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ABSTRACT
The problem of extracting a minimal number of data points
from a large dataset, in order to generate a support vector
machine (SVM) classifier, is formulated as a concave min-
imization problem and solved by a finite number of linear
programs. This minimal set of data points, which is the
smallest number of support vectors that completely char-
acterize a separating plane classifier, is considerably smaller
than that required by a standard 1-norm support vector ma-
chine with or without feature selection. The proposed ap-
proach also incorporates a feature selection procedure that
results in a minimal number of input features used by the
classifier. Tenfold cross validation gives as good or better
test results using the proposed minimal support vector ma-
chine (MSVM) classifier based on the smaller set of data
points compared to a standard 1-norm support vector ma-
chine classifier. The reduction in data points used by an
MSVM classifier over those used by a 1-norm SVM classifier
averaged 66% on seven public datasets and was as high as
81%. This makes MSVM a useful incremental classification
tool which maintains only a small fraction of a large dataset
before merging and processing it with new incoming data.
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1. INTRODUCTION
Support vector machines [20, 8, 3, 7, 14] are powerful tools
for data classification. Classification is achieved by a lin-
ear or nonlinear separating surface in the input space of the
dataset. The separating surface depends only on a subset
of the original data. This subset of data, which is all that
is needed to generate the separating surface, constitutes the
set of support vectors. In this paper we give a method for
selecting as small a set of support vectors as possible which
completely determines a separating plane classifier. We term
such a set of support vectors minimal, and the corresponding

classifier, a minimal support vector machine. Such a classi-
fier turns out to have improved testing set accuracy over
one chosen by a standard support vector machine. Mathe-
matically, support vectors are data points corresponding to
constraints with positive multipliers in a constrained opti-
mization formulation of a support vector machine. Compu-
tationally, the problem of determining a minimal set of sup-
port vectors does not appear to have been addressed before
as proposed in this paper. This is an important problem
in applications such as fraud detection where the dataset
may contain millions of data points. To make support vec-
tor machines viable for such applications, it is important
to identify a minimal set of support vectors, often an order
of magnitude smaller than the original dataset, which de-
termines the separating surface and allows the removal of
redundant data. This dependence on a small subset of a
given dataset, which often leads to an improved classifier,
can be utilized in an incremental approach such as chunk-
ing [3, 15] where a small fraction of the data is maintained
before merging and processing it with new incoming data.
For the sake of simplicity and getting basic ideas across we
shall confine ourselves here to linear separating surfaces.

We briefly summarize the contents of the paper now. In
Section 2 we introduce the linear support vector machine
as a separating plane classifier midway between and parallel
to two bounding planes, with maximum margin (distance)
between them. See Figures 1 and 2. The bounding planes
attempt to place the two classes of a given dataset on op-
posite sides. The separating plane is obtained by solving
a quadratic program (1) or a linear program (8), depend-
ing on the norm used in measuring the margin between the
bounding planes. In order to incorporate a concave suppres-
sion term in the objective function that eliminates as many
redundant data points as possible and still maintain concav-
ity of the objective function for computational purposes, we
utilize the linear programming formulation (8) and combine
it with a step function in (9) to eliminate as many misclassi-
fied points as possible. This translates into a minimal set of
support vectors that determine the separating plane. The
Successive Linearization Algorithm (SLA) 3.1 obtains a very
effective local solution to (9) by solving 4 to 7 linear pro-
grams. This leads to a classifier with as good or improved
generalization and which depends on a substantially smaller
number of data points when compared to other classifiers,
as shown by the numerical tests of Section 4 on seven pub-
lic datasets. These results indicate a reduction of support



vectors, i.e. data points that define the separating surface,
as high as 81% and a corresponding test set correctness in-
crease of 5.6%.

We now describe our notation and give some background
material. All vectors will be column vectors unless trans-
posed to a row vector by a prime ′. For a vector x in the
n-dimensional real space Rn, |x| will denote a vector in Rn of
absolute values of the components of x. For a vector x ∈ Rn,
x∗ denotes the vector in Rn with components (x∗)i = 1 if
xi > 0 and 0 otherwise (i.e. x∗ is the result of applying
the step function component-wise to x). The base of the
natural logarithm will be denoted by ε, and for a vector
y ∈ Rm, ε−y will denote a vector in Rm with components
ε−yi , i = 1, . . . , m. For x ∈ Rn and 1 ≤ p < ∞, the p-norm
and the ∞-norm are defined as follows:

‖x‖p =

�
n�

j=1

|xj |
p � 1

p

, ‖x‖∞ = max
1≤j≤n

|xj |.

The notation A ∈ Rm×n will signify a real m × n matrix.
For such a matrix A′ will denote the transpose of A, and
Ai will denote the i-th row of A. A column vector of ones
in a real space of arbitrary dimension will be denoted by
e. Thus, for the column vectors e and y in Rm, the scalar

product e′y denotes the sum
m�

j=1

yi. A vector of zeros in

a real space of arbitrary dimension will be denoted by 0.
A separating plane, with respect to two given point sets
A and B in Rn, is a plane that attempts to separate Rn

into two halfspaces such that each open halfspace contains
points mostly of A or B. A real valued function f(x) on Rn

is concave (“mountain-like”) if linear interpolation between
two function values never overestimates the function.

2. THE LINEAR SUPPORT VECTOR MACHINE
We consider the problem, depicted in Figures 1 and 2, of
classifying m points in the n-dimensional real space Rn, rep-
resented by the m×n matrix A, according to membership of
each point Ai in the class A+ or A− as specified by a given
m×m diagonal matrix D with plus ones or minus ones along
its diagonal. For this problem the standard support vector
machine with a linear kernel [20, 8] is given by the following
quadratic program with parameter ν > 0:

min
(w,γ,y)∈Rn+1+m

νe′y + 1
2
w′w

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0.

(1)

Written in individual component notation, and taking into
account that D is a diagonal matrix of ± 1, this problem
becomes:

min
(w,γ,y)∈Rn+1+m

ν

m�
i=1

yi +
1

2

n�
j=1

w
2
j

s.t. Aiw + yi ≥ γ + 1, for Dii = 1
Aiw − yi ≤ γ − 1, for Dii = −1

yi ≥ 0
i = 1 . . . = m.

(2)

Here, w is the normal to the bounding planes:

x′w = γ + 1
x′w = γ − 1,

(3)

and γ determines their location relative to the origin. See
Figure 1. When the two classes are strictly linearly separa-
ble, that is when the error variable y = 0 in (1)-(2), as in
the case of Figure 1, the plane x′w = γ +1 bounds the class
A+ points, while the plane x′w = γ − 1 bounds the class
A− points as follows:

Aiw ≥ γ + 1, for Dii = 1
Aiw ≤ γ − 1, for Dii = −1.

(4)

The linear separating surface is the plane:

x
′
w = γ, (5)

midway between the bounding planes (3). The quadratic
term in (1), which is twice the reciprocal of the square of
the 2-norm distance 2

‖w‖2
between the two bounding planes

of (3) (see Figure 1), maximizes this distance, often called
the “margin”. Maximizing the margin enhances the gener-
alization capability of a support vector machine [20, 8].

If the classes are linearly inseparable then the two planes
bound the two classes with a “soft margin” (i.e. bound ap-
proximately with some error) determined by the nonnegative
error variable y, that is:

Aiw + yi ≥ γ + 1, for Dii = 1
Aiw − yi ≤ γ − 1, for Dii = −1.

(6)

The 1-norm of the error variable y is minimized parametricly
with weight ν in (1) resulting in an approximate separation
as depicted in Figure 2, for example. Points of A+ that
lie in the halfspace {x | x′w ≤ γ + 1} (i.e. on the plane
x′w = γ + 1 and on the wrong side of the plane) as well as
points of A− that lie in the halfspace {x | x′w ≥ γ − 1} are
called support vectors.
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Figure 1: The Linearly Separable Case: The bound-
ing planes of equation (3) with margin 2

‖w‖2
, and the

plane of equation (5) separating A+, the points rep-
resented by rows of A with Dii = +1, from A−, the
points represented by rows of A with Dii = −1.
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Figure 2: The Linearly Inseparable Case: The ap-
proximately bounding planes of equation (3) with
a soft (i.e. with some error) margin 2

‖w‖2
, and the

plane of equation (5) approximately separating A+
from A−.

Support vectors, which constitute the complement of the
strictly separated points by the bounding planes (3), com-
pletely determine the separating surface. Minimizing the
number of such exceptional points can lead to a minimum
length description model [17, p. 66],[1] that depends on
much fewer data points. Computational results indicate that
such lean models generalize as well or better than models
that depend on many more data points. We give in the next
section of the paper an algorithm that minimizes the num-
ber of support vectors that determine the separating plane
as well as the number of input space features.

3. MSVM: A MINIMAL SUPPORT VECTOR MA-

CHINE
In order to make use of a faster linear programming based
approach, instead of the standard quadratic programming
formulation (1), we reformulate (1) by replacing the 2-norm
by a 1-norm as follows [14, 2]:

min
(w,γ,y)∈Rn+1+m

νe′y + ‖w‖1 = ν

m�
i=1

yi +
n�

j=1

|wj |

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0.

(7)

This SVM‖·‖1 reformulation in effect maximizes the margin,
the distance between the two bounding planes of Figures 1
and 2, using a different norm, the ∞-norm, and results with
a margin in terms of the 1-norm, 2

‖w‖1
, instead of 2

‖w‖2
[13].

The mathematical program (7) is easily converted to a linear
program as follows:

min
(w,γ,y,v)∈Rn+1+m+n

νe′y + e′v = ν

m�
i=1

yi +

n�
j=1

vj

s.t. D(Aw − eγ) + y ≥ e
v ≥ w ≥ −v
y ≥ 0,

(8)

where, at a solution, v is the absolute value |w| of w. This
fact follows from the constraints v ≥ w ≥ −v which imply
that vi ≥ |wi|, i = 1 . . . , n. Hence at optimality, v = |w|,
otherwise the objective function can be strictly decreased
without changing any variable except v. We will modify
this linear program so as to generate an SVM with as few
support vectors as possible by adding an error term e′y∗ to
the objective function, where ∗ denotes the step function as
defined in the Introduction. The term e′y∗ suppresses mis-
classified points and results in our minimal support vector
machine MSVM:

min
(w,γ,y,v)∈Rn+1+m+n

νe′y + e′v + µe′y∗

s.t. D(Aw − eγ) + y ≥ e
v ≥ w ≥ −v

y ≥ 0.

(9)

Note that when the error vector y is zero all the points have
been strictly separated by the plane x′w = γ. Thus, the
separation error term in the objective function of (9) results
in:

e
′
y∗ =

m�
i=1

yi∗ = m̄, (10)

where m̄ is the number of positive components of yi, or
equivalently the number of misclassified points by the bound-
ing planes x′w = γ ± 1. This number is directly related
to the number of support vectors as shown below follow-
ing equation (13). The positive parameter µ, chosen by a
tuning set, multiplies the term e′y∗ which eliminates pos-
itive components of the error variable y. The justification
for eliminating components of the error vector y, other than
the intuitive idea of having a separating surface with as few
misclassified points as possible, is as follows. If we define
nonnegative multipliers u ∈ Rm associated with the first
set of constraints of the linear program (8), and multipliers
(r, s) ∈ Rn+n for the second set of constraints of (8), then
the dual linear program [9] associated with the linear SVM
formulation (8) is the following:

max
(u,r,s)∈Rm+n+n

e′u

s.t. A′Du − r + s = 0
−e′Du = 0

u ≤ νe
r + s = e

u, r, s ≥ 0.

(11)

Equality of the primal objective function of (8) and the dual
objective function of (11) imply the (equality) complemen-
tarity conditions of the following Karush-Kuhn-Tucker op-



timality conditions [10, p. 94] for (8):

u′(D(Aw − eγ) + y − e) = 0
u ≥ 0
D(Aw − eγ) + y − e ≥ 0
y′(νe− u) = 0
y ≥ 0
νe− u ≥ 0.

(12)

These optimality conditions lead to the following implica-
tions for i = 1, . . . , m:

yi > 0
=⇒ ui = ν > 0
=⇒ Dii(Aiw − γ)− 1 = −yi < 0.

(13)

Thus, a positive yi implies a positive multiplier ui = ν > 0
and a corresponding support vector Ai that violates (4).
Consequently eliminating positive components of y tends to
minimize the number of multipliers at the upper bound ν as
well as data points Ai that violate (4), that is, points that lie
on the wrong sides of the bounding planes (3). Minimizing
e′y∗ works remarkably well computationally in eliminating
positive components of the multiplier u and consequently
the number of misclassified points.

Even though the discontinuity of the step function term e′y∗
in (9) can be handled directly by an algorithm such as that
of [12, Algorithm 1 SLA], we prefer to approximate it here
by a smooth concave exponential on the nonnegative real
line [11] as was done in the feature selection approach of [2].
For y ≥ 0, the approximation of the step vector y∗ of (9) by
the concave exponential, yi∗ ≈ 1−ε−αyi , i = 1, . . . , m, that
is:

y∗ ≈ e− ε
−αy

, α > 0, (14)

where ε is the base of natural logarithms, leads to the fol-
lowing smooth reformulation of problem (9), the smooth
MSVM:

min
(w,γ,y,v)∈Rn+1+m+n

νe′y + e′v + µe′(e− ε−αy)

s.t. D(Aw − eγ) + y ≥ e
v ≥ w ≥ −v
y ≥ 0.

(15)

Note that:

e
′(e− ε

−αy) = m−
m�

i=1

ε
−αyi . (16)

It can be shown [4, Theorem 2.1] that, for a finite value of
the parameter α (appearing in the concave exponential), the
smooth problem (15) generates an exact solution of the non-
smooth problem (9). We note that this problem is the min-
imization of a concave objective function over a polyhedral
set. Even though it is difficult to find a global solution to
this problem, a fast successive linear approximation (SLA)
algorithm [5, Algorithm 2.1] terminates finitely (usually in
4 to 7 steps) at a stationary point which satisfies the min-
imum principle necessary optimality condition for problem
(15) [5, Theorem 2.2] and leads to a locally minimal number
of support vectors, that is, a minimal number of data points
Ai with positive multipliers ui that completely determine
the separating surface.

Algorithm 3.1. Successive Linearization Algorithm
(SLA) for (15). Choose ν, µ, α > 0. Start with some
(w0, γ0, y0, v0). Having (wi, γi, yi, vi) determine the next
iterate by solving the linear program:

min
(w,γ,y,v)∈Rn+1+m+n

νe′y + e′v + µα(ε−αyi

)′(y − yi)

s.t. D(Aw − eγ) + y ≥ e
v ≥ w ≥ −v
y ≥ 0.

(17)

Stop when:

νe
′(y − y

i) + e
′(v − v

i) + µα(ε−αyi

)′(y − y
i) = 0. (18)

Comment: The parameter α was set to 5. The parameters
ν and µ were chosen with the help of a tuning set surrogate
for a testing set to simultaneously minimize the number of
support vectors, number of input space features and tuning
set error.

We turn our attention now to numerical implementation and
testing.

4. NUMERICAL IMPLEMENTATION AND COM-

PARISONS
Before applying Algorithm 3.1, which typically consists of
solving 4 to 7 linear programs, the dimensionality of w ∈ Rn

was reduced by solving the 1-norm SVM (8), as a single
linear program, with weight ν ∈ [0.01, 0.1] and discarding
components of w less than 10−8 in magnitude. The reason
for this dimensionality reduction, described more fully in [2],
is the presence of the term ‖w‖1 in (7), which suppresses
components of w.

The remaining components of w with the corresponding val-
ues of γ, y and v were used as the initial starting point
(w0, γ0, y0, v0) in Algorithm 3.1. After the termination of
Algorithm 3.1, only support vectors were kept, that is Ai for
which the multiplier ui > 10−8. This small set of support
vectors generated the same stationary point for problem (15)
as that generated by the entire dataset. Such stationary
points, which satisfy necessary optimality conditions, are
typically good candidates to being a global solution to opti-
mization problems of the type considered here.

The smooth minimal support vector machine (MSVM) (15)
which generates a linear separating surface (5) by using a
minimum number of data points was compared with the 1-
norm support vector machine SVM ‖·‖1 (7) as well as the the
1-norm support vector machine with feature selection FSV
[2] which is problem (7) with the added feature-suppression
term µe′|w|∗ in the objective function and smoothed to:

µe
′(e− ε

−α|w|) = µ

n�
i=1

(1− ε
−α|wi|). (19)



This smoothing, similar to that of (15)-(16) except that it
is applied here to |w| instead of y, leads to a selection of
n̄(< n) input space features. The three classifiers MSVM
(15), SVM‖ · ‖1 (8) and FSV [2, Eqn. (8)] were tested
on seven datasets, the first five of which, WPBC, Iono-
sphere, Cleveland Heart, Pima Indians, and BUPA Liver
are from the Irvine Machine Learning Repository [18], while
the Galaxy Dim dataset is from [19], and the Census dataset
is a version of the US Census Bureau “Adult” dataset, which
is publicly available from Silicon Graphics’ website [6]. For
WPBC(60), 110 breast cancer patients were classified into
those who had a recurrence of the disease within 60 months
and those who had not. For the Census dataset, ten fea-
tures were used to predict whether the income of a person
was greater or equal to the mean income or below it. Our
computational results are summarized in Table 1 for the
three classifiers. We make the following observations based
on numerical results:

1. For all test problems MSVM had the least number of
support vectors. This translates into the least number
of data points selected for determining the separating
surface and may be interpreted as a minimum descrip-
tion length model [17, p. 66],[1].

2. For the Ionosphere problem, the reduction in the num-
ber of support vectors of MSVM over SVM ‖ · ‖1 is
81% with a corresponding increase of tenfold test set
correctness of 5.6% with associated p value of 0.0003.
(The p value measures the probability that two test
results are the same, with sameness typically rejected
if p ≤ 0.05 [17]). For the seven datasets, the average
reduction in the number of support vectors of MSVM
over SVM ‖ · ‖1 is 65.8%.

3. Tenfold testing set correctness of MSVM was as good
or better on all seven datasets.

4. Computing times were higher for MSVM than those
for SVM‖ · ‖1 and FSV. For example, one fold testing
for the Galaxy Dim problem took 43.7 seconds on a
400 MHz Pentium II using MATLAB [16], while the
correponding times were 11.2 seconds for SVM‖ · ‖1

and 16.0 seconds for FSV. One justification of the ad-
ditional time taken by MSVM is that it trades support
vector storage space needed to generate a separating
surface, with a one-time additional computational time
expense.

5. CONCLUSION AND FUTURE WORK
We have proposed a minimal support vector machine that
extracts a minimum number of points from a given dataset
in order to define a separating surface that classifies the
dataset into two categories, based on this minimal subset of
the data only. This minimality property which is in the spirit
of Occam’s Razor [1], not only is useful in classifying very
large datasets by using only a fraction of the data, but also
maintains or improves generalization over other classifiers
that use a considerably higher number of data points in
order to determine the separating surface. Elimination of
a large portion of a dataset makes MSVM suitable as an
incremental algorithm that maintains only a small portion
of a large dataset before merging and processing it with

new incoming data. Since MSVM requires the solution of a
few linear programs to determine a separating surface, this
makes it easier than a standard support vector machine that
uses a quadratic programming formulation [20, 8].

Our future work includes the application of MSVM to mas-
sive datasets using chunking approaches [3, 15] that break
a linear program into smaller ones, as well as extension to
nonlinear separating surfaces generated by generalized non-
linear support vector machines [14] where the dependence
on the training data size becomes more critical. The poten-
tial of MSVM as an incremental algorithm will be utilized
in all these applications to solve massive data classification
problems.
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Table 1: Tenfold training and testing correctness, number of features
(#Features) and number of support vectors (#SV) used in seven pub-
lic datasets by an MSVM classifier, and by a 1-norm SVM classifier
without feature selection SVM ‖ · ‖1 and with feature selection (FSV).

Data Set MSVM (Eqn. (15)) SVM ‖ · ‖1 (Eqn. (8)) FSV [2, Eqn. (8)]

m× n Train Train Train

Test Test Test

#Features #Features #Features

#SV #SV #SV

WPBC (60 mo.) 76.4% 69.5% 69.5%
110 × 32 68.3% 62.1% 62.1%

5.0 4.3 2.6
29.6 69.4 69.1

Ionosphere 91.4% 84.6% 91.2%
351 × 34 88.9% 84.2% 86.5%

7.0 7.2 8.1
34.2 179.9 80.8

Cleveland Heart 89.5% 86.8% 87.0%
297 × 13 86.9% 85.8% 85.2%

9.2 8.8 8.9
38.5 109.8 92.4

Pima Indians 76.6% 77.1% 76.9%
768 × 8 79.6% 76.5% 75.9%

7.5 6.8 5.0
150.1 374.8 396.3

BUPA Liver 72.7% 71.3% 70.0%
345 × 6 70.0% 69.9% 67.3%

6.0 6.0 4.5
91.9 236.8 236.7

Galaxy Dim 95.0% 94.4% 94.9%
4192 × 14 94.7% 94.4% 94.7%

5.0 5.0 4.9
193.0 774.0 541.0

Census 94.0% 93.9% 94.0%
20, 000 × 10 94.1% 94.0% 93.8%

9.3 9.8 7.0
1065.0 2745.5 2783.2
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