincide with the actual trend of the simu-
lation function. The quadratic approximation is then
used.

If we reject this null hypothesis, i.e. W? > T s,
then we continue to remove any extreme values using
the coefficient of skewness.

3.2.2 Coefficient of Skewness

The coefficient of skewness (Allen, 1990) is a measure
of the lack of symmetry in data. If data is distributed
symmetrically from the left and the right of the center
point, then the skewness will have a zero value. For
example, the normal distribution and uniform distribu-
tion have skewness equal to zero. When the skewness
is negative, the distribution of data is more weighted to
larger values than smaller values. If the skewness is pos-
itive, then data with smaller values are more prominent
than data with larger values. The Chi-square distribu-
tion is one example that has positive skewness.
The skewness sy, is computed from xg, ..., z, by

Z?:l (zi —2)°

k= (n—1) x o3

where ¢ is the sample standard deviation and Z is the
mean of zg,...,Ty,.

We use the skewness to identify outliers or extreme
values and use a histogram to group data into small
separate groups for removal. We will consider remov-
ing the extreme values from our data set only when
the skewness is outside the range of [-0.5, 0.5]. If the
skewness is less than -0.5, most of the data has larger
values. We reduce the radius of our problem to discard
the smallest value block of our histogram which con-
tains the extremely small values. We do the same for
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Figure 2: A Flow Chart for Computing the Derivative
at a Point zg

the largest value block of our histogram if the skewness
is greater than 0.5.

In the case that z( is one of the extreme points, the
algorithm uses the current quadratic function to com-
pute the derivative at xy and returns. However, the
point is marked as a poor derivative value and we will
attempt to construct a better quadratic model the next
time an evaluation is requested at z.

We then repeat the procedure of approximating and
performing statistical tests using the smaller radius. We
limit the number of times the radius can be reduced.
If we exceed the iteration limit, then we use the last
quadratic approximation to compute the derivative at
Zo-

3.3 Complete Derivative Computation

A detailed flow chart of the complete implementation of
a derivative evaluation is given as Figure 2. This chart
summarizes the information contained in this section.

4 EXAMPLES AND RESULTS

The semantics for using external functions in GAMS
dictate that the user writes a function and compiles it
in such a manner that the code can be linked dynami-
cally with the solver executable. We have implemented
the quadratic approximation code as outlined in the
previous section for this purpose. The remaining piece
is the simulation routine which is incorporated into the



quadratic approximation code. As the syntax for call-
ing the simulation routine varies, we only require that a
user writes a small interfacing function that calls their
simulation for a given input and returns the outputs.
The function can simply call the simulation if it is avail-
able in C or FORTRAN, or it can use system calls to
run an external program.

We have written such routines for three different
simulations. We have incorporated these simulations
into optimization problems that are formulated within
GAMS. Since this paper is illustrational, we have only
used very simple optimization models. However, the
strength of our approach is that sophisticated simula-
tions can be linked into complex optimization models
very easily. The remainder of this section details the
simulation optimizations and the results obtained on
them.

4.1 M/M/1 Queue

The first problem optimizes a stable M/M/1 queue to
minimize average waiting time. This problem can be
solved analytically, providing us with a mechanism to
check the validity of our optimization approach. The
exact simulation optimization is as follows:

min (g —4)? +w
st. w=.8(u)
B> A

where S(u) returns the average waiting time for an
M/M/1 queue with service rate u. Analytically, the
average waiting time is w = %/\ for an inter-arrival
rate A. For our testing, we fix tﬁe inter-arrival rate at 3.
Thus, our M/M/1 simulation optimization approaching
the steady state is equivalent to the problem

min (g —4)? +w
s.t. w:%B
m
w3

The optimal solution is at p = 4.297 with an objective
value of 0.859.

To test our optimization approach, we used simula-
tions with 10000, 100000, and 1000000 customers. The
first 1% of customers were ignored to avoid initial bias.
Tables 1 and 2 show details of the output from the
M/M/1 simulation optimization problem based on the
different number of sampling points. For all of the runs,
a starting value of ;1 = 3.0 was used with an initial ra-
dius of 1.0 for the quadratic model neighbourhood and
R? = 0.99999. We ran these results on a Pentium III
600 MHz machine running WINNT 4.0.

For the same simulation length, our algorithm
achieves the same optimal solution independent of the

Table 1: Comparison of M/M/1 optimization param-
eterized by length of simulation run and number of
points sampled in quadratic model without the W2
statistic

Simulation | Sampling | Runs | Time Obj.
length pts. (np) | (sim.) | (sec.) | walue
10000 7 195 3 | 0.9015

8 194 3| 0.9015
9 214 3| 0.9015
14 211 3| 0.9015
19 213 3 1 0.9015
24 411 6 | 0.9015
100000 7 186 25 | 0.8536
8 194 25 | 0.8536
9 205 26 | 0.8536
14 241 31 | 0.8536
19 324 42 | 0.8536
24 326 42 | 0.8536
1000000 7 134 170 | 0.8586
8 179 226 | 0.8586
9 208 263 | 0.8587
14 220 278 | 0.8586
19 237 507 | 0.8586
24 241 553 | 0.8586

number of sampling points. As the length of the simu-
lation increases, the sample-path optimization solution
obtained by our method converges to the correct solu-
tion as predicted by the theory. The overall solution
time depends heavily on the length of the simulation
run. However, these tables give no indication that the
use of the W? statistic is beneficial. The simulation
runs are long enough that the function values perceived
by the optimization code are not noisy and the overall
simulation function S(x) is smooth and well-behaved.
The remainder of the examples use more realistic sim-
ulation codes that indicate more benefits of the W?
statistic.

4.2 Telemarketing Example

A more interesting example comes from simulating a
telemarketing system where we have a fixed number of
operators answering calls. The number of customers
on hold (waiting for service) is fixed. If a customer
is denied entry into the queue, they are given a busy
signal and there is a probability p that they will call
back after waiting an exponentially distributed amount
of time. Those that do not call back result in a lost sale.
We want to choose the service rate on the operators to



Table 2: Comparison of M/M/1 optimization param-
eterized by length of simulation run and number of
points sampled in quadratic model with the W? statis-
tic

Stmulation | Sampling | Runs | Time Obj.
length pts. (np) | (sim.) | (sec.) | walue
10000 7 175 3 | 0.9015

8 153 21 0.9015
9 81 1| 0.9016
14 200 3| 0.9015
19 205 3 | 0.9015
24 447 7 | 0.9015
100000 7 205 35 | 0.8536
8 165 41 | 0.8536
9 205 54 | 0.8536
14 212 53 | 0.8536
19 337 66 | 0.8536
24 335 81 | 0.8536
1000000 7 221 514 | 0.8586
8 180 405 | 0.8586
9 226 524 | 0.8586
14 305 702 | 0.8586
19 392 900 | 0.8586
24 466 | 1059 | 0.8586

minimize some weighted sum of operator training costs
and lost sales. A schematic overview of the simulation
is given in Figure 3.

We will assume that we have 4 operators and a fixed
queue size of M = 100. Initially, the operators have
a service rate of p; = 0.5. The inter-arrival times of
customers first entering the system is exponentially dis-
tributed with an inter-arrival rate of A = 3. The prob-
ability that a user will call back is p = 0.1 with an
exponentially distributed waiting time of 0.4. The vari-
ables in the optimization are the service rates which are
bounded below by 0.5 and the outputs from the simu-
lation are the the percentage of customers lost and the
average waiting time.

This simulation model is very noisy due to the prob-
ability of customers leaving the system without being
served. Since the simulation is coded with a single ran-
dom input stream, this can lead to significant changes
in simulation outputs for small variations in the input
parameters. Figure 4 shows how the percentage of calls
lost change as the service rate for the first operator is
increased. Note the output varies dramatically for small
variations in inputs, but the overall shape of the func-
tion is clear. We expect the W?2 statistic to be beneficial
in solving the optimization problem, since it attempts
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Figure 3: Telemarketing Simulation Structure
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Figure 4: Percentage of Calls Lost against Service Rate
for Telemarketing Simulation with 1 Million Customers

to reduce the effects of noise by generating quadratic
models of the overall trend in the simulation functions.

The goal for optimizing this call-waiting simulation
is to achieve the minimum number of customers lost
due to the busy signal of the servers. Since the servers
behave identically in the system, there are many so-
lutions that satisfy our goal. To specify a reasonable
optimization problem, we define an objective function
as

4
obj = sz(lh —1) 4100 x lost
i=1

where [ is the lower bound for all service rates, lost is
the percentage lost of customers in the system, p; is the
service rates of i'" server and w; is the weight on the
it" server. Different weights on each server correspond
to different costs for training. For the runs presented
wy = 1, wy = 5, w3 = 10 and w4 = 15, respectively.
Tables 3 and 4 show the details of our results based
on different numbers of sampling points. Again the



Table 3: Comparison of call-waiting simulation opti-
mization parameterized by length of simulation run and
number of points sampled in quadratic model without
the W? statistic

Simulation | Sampling | Runs | Time Obj.
length pts. (np) | (sim.) | (sec.) | walue
10000 35 582 54 | 1.4663

50 887 45 | 1.0282
65 885 71 | 1.2933
80 1888 141 | 1.0277
95 2144 160 | 1.0280
110 1590 117 | 1.0279
100000 35 999 727 | 1.1303
50 744 536 | 1.4641
65 746 536 | 1.3358
80 1013 722 | 1.1172
95 1679 | 1181 | 1.1187
110 1673 | 1201 | 1.1249
1000000 35 343 | 2993 | 1.5324
50 533 | 4475 | 1.5331
65 785 | 5009 | 1.1783
80 501 | 2945 | 1.1707
95 735 | 3940 | 1.1809
110 1279 | 6337 | 1.2117

benefit of using additional sampling points to fit the
quadratic model is unclear - the results with small val-
ues of np are similar to those with large values (except
the smaller values execute more quickly). It appears
that the results using the W?2 statistic are significantly
more robust than those without. This robustness comes
at some cost in terms of computing and time. While
the precise solution is unknown, the optimization of the
longer length simulation appears to give more accurate
values for the objective value under independent simu-
lation runs of even greater length.

4.3 Tandem Production Line

The final simulation we attempted to optimize is a tan-
dem production line composed of m machines and m—1
buffers which hold the excess product between two ma-
chines arranged in series. The product arrives from an
external source to the first machine and is then pro-
cessed by each machine. Progress is blocked when the
number of products in a buffer exceeds the maximum
buffer size. The machine then waits until there is an
available slot in the buffer. There is also a probability
that a machine may fail at an exponentially distributed
time. The time to repair a failed machine is also ex-
ponentially distributed. The input parameters to the

Table 4: Comparison of call-waiting simulation opti-
mization parameterized by length of simulation run and
number of points sampled in quadratic model with the
W? statistic

Sitmulation | Sampling | Runs | Time Oby.
length pts. (np) | (sim.) | (sec.) | walue
10000 35 556 45 | 1.0281

50 760 58 | 1.0280
65 1224 93 | 1.0278
80 1775 134 | 1.0277
95 2517 192 | 1.0276
110 1773 138 | 1.0278
100000 35 958 698 | 1.1191
50 978 705 | 1.1186
65 993 712 | 1.1354
80 1013 722 | 1.1431
95 1049 745 | 1.1214
110 2127 1524 | 1.1216
1000000 35 881 | 7168 | 1.1760
50 1696 | 12908 | 1.1655
65 848 | 4698 | 1.2480
80 1511 | 10478 | 1.1666
95 1031 5580 | 1.1636
110 2261 | 13293 | 1.2301

i{é;"‘ Buffer |- - | Buffer }_@

Figure 5: Tandem Production Line Simulation Struc-
ture

simulation are the machine processing rates, the prob-
ability of machine failure, and the rate of repair for
each machine. The output parameter is the recipro-
cal of throughput where the throughput is the average
processing rate for the entire line. Figure 5 gives an
overview of the system.

The actual simulation we use was provided by Er-
ica Plambeck and is based on the Tandem production
problems from (Plambeck et al., 1993). We use this
paper as a basis for comparison here, and hence fix the
probability of machine failure and the rate of repair to
the values given in that paper. The paper contains 7
cases each with two different starting points for a total
of 14 problems. Problems 1 and 2 involve 2 machines,
problem 3 involves 4, problems 4 and 5 involve 6, prob-
lem 6 involves 5 machines and problem 7 involves 15.
Two methods were used to obtain the results reported



Table 5: Objective comparisons between the SRO,
BSO, and QSO methods

Case | SRO BSO QSO
without W2 | with W?
1a 7.6899 | 7.6895 7.6899 7.6899
1b 7.7010 | 7.7008 7.7008 7.7008
2a 0.9638 | 0.9638 0.9637 0.9637
2b 1.0070 | 1.0070 1.0070 1.0070
3a 0.7404 | 0.7404 0.7404 0.7404
3b 0.7358 | 0.7404 0.7356 0.7357
4a, 0.3956 | 0.3957 0.3955 0.3955
4b 0.3960 | 0.3960 0.3960 0.3960
5a 0.3485 | 0.3482 0.3465 0.3465
5b 0.3450 | 0.3446 0.3413 0.3413
6a 3.3956 3.3950 3.3951
6b 3.3977 3.3928 3.3928
Ta 3.4065 3.4107 3.4107
b 3.4061 3.4043 3.4054

in the paper. The first method is Bundle-based stochas-
tic optimization (BSO) which is applicable to all of the
problems. The second method, single run optimization
(SRO), only applies to cases 1 through 5. We obtained
the simulation code from the author and used it with
our optimization methodology. We use the label QSO
to indicate our method.

Each simulation run uses 49500 units with 500 units
to remove bias, except that 7a and 7b uses 90000 units.
The starting radius for fitting the quadratic was set to
be equal to the total number of machines and R? was
set to 0.99999. Table 5 compares the optimal solutions
found among three methods, BSO, SRO and QSO. We
can see that the solutions found by QSO with or without
the W2 statistic are virtually indistinguishable and are
all comparable to those found by SRO and BSO. In
fact, on problems 5a, 5b, 6a, 6b and 7b, QSO seems to
provide the best solutions of all codes. On problem 7a,
QSO had more difficulties and we terminated it after
it hit a time limit at a slightly worse objective value.
By adding an extra constraint that constrains the sum
of all the machine rates, we were able to solve 7a to
optimality as well. Table 6 shows the total simulation
runs and the total time used by our algorithm, with
and without the W? statistic. These results seem to
indicate that for the larger dimension problems the use
of the W?2 statistic is preferable.

Table 6: Tandem production line comparison for the
QSO method with and without the W? statistic

Case | Without W? statistics | With W? statistics

Runs Time Runs Time

(sim.) (sec.) | (sim.) (sec.)
la 223 87 235 91
1b 240 94 351 140
2a, 129 5 130 5
2b 40 2 73 3
3a 570 411 495 361
3b 737 521 666 461
4a, 3074 4476 2524 3641
4b 3322 4879 1870 2733
5a, 2778 244 2151 184
5b 3481 304 1962 166
6a 1827 106 2430 140
6b 1610 92 906 53
7a, HoAAE 50000 HoAAH 50000
b 24210 28468 | 14443 17636

5 CONCLUSIONS

We have shown how to perform sample-path simula-
tion optimization from within a modeling language. We
have developed a mechanism to automatically compute
a quadratic approximation (a local model) to an ex-
isting simulation using only function evaluations. The
derivatives passed to the nonlinear programming soft-
ware are based on this quadratic approximation. We
have tested this approach on several problems and the
results show this approach is useful in determining an
optimal system design. We have also shown how to de-
termine reasonable choices for the algorithmic parame-
ters.

Furthermore, we have experimented with the use of
the W?2 statistic to reduce the effects of noise in the
simulation values on the optimization. The statistic is
used to accept local models that are inaccurate only
due to noisy simulations. This appears to give more
robustness in the optimization at the cost of some com-
puting time. Since the modeling framework also allows
additional constraints to be specified, this can also be
used to increase robustness of the overall procedure.

Any existing simulation can be optimized easily and
effectively using the strategy developed in this paper.
Complex optimization problems can be set up within
existing modeling languages that incorporate simula-
tions as an integral part of the model. The only re-
quirement on a user is that a very small function be
written that interfaces between our approximation code



and the simulation. This interface routine can directly
invoke the simulation if it is available in source code, or
can use system calls to run the simulation as an external
program.
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