Paradyn Parallel Performance Tools

Developer’s Guide

Release 3.3
January 2002

Paradyn Project

Computer Sciences Department
University of Wisconsin
Madison, Wl 53706-1685
paradyn@cs.wisc.edu

Developer’'s Guide 1/10/02

Table Of Contents

I O YT T SSS 5.
1.1 Document revisSion NISTOMYoooiiiiiiiiiiciie e e e e e e e e 5
1.2 New functionality for release 3.0 ... e 5
1.3 New functionality for release 2.1ccccuuiiiiiiiiiiiiiie e 6
1.4 Paradyn subsystems and source code StruCtUreccoooeeieeeeeiieiiieeeiiiiiiiieeeennn 7
2 Paradyn Package DEPENUENCIES.........uuuuuuuiiiiieee e e eeeeee ettt e e e e e e e eeeeeeeeeennnn s 9
3 Paradyn Front-Nd.........coooiiiiiiiiiii et Lo 1
IR A B - =AY/ =T = T [PP 11
3.2 VISE MANAGET ...ttt ettt e et a e e e e e e e e e e e e e e eeeeeeeernaane 13
I R T V] T o1 == T 13
3.4 User Interface (Ul) thread ... 16
3.5 Performance Consultant threadccooiiiiiiii e 18
A VISTLIDIAIY ... 20....
R == =T)Y/ I D = 1= 1 T o RS 20
5.1 INTOAUCTION ..ottt e e e e e e e et e e e eaae st n e e e e e e e eeaaaeeeeeeennnes 20
5.2 APPlICALION PrOCESSESoeiiiiiiiiiieeie ettt et e e e e e e e e e e e e e e eeeees 21
5.3 ODbJeCt file PrOCESSING ...eevvviriiiiiiiei et e e e e e e e e 22
5.4 Shared-0DJeCt PrOCESSING ...ccoviiiiiiiiiiiiiii e e e e e aeeaaaaes 22
5.5 Performance data SAmMPlNGuueeeiiiiiiiiiii e 27
5.5.1 Shared-memory Samplingcccoeiiiiiiiiiieeeeeeeee e 27
5.5.1.1 Synchronization issues for shared-memory sampling 27
5.5.1.2 The need for a get-remote-time() primitive 29
5.5.1.3 Source code for shared-memory sampling 29
5.5.2 Alarm SAMPIING coeeeeeiiiiiiiieeee e 30
5.6 Retroactive iNStrUMENTAtiONcooviiiiiiiiiiieiiir e e e e e e e e e eees 30
5.7 DYNAMIC HEAPS ..uuiieii i i et e s e s e e e e ettt s e e e e e e e e e e e e aeeeeesennsnnana 33
5.8 Trampoling GUAITScoeuiiiiiiiiiiiaaie et e e e e e e e e e e e eeeeeeenannn s 35
5.9 TIMEI LEVEIS ..ottt s s e e e e e e e e e e e e e e e e aneernnnne 36
B XBO POIT ... et e et e e e e e eeennnn 38...
A 1 11 D oo o PP 44...
8 Run-time inStrumentation lIDFary..............eei e 46
LS I 0 T I 1 0T o] (=T g =T = U1 o] o SRS a7
9.1 IMPOITANT FIlES ... e e e e e e e e e e e e eeeeaaanae 48
9.2 Lexical and Syntax @analySISccooiiiiiiiiiiiiiiiiiiiii e 49
9.3 Semantic analysis and intermediate code generationccccceeeiiiiiiieeeeeeeneee, 51
9.4 Where these classes are defined ... 52
10 1gen INTErfACE GENETALIONuuiiiiiiriiiiiiieiee aaeaeeaeaaannns 52
10.1 OVEIVIEW OF IgEN .o 52
L0.1.1 SYNOPSIS eeeeeiiiiiiiiieeee ettt e e e e e e e e e e e 52
10.1.2 OULPUL ettt e e e e e e e e e e e e e e e e eees 53
O T G T V=T o o] Y PSPPSR 53
10.2.4 UPCAIIS ..ottt 53
10.1.5 Interface templateooooiiiiiiiii e 53
O D2 [=T I [= 0 0] 0=V PSP 54
11 MAKETIHE ISSUES......etieiiiiiiiiee et e e e e e e e e e et e r e e e e e e e eeeeane 56........
11.1 Overview of Makefile organizationcoooiiiiiiiiiiiiiiie e 56
11.2 Site-depPendENCY ISSUESccoveiiiiiiiiiiiiiiiee e e e e e e e e e e et e eeee et a s s e e e e aaeaaaeeeeeeeennnnnne 57

Developer’'s Guide January 10, 2002 Release 3.3

Table Of Contents

11.3 The DEPENDS i@ ..cooiiiiiiiee ettt 58
0 o =Y o T 1 =P 58
11.5 Building on WINAOWS NT ...t 58
12 MPI APPHCALION SUPPOIT...euiiiiiiiiiiiiieie ettt e e e e e e e e e e e e e e e e e s be e eeees 59
12.1 MPICH SUPPOIT ot e e e e e e e e e e e n e e eea e e e ennnaaaes 59
12.1.1 MPICH job Startup proCeAUIEccooeiiiieiiiiiiiieeeiiiiiiire e 59
12.1.2 Supporting MPICH on other platforms ..., 62

Developer’'s Guide January 10, 2002 Release 3.3

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:

List of Figures Page -iv

Paradyn (and dyninsStAPI) SUDSYSIEMS.uuiiiiiiiiiiiiiiiiie e 7
Paradyn/dyninstAPl module structure and dependencies.cccccceeeeieiiieeeeeeeeeenn, 7
ViSi Manager INTEITACEcooiiiiieiiiieieie e e e e e e e e eeeeeeeees 14
VISIthreadGlobals struct members. ... 15
Process class and shared ObJECES.ooooeiiiiiiiiiiiii e 23
image, module, pdFunction, and instPoint classes.ccccvviiiiiiiiiiineee 24
Data structures of the Paradyn daemon.ccccocoiiiiiiiiiiiiiiiieeeeee e 26
Pseudo-code for startTimer and stopTimer Operationscccccceeeeeieeeeeeeeeeeennn. 28
Pseudo-code for shared-memory sample of a timercccooovviiiiiiiiiicciiieeeenn. 28
Final pseudo-code for startTimer/stopTimer OPerationscccccceeeeeeeeeeeninnnnnnns 29
Final pseudo-code for timer Samplingoooovviiiiiiiiii e 29
Retroactive instrumentation eXample. ... 33
(O U Tor = LY/ I] o 48
An example demonstrating happly() functions work.ccccoeviiiiiiinnnnne 51
IMPOIrtant MDL CIASSES. ..covviiiiiiiiiiiei e e e e s 52
MPICH Job Launch ProCEAUIEcoiiiiiiiiiiiiiiiiee e ee et e e e e e e e e 60
Paradyn MPICH Job Launch Procedureccccceeeiiiiiiiiieeiiiieeeee e 61

Developer’'s Guide January 10, 2002 Release 3.3

Page 5

1 OVERVIEW

This guide is intended to help developers who want to understand the Paradyn source code. Itis a
rough overview to help with modifications, extensions, and porting efforts. This document is con-
stantly being modified and extended. This document assumes that you are familiar with the funda-
mentals of Paradyn from the technical papers, manuals, and use of the tool.

We encourage research developments based on Paradyn and hope that this document is of
some help. The ultimate source of advice on Paradyn (other than the source code itself!) is the
Paradyn development group. Feel free to contact pusaallyn@cs.wisc.edu

1.1 Document revision history

0 v3.0 major revision

* Added new section on Linux-specific implementation: Section 7

» Added new section on retroactive (catchup) instrumentation: Section 5.6

* Added new section on multiple inferior instrumentation heaps: Section 5.7

* Add new section on base-trampoline re-entrancy guards: Section 5.8

0 v2.1 minor revision

» Expanded this overview with summary of new functionality and subsystem dependencies
* Added new section on MDL implementation: Section 9

* Expanded discussion of site dependencies and build configuration in Section 11.2
(and Section 11.5 for Windows NT)

* General update and correction of typos
0 v2.0 major revision

1.2 New functionality for release 3.0

In addition to the new features of summarized in th&er's Guiderelease notes (Section 1.1),
new functionality for Paradyn 3.0 includes:

» ports for x86/Linux and MIPS/Irix
» support for Irix native MPI and MPICH on x86/Linux and x86/Solaris

* multiple inferior instrumentation heaps which support basetramp locality to instrumented
functions and consequent atomic single-instruction instrumentation points

» retroactive (catchup) instrumentation
» callgraph-based Performance Consultant exigency search
* instrumentation re-entrancy guards

Developer’'s Guide January 10, 2002 Release 3.3

Page 6

1.3 New functionality for release 2.1

In addition to the new features of summarized in Weer's Guiderelease notes (Section 1.1),
new functionality for Paradyn 2.1 includes:

application re-linking requirement removed for SPARC/Solaris
(Paradyn now dynamically loads its run-time instrumentation library and works with unmodi-
fied application executables on SPARC/Solaris and x86/Windows NT)

automatic code block identification [on Solaris platforms]

(eliminating the requirement to re-link the application program using explicit code block
markers, now also relevant for x86/Solaris). This removes the needlyfdINSTstartcode
andDYNINSTendcode markers which were previously necessary to delimit “interesting” appli-
cation code, and also leads into the next new feature:

merged processing of statically and dynamically-linked modules, allowing generalized mod-
ule and function exclusion [on Solaris platforms].

In general, the code for handling statically and dynamically linked code on Solaris has unified.
This unification removes the requirement of re-linking target application programs with the
DYNINSTstartcode andDYNINSTendcode markers. It also generally increases the amount of
application code which is instrumented, and necessitates explicitly excluding more modules in
the Paradyn configuration files.

handling of stripped dynamic libraries [under Solaris]
The run-time linker's dynamic symbol tableifnsym) is now parsed allowing instrumenta-
tion of stripped shared objects and stripped dynamic executable files on SPARC&x86/Solaris.

2-pass function relocation and expansion [on SPARC architecture]

Previously, when relocating a function which could not be instrumented in place, Paradyn
made a single pass over the function machine code and patched targets for machine instruc-
tions which specify a code address during this single pass. This meant that instructions which
specified a destination address inside the same function (such as branch instructions) did not
have correct targets if any extra code needed to be inserted between the original location and
the target address. Function relocation is now done in two passes: the first pass detects loca-
tions at which extra instructions will need to be inserted, and the second pass relocates the
function, patching address targets inside of the function accrordingly. This feature is only cur-
rently implemented on the SPARC architecture.

better handling of optimized code [on SPARC architecture].

A number of sequences which appear in heavily optimized SPARC code are correctly parsed
and instrumented by Paradyn version 2.1 which were not correctly handled by the Paradyn 2.0
release. To date these code sequences have only been found in heavily optimized system
libraries (especiallyibc).

more powerful, simplified MDL syntax for metric definition

enhanced metrics for 1/0O in MPI programs [on the SP2]

scalability to monitor larger numbers of processes

easier, parameterized source build (with PVM support now a build option)

Developer’'s Guide January 10, 2002 Release 3.3

Page

1.4 Paradyn subsystems and source code structure

Paradyn consists of several subsystems which are listed in Figure 1.

paradyn
paradynd

dyninstAPI

dyninstAPI_RT
rtinst

visiClients

util
thread
igen

visi

Paradyn front-end.
Paradyn daemon.

A separate library for dynamic instrumentation, also used as part @
Paradyn daemon.

dyninstAPI run-time instrumentation library (not used by Paradyn).
Paradyn run-time instrumentation library.

Visualization client programs for performance data: rthist (run-time
togram), table, barchart, phaseTable, terrain and tclVisi. Also the t
Win program for output data of application processes

Utility functions used by other sub-systems.
General purpose custom multithreading package.
RPC interface generator.

Visi interface library.

7

f the

his-
erm-

Figure 1: Paradyn (and dyninstAPI) subsystems.

“Paradyn” is the front-end control process which typically runs on desk-top workstations.
“Paradynd” is the Paradyn daemon process that run on each host on which you run your applica-
tion program. “dyninstAPI“ contains the code of the dynamic instrumentation application pro-

gram interface, odyninstAPt . In a future release, the “dyninstAPI” directory will contain just
the dyninstAPI library but today it is an intermediate stage in the separation of that functionality

from the Paradyn daemon. “rtinst” is the source for the libii@gyninstRT

that is linked into

each application program to support Paradyn’s dynamic run-time instrumentation. “visiClients”
are separate run-time visualization programs that can be started by Paradyn to display perfor-
mance data. The remaining items (“util”, “thread”, “igen” and “visi”) are libraries and utilities
used by parts of Paradyn and dyninstAPl: component dependencies are summarized in Figure 2.

Core subdirectory Component dependencies

Ut Misi |igen | Other

Basic Components:

libpdutil

Jutil I

Figure 2: Paradyn/dyninstAPl module structure and dependencies.
Libraries and associated include files are common module dependencies, often supplemented
with process interface routines generated by Igen from interface specifications. Occasionally,
direct source sharing is also employed (e.g., between the dyninstAPI and paradynd).

1. also available fromittp://www.cs.umd.edu/projects/dyninstAPI

Developer’'s Guide

January 10, 2002 Release 3.3

Page 8

libpdthread thread
libvisi Visi h exe
igen* igen h&lib
dyninstAPI:
libdyninstAPI dyninstAPI h dyninstAPI_RT
libdyninstAPI_RT dyninstAPI_RT h
Key Subsystems:
libdyninstRT rtinst h
paradynd* paradynd h&lib exe | paradyn, dyninstAPI, rtinst
paradyn* paradyn h&lig h/.l | exe| (libpd)thread, paradynd
Visualizers:
barChart* visiClients/barchart h&lity h&lil] paradyn
phaseTable* visiClients/phaseTablg h&lib h&lip paradyn
rthist visiClients/histVisi h&lib| h&lib paradyn
tableVisi* visiClients/tableVisi | h&lih h&lib paradyn
tclVisi* visiClients/tclVisi h&lib|h&lib paradyn
terrain* visiClients/terrain lih h&lib [paradyn]

Figure 2: Paradyn/dyninstAPI module structure and dependencies.
Libraries and associated include files are common module dependencies, often supplemented
with process interface routines generated by Igen from interface specifications. Occasionally,
direct source sharing is also employed (e.g., between the dyninstAPI and paradynd).

Note: the terrain visi has not yet been ported to Windows NT. While the same source structure
applies, as described in the discussion which follows, differences are dealt with in Section 11.5

The root of the Paradyn source code tree has one directory for each one of these modules.
Each module directory is divided into several sub-directories:

h: this directory contains the exported interface of the module, usually C or C++ header files, or

Igen interface specifications (files with suffiy)..
src : this directory contains the source code for the module and header files that are not part of the

exported interface.
compilation directories<arch>-<vendor>-<os> , as provided byysnamdrom the GNU config-

uration system, one for each supported platform): These directories contain a Makefile and
machine derived files that are built as part of the compilation process, such as intermediate
files generated by Igen, flex, and bison, and object files.

Each module directory also contains a configuration fileké.module.tmpl) that is included
by the Makefile in the compilation directories.

The root directory of the source code tree also contains a Makefile, which can be used to build
all of the components of the system, and three configuration files that are included by the Make-
files in the compilation directories of each module:
make.config : general definitions for all Paradyn modules, such as compilers and other programs

to use, flags, search path for include files, libraries, etc. This file generally needs to be updated

for each installation, with the desired configuration options, valid paths to the programs, and
libraries; see Section 11 for further details.

make.library.tmpl : general definitions for modules that generate libraries.

Developer’'s Guide January 10, 2002 Release 3.3

Page 9

make.program.tmpl : general definitions for modules that generate programs.

The build also uses a shell/command scripildstamp , provided in the scripts directory
(which also includes a copy s&fsname).

A more complete description of the configuration and Makefiles used in Paradyn appears in
Section 11.

2 PARADYN PACKAGE DEPENDENCIES

This section lists the packages needed to build Paradyn on Unix systems: some Windows NT dif-
ferences are mentioned here, but see Section 11.5 for details. For each package, we list where in
the Paradyn source code the package is needed, the version of the package currently used, how to
get the package, and some additional information. If you notice any packages that we have missed
listing below, please let us know.

[0 gcc/g++:
* Where usedcompiling all of Paradyn.

* \ersion:gcc-2.95. We currently build using 2.95.3 for all platforms; Paradyn may compile
with gcc-2.96 (the so-called “Red Hat gcc”), or with gcc-3.0.1, but it will be unable to instru-
ment binaries created with these compilers.

* How to get:ftp://ftp.gnu.org/gnu/gcc/gcc-2.95.tar.gz (or other suitable version).

» Commentsclose to impossible to work without a good C++ compiler. We use some non-stan-
dard features (such as long long), which may not be supported by other compilers.

* Windows NT:Visual C++ 6.0 is used instead. Compiling Paradyn with gcc/g++ is still
untested on this platform.

0 GNU make:

* Where usedbuilding all modules in Paradyn

» \ersion:currently using make-3.74

* How to get:http://wuarchive.wustl.edu/systems/gnu/make-3.74.tar.gz

» Commentswe use includes, conditional defines, and other features specific to GNU-make.

* Windows NTnmakeis used instead, which has a different syntax and capabilities, necessitat-
ing a separate set of make configuration files cati@dke.config , nmake.*.tmpl. These
configuration files may be deleted if you're not working with Windows NT).

O Perls:

* Where usedin the ‘tcl2¢c’ script to convert Paradyn Tcl files to C++; also used (though this
could be easily changed) ritake.config

* \ersion:perl5.xxx

* How to get: http://mox.perl.com/ and explore, or http://wuarchive.wustl.edu/sys-
tems/gnu/perl5.002.tar.gz

» Commentspossible to rewrite tcl2c in almost any language.
* Windows NTrcurrently not needed on this platform.

Developer’'s Guide January 10, 2002 Release 3.3

Page 10

O Tcl/Tk:

* Where useduser-interface of Paradyn, tclVisi package, barChart, tableVisi, etc.
* \Version:Tcl-8.3.3, Tk-8.3.3 (or higher).

* How to get:http://tcl.activestate.com and explore.

 CommentsTcl/Tk enables greater portability for Paradyn’s user interface.

* Windows NT: we recommend using the pre-built binary Tcl/Tk package from
tcl.activestate.com on Windows systems.

0 Xaw, Xext, Xt:

* Where used3D terrain visi.

* \Version:Xaw-5.0, Xext-4.10, Xt-4.10 (or higher).

* How to get:http://www.x.org/ and explore.

» Commentsother versions may require re-compiling rthist.

* Windows NTnot used on this platform.

0 Bison, Flex:

* Where usedtgen, MDL.

* Version:bison v1.24, flex 2.5.2 (or higher).

* How to get:http://wuarchive.wustl.edu/systems/gnu/bison-1.24.tar.gz and flex-2.5.2.tar.gz

* Windows NT:ithese are needed to buitdradynd , and you can either build them from the
sources or look around for pre-built versions for Windows NT.

O libelf: (Linux only)
» Where usedparadyn daemon, dyninstAPI.

» \Version:Use a version appropriate for your kernel version. For example, Red Hat 6.2 users
can use libelf-0.6.4-4.i386.rpm, Red Hat 7.1 users can use libelf-0.6.4-7.i386.rpm.

* How to get:An RPM is included in Red Hat distributions.

 CommentsThis package contains the libelf library and headers, used by Paradyn’s daemon
and dyninstAPI to access ELF files under Linux.

O ONC RPC: (Windows NT only)

* Where usedParadyn daemon, dyninstAPI, libpdutil

» Version:v1.10 or later

* How to get:ftp://grilled.cs.wisc.edu/~paradyn/etc/oncrpcll2winnt.tar.gz

» Commentsthe ONC RPC implementation of Sun RPC for Windows NT originates from Mar-
tin F. Gergeleit (http://set.gmd.de/~mfg/oncrpc.html), however, th&@ Al@XDR.H needs to be
exchanged with the one in the Paradyn release to compile successfully with Visual C++ 6.0.

O rshd:

» Windows NTif you wish Paradyn to be able to automatically start applications and Paradyn
daemon processes on remote Windows NT systemsyshndaemon process, such as

Developer’'s Guide January 10, 2002 Release 3.3

Page 11

WRSHDNT, is required to be running on the remote system.

3 PARADYN FRONT-END

The Paradyn front-end is a multi-threaded system that consists of several modules: the data man-
ager, the user interface, the visualization manager, and the Performance Consultant. Each of these
modules is a separate thread. The Paradyn process starts by creating each module’s thread, and
invoking initialization routines for each thread. After each thread is initialized, the commands in
the Paradyn configuration files are processed, and control is passed to the threads.

The User-Interface thread (Ul) is responsible for receiving user's commands and managing
the display windows (the Paradyn Main Console Window, the Where Axis, and the Performance
Consultant Window). The Data Manager thread (DM) is responsible for handling requests from
other threads for data collection, for receiving performance data from the Paradyn daemons and
delivering them to the requesting threads, and for managing information about phase, metrics, and
the resource hierarchy. The Performance Consultant thread (PC) is responsible for the automated
search for performance bottlenecks in the application. The Visi Manager thread (VM) is responsi-
ble for managing visualization processes (like the run-time histogram and barchart processes) and
for communication between each visualization process and the Data Manager.

The source code for the Paradyn process is divided in several directories, including one direc-
tory for each threadbMthread , PCthread , Ulthread , andVMthread . There is also a directory
calledTcthread , which has code to handle tunable constants. (Tunable constants are not a thread,
however, they are managed by the Ul thread). mbedirectory contains the parser for the Para-
dyn Configuration Language; thasithread directory contains the code for visi threads, which
are created by the VMthread when a new visualization process is startqaiMmhie directory
contains the Paradyn main routine.

The following sections describe the major modules of the Paradyn front-end.

3.1 Data Manager

The Data Manager (DM) is one of the threads of the Paradyn main process. The Data Manager
handles requests from other threads for data collection, delivers performance data from the Para-
dyn daemon(s) to the requesting thread(s), and maintains and distributes information about the
metrics and resource hierarchies for the currently defined application.

Performance data collection

The Data Manager handles requests from other threads for performance data collection. For this
purpose, the DM provides the “public’ procedurgataManager::enableDataRequest

(DMpublic.C). This procedure will receive, among other parameters, the metric/focus pair we
want to enable, the perfStreamHandle of the calling thread, the identifier of the phase for which
data is requested, and other necessary information. This procedure will then call the correspond-
ing procedures to enable the data collection process in the Paradyn daemon(s).

In general, all the requests to the DM from other threads, are handled in thepfitgic.C .

Developer’'s Guide January 10, 2002 Release 3.3

Page 12

Performance data delivery from the Paradyn daemon(s)

Once the data has been successfully enabled, the Paradyn daemon(s) will start sending data to the
requesting threads through the DM. The DM will receive trace records and send them to the
requesting threadMperfstream.C).

Metrics and resource hierarchies management

There are objects that can be created and destroyed and the DM has to notify the corresponding
threads about all these changes. If a new resource is created, for example a new process, then the
Paradyn daemon will make a “call back” to the DM, and then the DM will notify the correspond-

ing threads (e.g. the Ul). Call backs are defined in theHiteain.C.

DM objects

The major objects used in the DM thread are described below. The file in which the class of each
object is defined is given in parenthesis.

These objects, once created, are never destroyed:

resource (DMresource.h): the static items basically manage a “database” of all resources. The
non-static items gives you information about a single resource.

resourceList ~ (DMresource.h): a “list” of all resources in the system.

metric (DMmetric.h). contains all the information related to a metric (e.g. name, units, type,
etc).

phaselnfo (DMphase.h): information about phases in the system.

These objects, once created, can be destroyed:

metricinstance (DMmetric.h): this class contains information about the particular “instances”

of all metrics created during the execution of the application being analyzed. (If a metric is

“enabled”, we are creating a new metric instance; if the same metric is “disabled”, we are

destroying it).
performanceStream (DMperfstream.h). the performanceStream class is basically a consumer

of performance data. Its main function is to provide the means to receive data from the Para-

dyn daemon(s) and send it to the requesting threads.
paradynDaemon (DMdaemon.h): a handle to a running Paradyn daemearddynd). This class

provides method functions for process and daemon control as well as for enabling and dis-
abling data collection. At this moment, if a particular paradynd is removed (e.g., exits), then

Paradyn has to exit too. In other words, we can't destroy a Paradyn daemon in the current

implementation.

All DM objects should be referred to by their handles outside of the DM thread. The only
operation that clients should perform with DM handles is equality testing (this operation will
always be supported by DM handle types, so clients can compare handle values directly), any
other information that a client needs about a DM object can be obtained by passing the appropri-
ate handle to aataManager interface routine.

Within the DM thread, care should be taken when using pointers to objects that are not persis-
tent (netricinstance andperformanceStream)

Developer’'s Guide January 10, 2002 Release 3.3

Page 13

DM handles are not reused over the execution of Paradymdatitinstance andperfor-
manceStream handles may be invalid. For example, enabling a metric/focus pair, disabling it, and
then re-enabling it may result in two different metricinstance handles to be associated with the
pair.

3.2 Visi Manager

The Visi Manager is a thread in the Paradyn process. It contains information about the visualiza-
tions in the system, and it accepts requests from other threads to start or to kill visualization pro-
cesses. When the visi manager receives a request to start a new visualization, it creates a visi
thread. The visi thread then starts the external visualization process, and acts as an interface
between the visualization process and the Paradyn process.

Visi Manager types

The following is a description of the types used by the visi thread (these types are defined in
VMtypes.h):

VMuvisis : The visi manager keeps a vectonofivisis elements. Each element in the vector con-
tains information about a visualization that has been added to Paradyn. The visi manager uses
this information to start the visualization process. (Note:rtla@ix andnumMatrices ele-
ments are not currently used.)

VMactiveVisi : The visi manager keeps a vector\wactiveVvisi elements. There is one ele-
ment in this vector for each visualization process that is currently executing. When a new
visualization process is started, a new element is added to this vector, and when a visualization
process exits, its corresponding element is removed. The visi manager uses the information in
each element to communicate with the visualization process. Each element contains informa-
tion about the type of visualization that is running, and about the visi thread that is associated
with the visualization process.

visi_thread_args : This struct is used when the visi manager thread creates a visi thread. It con-
tains information that the visi thread needs to start the visualization process. (Note: the matrix
element is not currently used.)

Visi Manager interface routines

Visi manager interface routines provide information about visualizations in the system, and pro-
vide a mechanism to control visualization process creation and deletion. These routines are
defined invMm.1 .

3.3 Visi threads

Visi threads are the only threads that are not persistent over the execution of the Paradyn process.
There may exist zero, one, or more instances of a visi thread at any time. They are the only threads
that can be created and destroyed at any point in Paradyn’s execution.

A visi thread is created by the visi manager thread when it receives a request to start a visual-
ization process. The visi thread starts the external visualization process, and acts as an interface

Developer’'s Guide January 10, 2002 Release 3.3

Page 14

VMActiveVisis Returns a vector of information about all visualization processes
currently running.

VMAvailableVisis Returns a vector of information about all the different visualiza-
tions that are part of Paradyn.

VMAddNewVisualization Takes information about a visualization process, and adds it fo its
list of vMvisis elements.

VMCreateVisi Starts a visualization process.

VMDestroyVisi Kills a visualization process.

VMVisiDied Called by a visi thread when its associated visualization process

has exited. It cleans up any state that the visi manager thread has
been keeping for this process.

Figure 3: Visi Manager interface

between Paradyn and the visualization. There is one visi thread for every visualization process
that is executing. The visi thread receives requests from the visualization to change its set of per-
formance data, and forwards these requests to other threads in the Paradyn process. From the
other threads, the visi thread receives performance data and meta data that it packages and for-
wards to the visualization process.

Because there can be multiple instances of a visi thread, visi threads must use thread local data
to keep any unique information that they need to interact with their associated visualization pro-
cess.

Visi thread types

Types used by the visi thread are definedti®ithreadTypes.n . Each visi thread has an element

of type ViSithreadGlobals in its local data. This element contains state information about the
visualization process it is associated with, and about the other threads with which it needs to com-
municate. Figure 4 provides a description of this struct.

The Visi thread and the Visi interface

Each visi thread is a client instance of the visi interface, and each visualization process is a server
instance of the visi interface. The visi interface is definedidth . The visi server routines are
implemented in Paradyn’s visualization library (visiLib). This library is then linked with visual-
izations that want to receive Paradyn performance data. For a complete description of visiLib see
theParadyn Visi Programmer’s Guide

The visi thread implements the visi interface client routines. These are upcalls that are made
by the visualization process to the Paradyn process, and they provide a mechanism for a visualiza-
tion process to subscribe or un-subscribe to performance data, or to start a new phase. When the
visi thread receives an upcall from a visualization process, it typically makes one or more calls to
other threads in the Paradyn process to satisfy the visualization’s request.

Developer’'s Guide January 10, 2002 Release 3.3

Page 15

Field Use

ump Used to call user interface RPCs.

vmp Used to call visi manager RPCs.

dmp Used to call data manager RPCs.

visip Used to communicate with the visualization process.

ps_handle Used as an identifier by the data manager, data manager calls and
callbacks typically have gerfStreamHandle argument.

fd File descriptor used to communicate with the visualization process.

buffer A buffer of performance data (the visi thread sends data to the visu-
alization process a buffer full at a time).

quit Flag that tells the visi thread to exit.

start_up Flag that tells the visi thread that there is some initialization that it
needs to do.

bucketWidth Bucket width associated with the data buckets that are being sent by
the data manager to the visualization process.

currPhaseHandle Handle for the current phase.

args Arguments used to start the visualization process.

mrlist List of metric/focus pairs that the visualization process is currently
subscribed to.

request, Stores information about any outstanding enable requests thaf have

retryList, been made by the visualization.

numEnabled...

Figure 4: VISIthreadGlobals struct members.
The Visi thread and the Data Manager

The visi thread makes data enable, and disable requests to the data manager thread on behalf of
the visualization process. A data enable request is asynchronous, so the visi thread must keep state
about the request until it receives an asynchronous upcall from the data manager with the
response. Once the visualization has subscribed to some performance data, the data manager
thread will send this data to the visualization’s visi thread. The visi thread packages the data and
sends it to the visualization process.

The visi thread is a data manager client thread, and thus implements data manager client rou-
tines. Since there are other data manager client threads in the Paradyn process, each thread con-
tains code that implements its version of the data manager client thread routine, and then it
registers this routine as a callback with the data manager thread. When the data manager makes an
upcall to a data manager client thread, the client thread’s callback routine is called.

Developer’'s Guide January 10, 2002 Release 3.3

Page 16

To communicate with the data manager, the visi thread must first create a performance stream.
When the visi thread makes a request to create a performance stream it also registers all its call-
back functions with the data manager. The data manager returns a performance stream handle that
is used in all subsequent communications between the visi thread and the data manager.

Interface routines

The visi thread acts more as a client thread in the Paradyn process, and thus only has one server
routine defined iviSithread.|

VISIKillVisi : called by the VM thread when a request is made to kill the visualization pro-
cess.

The filevisithreadmain.C ~ contains the VISIthread main loop, and callback routines for Ul,
and DM upcalls.

The fileVisithreadpublic.C contains VISIthread server routines, and visi interface upcalls.

3.4 User Interface (Ul) thread

The user interface (Ul) thread handles all graphical displays in Paradyn. It has several tasks to per-
form, including the Where Axis Window, the Tunable Constants Window, the Paradyn Main Con-
sole Window, the Performance Consultant Window, the Error Dialog Window, the Call Graph
Window, etc. For the most part, these tasks are handled via the Tcl/Tk package. Simultaneously,
however, the Ul thread must listen for Igen messages from the data manager thread; the most
numerous being “new-resource” messages, which require the Ul thread to add items to the Where
Axis display.

Ul main loop

Ulmain() of file Uimain.C is the entry point to the Ul thread. After creating a number of tunable
constants, it callsitialize_tcl_sources() to read in Paradyn’s Tcl code. The sourae (
files) for such code is in thgaradyn/tcl directory. When compiling Paradyn, the “tcl2c¢” script
converts the tcl fles into a tcl2c.C file, which contains a function
initialize_tcl_sources() . Calling this function (as Ulmain does now) reads in all of our Tcl

scripts. For this reason, thel . files do not need to be distributed in a binary release of Paradyn.

Ulmain() soon callsnsg_bind() 0onXConnectionNumber() of the X display. In this way, we
can wait for X events. X provides a number of functions (sucknestEvent()) to do this more
cleanly, but since the Ul thread needs to wait not just on X events but also for Igen messages, this
roundabout approach is needed.

The main Ul loop is as follows. The routin@ocessPendingTkEventsNoBlock() is called
to process any pending X events (i.e., any Tcl/Tk graphical events) without waiting. Then, we call
libthread'smsg_poll() , which will wait for either an Ilgen message, an X event, or a keyboard
event (previous calls tesg_bind() determines whainsg_poll waits for). We then determine
which of the 3 events occurred, and process the event accordingly. For X events we call
processPendingTkEventsNoBlock() ; for keyboard events, we cabtdinProc() ; for lgen
events we call the appropriate Igen waitLoop() routip@cessPendingTkEventsNoBlock()

Developer’'s Guide January 10, 2002 Release 3.3

Page 17

simply calls Tk_DoOneEvent() until no more Tk events are pending. In this way, we handle
mouse clicks, etc., in all of Paradyn’s windows.

Where AXxis
In paradyn/src/Ulthread , files dealing with the where axis armehereAxish and .C,
where4dtree.h and.C, whereAxisTcl.h and.C, where4treeConstants.h and.C, rootNode.h

and.c, andabstractions.h and.c . Miscellaneous graphical routines are suppliedcioll-
bar.h and.C andtkTools.h and.c. Classes helping calculate exactly which node was clicked
on are irsimpSeq.h and.C andgraphicalPath.h and.c.

Classabstractions (abstractions.h and.c) holds all of the where axes, and also main-
tains variables to manage the Tk window. Mettwad() is called when a new where axis (a new
abstraction) is created.getCurrent() returns the current where axis structure.
getCurrAbstractionSelections() returns the set of resources selected. ClassreAxis
(whereAxis.h and.C) holds information on a single where axis. VariabdetPtr is the root
node of this where axis. Clagseredtree (wheredtree.n and.c) holds information on a single
node in the where axis. MembaetieChildren holds the vector of children of this node.
addcChild() is called when a new child is createtlaw() draws the node and recursively draws
the children. Methodiraw_listbox() draws a node’s listbox; methadroll_listbox() han-
dles scrolling it. ClassootNode (rootNode.n and .C) defines the input class to the template
classwherestree<> . File whereAxis.tcl contains the part of the where axis code that is written
in the Tcl/Tk language. It mainly concerns the frame of the window and its menus. The body of
the where axis is drawn in C++ code using a combination of calls to internal Tk C language rou-
tines and Xlib routines (for speed).

Performance Consultant window (Search History Graph)

In paradyn/src/Ulthread , files dealing with the Performance Consultant display are
shgPhases.n and shgPhases.C , shg.n and shg.C , shgRootNode.h and shgRootNode.C
shgTcl.h andshgTcl.C , andshgConsts.h andshgConsts.C . Files shared with the where axis
are wheredtree.n andwheredtree.C as well as helper classes providedstfollbar.h and
scrollbar.C , tkTools.h andtkTools.C , simpSeq.h andsimpSeq.C , andgraphicalPath.h

and graphicalPath.C . shgPhases.h andshgPhases.C provide classhgPhases , which man-
ages the collection of search history graphs (one per phase). Methag() switches displays;
draw() draws the current search history graphdNode() adds a node to the current graph;
addEdge() connects a node to its parent; amdpfigNode() changes a node’s semantics (i.e.
true, false, unknown, etc.3hg.n andshg.C provide classhg, which manages a single search
history graph. There are many internal similarities towhereAxis classrootPtr holds the root
node of this shgdraw() draws the shgaddNode() adds a node to the shgonfigNode()
changes a node’s semantic meanug@iEdge() connects a node to its parewhere4tree.n and
wheredtree.C manage an individual node of clasgsg ; it was discussed above in the where axis.
shgRootNode.h andshgRootNode.C manage classhgRootNode , the template input parameter to
classwhereatree<> . File shg.tcl constrains the part of the Performance Consultant window
written in the Tcl/Tk language. It mainly concerns the frame of the window and its menus. As

Developer’'s Guide January 10, 2002 Release 3.3

Page 18

with the where axis, the shg itself in the center of the window is drawn entirely with calls to inter-
nal Tk C routines or Xlib routines, for speed.

Tunable constants

The tunable constants dialog is managed tdfTunable.tcl in paradyn/tcl . Routine
tunablelntialize() sets things up; routingrocessShowTunableDescriptions() creates the
Tunable Descriptions dialog.

tclTunable.h andtciTunable.C (in paradyn/src/Ulthread) provide the implementation
of a “tclTunable” command that is called from the abowxe .files to gain access to the internal
tunable constants database.

The internal tunable constants database is maintainedufileisieConst.h and tunable-
Const.C (in paradyn/src/TCthread).

Status lines

The status lines (which appear in the Paradyn main console window) are managed internally by
Status.n andStatus.C (in paradyn/src/Ulthread). Some of the code to manage the status
lines is written in Tcl/Tk; filestatus.tcl (in paradyn/tcl) has that code. Status lines for
nodes/processes are distinguished from generic Paradyn and application status lines, appearing in
a separate resizable and scrollable area of the console window.

Paradyn Main Control window

Most of the Paradyn main window is managed by Tcl/Tk code. RkilenMenu.tcl (in
paradyn/tcl) creates the window, its menus, etc. Routinessiig.tcl , whereAxis.tcl
tclTunable.tcl are invoked when the Performance Consultant, Where Axis, and Tunable Con-
stants, respectively, are chosen from the main window’s menu. These files have been discussed
previously.startVisi.tcl is invoked when “Start A Visi” is chosen from the main window’s
menu.mets.tcl is invoked when Paradyn needs a metric selection from the user (in response to a
visualization add requesgpplic.tcl maintains the dialog box for starting a new application.

3.5 Performance Consultant thread

The Performance Consultant (PC) thread conducts an automated search for performance bottle-
necks. One search may be conducted per phase, for a maximum of two simultaneous searches
(one global, one current). The Performance Consultant thread interacts with the DM thread to
enable/disable metric/focus pairs and for information about resources, and interacts with the Ul
thread to control the content of the Performance Consultant window. The Performance Consultant
may be viewed as a stream of incoming data, a set of experiment definitions, and a search control
strategy for starting and halting individual experiments.

Developer’'s Guide January 10, 2002 Release 3.3

Page 19

The data stream

Data is obtained by making instrumentation enable requests of the daemon via the data manager.
The incoming stream of data is handled by a series of filters. A filter is defined by two base
classes, dataProvider and dataSubscriber. There are three types of filters in the Performance Con-
sultant:

PCfilter (dataProvider)
in: raw data manager data for a single metric/focus pair,
out: average metric/focus values for uniform time intervals,
subscribers: one or morEmetricinst S.

PCmetriclnst (dataSubscriber, dataProvider) :
in: PCfilter ~ output for uniform time intervals for a set of metric/focus pairs,
out: computed from data plus specified arithmetic operator, for a particular time interval,
subscribers: one or more experiments.

experiment (dataSubscriber)
in: PCmetricinst output (a single value),
out: changeConclusion , changeTruth calls to the search node,
subscribers: none.

Experiment definition

A PCmetric is a set of data manager metrics plus an arithmetic operation (currently +, -, *, /,
max). A hypothesis is a specification of a condition to test for plus the data and computation nec-
essary to perform the test. The computation is specifiecPasnatric plus a threshold. An exper-

iment is defined by a hypothesis plus a particular focus. Using the hypothesis definition, the
appropriate metric/focus pairs are enabled for rlaenetric ; once data starts flowing from the

data manager the resulting value is periodically compared to the threshold. The set of hypotheses
is hierarchical and is referred to as the Why Axis.

Search control

All data structures for one search are gathered in an instarrese#rch : PCmetricinstServer

is the data sourcesearchHistoryGraph is a DAG which contains all info about the tests per-
formed; and two statieriorityQueue S, one global and one current, hold all ready search nodes.
The total cost of instrumentation is controlled by three thresholds: a cost limit, the total number of
active experiments, and the total number of pending enable requests.

Starting up a particular experiment

1. Get estimated cost: when a node is expanded, a request is made to the Data Manager for the
predicted cost for each new child node; pointers to the new PCmetric filters are stored on a
waiting list costServer::costRecords . When the cost is received from the Data Manager,
the record is retrieved, and methogbateEstimatedCost() is invoked for the appropriate
PCmetric filter. The PCMetric filter notifies the experiment, which invokes
searchHistoryNode::estimatedCostNotification() . The shn routine places the node

Developer’'s Guide January 10, 2002 Release 3.3

Page 20

onto the PC run queue.

2. Enable request(s): when a node is launched from the PC run queue, one or more enable
requests are made to the Data Manager for the metric/focus pairs used by that experiment.
None to all of these pairs may already be enabled, in which case the existing data filter is sub-
scribed to and no new request goes to the Data Manager. As each response comes back from
the Data Manager, the PCmetric filter is notified; when all required data is enabled, the exper-
iment is notified and the node display is changed to active.

3. Change to true: when a node’s status changes from unknown to true, both parent and children
may be affected. If the parent is virtual, its truth value is just the OR of its children’s, so its
truth value may change. If the node has not been expanded, it is so at this time, and estimated
cost is requested for each child (step 1 above). If the node has been expanded in the past, then
the child nodes will already have an estimated cost; they are added back to the run queue to
await step 2 above. In most cases a change from false to true is not possible, since nodes are
deactivated when they become false: this can happen, however, if the node is persistent or if
the node’s parent changes.

4. Change to false: when a node’s status changes from unknown to false it is deactivated and not
expanded. If it changes from true to false then it must be deactivated, plus its parent(s) and
children must be notified. Every node but the root must have at least one true parent to remain
active, so notifying the children generally results in deactivating them.

4 VISI LIBRARY

VisiLib is a library and remote procedure call interface for accessing Paradyn performance data in
real-time. VisiLib provides an open interface to Paradyn data, and allows a programmer to build
external visualization processe¥iqis). All performance visualizations in Paradyn are imple-
mented as visis. The visi programmer uses the interface definaslifization.h to access
performance data. VisiLib uses the Igen interface that is definediim to communicate with
Paradynvisualization.C contains the implementation of routines defined in both these header
files. VisiLib also defines a typebétaGrid) that is the visualization’s interface to performance
data. A complete description of VisiLib can be found inRaeadyn Visi Programer’s Guide

5 PARADYN DAEMON

The Paradyn daemompdradynd) is the back-end of the Paradyn tool. When running a parallel
program (such as MPI), there will be several daemons running at the same time, one on each
node. Eaclparadynd communicates, using Igen RPC calls, with the Paradyn front-end. There is
no direct communication between the Paradyn daemons (except in the case where a daemon is
responsible for starting other daemons).

5.1 Introduction

Paradyn daemons have several responsibilities:
1. Starting and controlling the execution of application processes.
2. Reading the application’s symbol table.

Developer’'s Guide January 10, 2002 Release 3.3

Page 21

3. Reading the application’s binary image to find instrumentation points.
4. Evaluating metrics, generating code, and inserting instrumentation into application processes.

5. Periodically sampling performance data from the application and forwarding values to the
Paradyn front-end (Section 5.5).

Daemons are started by the Paradyn front-end usingor rexec (when the Paradyn front-
end runs on a different machine/node than the applicatiofe)lor/exec (when the Paradyn front-
end runs on the same machine/node as the application; Windows NTreae®rocess). The
front-end passes the flavor of the daemon (e.g. PVM, MPI, etc.), the name of the machine where
the front-end is running and socket address for connection as command line arguments to the dae-
mon. The daemon then connects to the front-end. When PVM is being used, only one daemon is
started by the front-end. This daemon then uyses spawn to start the other daemons on all
nodes of the PVM virtual machine. (The code to parse arguments and connect to the front-end is
in main.C , and the code to start spawning other Paradyn daemons with PVM is in
pvm_support.C)

The interface between thearadynd processes and the Paradyn front-end is defined in file
paradyn/h/dyninstRPC.h . In most cases thgaradynd acts as a server, receiving requests from
the Paradyn front-end, but there are also many upcalls fromatagynd to the front-end. Most
RPC calls defined in the interface are implementedyimpc.C , where calls to other modules of
theparadynd process are made as appropriate.

Daemons start application processes usirigexec ~ (Windows NT use<reateProcess).
Daemons usptrace or/proc file system calls to insert instrumentation into the application pro-
cesses (Windows NT us@sadProcessMemory andWriteProcessMemory). The standard output
and error messages of the application and Paradyn daemon are redirected to a Tcl/Tk front-end
terminal window. Output from Paradyn daemon is displayed in a different color from that of the
application.

The functioncontrollerMainLoop() (defined inperfstream.C) is the main loop of the
paradynd . At each iteration of this loop, the daemon checks for data coming from the application
processes through the pipes, for requests by the front-end, and for signals received by the applica-
tion processes.

Before going into its main loop, each daemon received metric definitions from the Paradyn
front-end. The representation of the metrics is provided ipattaglyn/h/dyninstRPC.h file.

5.2 Application processes

The classrocess (defined inprocess.h /process.C) provides a representation for application
processes. It provides machine independent abstractions for creating new process, running, stop-
ping, reading, writing, and intercepting signals of application processes.

Several methods of the class process have platform-dependent implementations, in the form of
ptrace calls orioctl calls to the/proc file system. This platform-dependent functions are
implemented in the operating system specific figgs {olaris.C , aix.C).

The classnferiorHeap , also defined irprocess.h/process.C , provides a representation
for the inferior heap in the application process, and functions for allocating and de-allocating
memory blocks. The inferior heap is a block of memory in the application process address space

Developer’'s Guide January 10, 2002 Release 3.3

Page 22

where the daemon writes instrumentation code. In addition, on platfootsupporting shared-
memory data sampling (Section 5.5), the application also stores its counters and timers here.

5.3 Object file processing

The Paradyn daemon reads the object file of an application process to find the symbols (functions,
modules, and global data) and instrumentation points. Theielags (defined insymtab.h) pro-

vides a representation for the application’s object image. The first step in the processing of the
object file is to read the.out format file and obtain the symbols, and the address and size of the
code and data segments. The class symbol (definel/iwsymbol.h) provides a representa-

tion for symbols. The filautil/h/Object.h defines abstract classes for object files. Each plat-
form has its own implementatiombject-elf32.h (for Solaris 2.x), andbject-xcoff.h (for

AlX).

Once the symbol table is processed, the functions of the application process are defined. The
classpdFunction provides a representation for functions. For each function, the métiod
stPoints Of the clasgdFunction is invoked to find the instrumentation points for that function.
The methodindinstPoints() has one implementation for each architecture supported by Para-
dyn (currently sparc, mips, x86, and power). The implementations are inifgtesgparc.C
inst-mips.C, inst-x86.C , andinst-power.C

ClassinstPoint provides a representation for instrumentation points, defining the address of
the point, the instructions to be relocated, and other relevant information. The class is defined in
the architecture dependent filéstsparc.C ,inst-power.C andinst-x86.C).

5.4 Shared-object processing

On Solaris platforms, Paradyn supports instrumentation of dynamic executalilgaafic exe-
cutableis one that is created by dynamically linking shared libraries (cadleared objecis

When the Paradyn daemon processesan file of a dynamic executable, many of the symbols

are undefined. These undefined symbols are from shared objects that are bound at runtime by the
run-time linker.

Developer’'s Guide January 10, 2002 Release 3.3

Page 23

Figure 5 shows the data structures used by the Paradyn daemon to keep track of shared object
information for each process. This figure shows three process objects, one for each process run-

process 1 process 3
a.out a.out
shared objects shared objs
base addr| base addr base addf
image, | image, | image = 7 7
y —\ & N & O j
a.out |;|libc.so.1 | libm.so.1|libdl.so.1| libmp.so.l a.out
Image |;| Image | | image Image ||| Image Image
- J
*
! rocess 2 N
P Images shared
shared objs by all processes
a.out

Figure 5: Process class and shared objects.
Process 1 and process 2 are the same executable and shawé and shared object images.
Process 3 is a different executable, running on the same host, which has some of the same
shared object images as process 1 and 2, but a differamit image.

ning on the host. Each process contains pointers to image structures. There is one image object for
each unique executable file and shared object file processed by the Paradyn daemon. In this exam-
ple, process 1 and process 2 are executing the sanne files; they both contain pointers to the
samea.out image. Process 3 is executing a differantit file; it contains a pointer to a different

a.out image. Each process object also contains a list of pointers to shared object images and a list
of base addresses associated with these shared objects. Since two different executables can have
the same shared object mapped into their address space at different addresses, the addresses of the
instrumentation points of functions in shared objects may differ across processes. Rather than cre-
ate multiple image objects for shared object files, each process keeps track of the base address of
where it has the shared object mapped and then contains a pointer to the shared object’'s image.
This way, only one image object needs to be created for each unique shared ahjeict.or

Developer’'s Guide January 10, 2002 Release 3.3

Page 24

Figure 6 shows the relationship between tihege , module , pdFunction , andinstPoint
classes in the Paradyn daemon. Each image contains a set of modules, and each module consists
of a set of functions. For each such functiomd&unction object is created. This class contains
information about each function, such as the function’s name, address, and size. Each function
also contains several instrumentation points. Currently, function exit, function entry, and pre- and
post-call site instrumentation points are defined for each function. Paradyn createBdiit
object for each of these instrumentation points.

image
Imodules | |
§\§ pdFunctions &\\}\x
I |
.
__|instPoints | ins.tPo.ints

Figure 6: image, module, pdFunction, and instPoint classes.
Each image consists of a number of modules, each module consists of functions, and each
function consists of a number of instrumentation points.

All address information stored instPoint andpdFunction objects is kept relative to the
image in which it is contained. This means that when inserting instrumentation into functions that
are contained in a shared object, the base address value stored in the process object must be added
to the address in the instPoint to find the correct location to write to in the process’s address space.
As a result, newinstPoint , pdFunction , andimage objects do not need to be created for every
process that dynamically links a particular shared object.

Metric Evaluation and Code Generation
When a user or the Performance Consultant enable a metric/focus pair, the daemon must evaluate
the metric, generate code, and insert instrumentation into the application process. Most of the

code to do the metric evaluation is in fi&ll.C . The metric is evaluated producing an intermedi-
ate code representation in the form of abstract syntax trees (akassde defined in file

Developer’'s Guide January 10, 2002 Release 3.3

Page 25

asth/ast.C). The abstract trees are then translated into machine code, which can be inserted
into the application processes. There are different implementations of the code generator, one for
each supported architecture, in fiigs-sparc.C , inst-power.C andinst-x86.C

Each metric/focus pair is associated with counters or timers, which are objects allocated in the
inferior heap and operated by the instrumentation code inserted in the application process. Each
allocated timer or counter is represented in the Paradyn daemon by an object dfnelazs-
dle orintCounterHandle , defined innst.h

The clasgnstinstance , defined ininstP.h , provides a representation for instrumentation
instances (a chunk of code inserted at some instrumentation point in a process). The functions
addinstFunc() anddeletelnstFunc() , defined ininst.C , are used to insert and delete instru-
mentation instances in an application processinstFunc() allocates base and mini-trampo-
lines as needed, generates branches from the instrumentation points to the base trampolines, and
from trampolines to other trampolines.

Each enabled metric/focus pair is represented by an object of ekasDefinitionNode
(defined inmetric.h). There are two types afetricDefinitionNodes , aggregates and non-
aggregates. A metric/focus pair is always represented by an aggnegeatPefinitionNode
Each aggregat@etricDefinitionNode has one or more components associated with application
processes. The components are non-aggregaeicDefinitionNodes . A component
metricDefinitionNode can belong to one or more aggregagéicDefinitionNode

Each component is associated with a timer or counter, and for each component, instrumenta-
tion is inserted into the application process to periodically sample the value of the timer or
counter, writing the values in a pipe that is read by the daemon. Each timer or counter has an
unique identifier, that associates that timer or counter with a unique component. Once a sample is
received, this identifier is used to find the corresponding component. The value is passed from the
component to its paremietricDefinitionNode , aggregated with the values from other compo-
nents, and forwarded to the Paradyn front-end.

Developer’'s Guide January 10, 2002 Release 3.3

Page 26

Figure 7 shows thenetricDefinitionNode data structure and its relation to other data struc-
tures. Note: the data structure hierarchy presented in Figure 7 only corresponds to that for the
alarm sampling case (described in Section 5.5.2). These structures are currently evolving to cater
for multi-threaded programs and the dyninst API.

metricDefinitionNode
P metricDefinitionNode
P P
dataReqNode * instrReqNode ~ *
P r ______ - - - - - - - - - - — =
I
| P P
intCounterHandle
or I'| instinstance instPoint AstNode
timerHandle |
| ~
7
| P
7
__________ _ s
e
P P e P
instinstance . . % .
(sampler function) InstPoint pdFunction dataReqNode *
module
P =one per proc_ess
* = one or more instances image

Figure 7. Data structures of the Paradyn daemon.

Developer’'s Guide January 10, 2002 Release 3.3

Page 27

5.5 Performance data sampling

Performance data sampling is (along with dynamic instrumentation) one of the major tasks per-
formed by the Paradyn daemon. Typically, instrumentation code inserted into an application will
write performance data to various counters and timers. Periodically (up to 5 times per second), the
Paradyn daemon is responsible gamplingthese counters and timers, to be forwarded to the
Paradyn front-end for processing by the Performance Consultant and visis.

Since the actual counters and timers reside in the application’s address space, it is not immedi-
ately obvious howaradynd canefficientlysample them. Since a Paradyn daemon always runs on
the same node as the application it is controlling, efficiency and perturbation are concerns. Cer-
tainly, paradynd could pause the process and extract the data ysiag: or /proc , but this
would be too slow and intrusive. In this section, we will describe the two (very different) imple-
mentations of sampling currently implementediiadynd . The first (and much more efficient)
is called shared-memory samplinghe second is calledlarm-sampling Which one is used
depends on the platform; for reasons discussed below, shared-memory sampling is implemented
on most platforms.

5.5.1 Shared-memory sampling

In a shared-memory samplingradynd , a shared-memory segment (created wittnget() on

UNIX, CreateFileMapping under Windows NT) holds the counters and timers that need to be
sampled. Both the application apdradynd in turn attach to this segment (usisgmat() on

UNIX, OpenFileMapping andMapViewOfFile on Windows NT). Sincegaradynd is attached to

the segment, it can sample the counters and timers simply by reading directly from the segment’s
memory—the application need not know or care that it is being sampled. This contrasts with
alarm sampling (Section 5.5.2), which requires the application to take an active role in sampling
itself.

There are two complications that arise when implementing shared-memory sampling. First,
since the application may be writing to a counter or timer whiedynd is sampling it, there
needs to be some synchronization. Second, due to the semantics of sampling an active timer (one
which has been started but not stoppedjadynd needs the ability to obtain the virtual (CPU)
time of the application. Operating systems lacking such a primitive cannot use shared-memory
sampling, and must use alarm sampling instead.

We now discuss these two complications in greater detail.

5.5.1.1 Synchronization issues for shared-memory sampling

Since instrumentation code inserted into an application may write to a counter or timer just as it is
being sampled (read) paradynd , care must be taken to ensure that a consistent value gets sam-
pled.

For counters (integers), no special precautions are needearatfynd samples an integer
while it is being modified, then either the old or new value will be sampled. Since both values are
consistent, either is suitable.

Developer’'s Guide January 10, 2002 Release 3.3

Page 28

Sampling timers is more complicated. Consider the pseudo-codefaimer /stopTimer
operations (Figure 8), and fosaradynd 's shared-memory sampling of a timer (Figure 9).

startTimer(tTimer *t) {

(1) if (t->count++ == 0) {

(2) t->start = get-current-time()

3 }
}
stopTimer(tTimer *t) {

1) if (--t->count == 0) {

(2) t->total += get-current-time() - t->start

3 }
}

Figure 8: Pseudo-code for startTimer and stopTimer operations

(1) sampled-value = t->total,

(2) if (t->count > 0) {
/I applic has done a startTimer but not (yet)
/I a corresponding stopTimer

3) sampled-value += get-remote-time() - t->start

}
Figure 9: Pseudo-code for shared-memory sample of a timer

Assume that we are measuring the time spent in fundgtiofy . To do this, the entry point of
foo() is instrumented witBtartTimer() and the exit point is instrumented wiskopTimer()
Furthermore, assume thiab() is a long-running function (say 5 minutes), so a long time can
elapse between thsartTimer() and stopTimer() . If sampling occurs after the timer was
started, but before it was stoppeciotal will not include the time that has elapsed since the
latest callstartTimer() . Line 3 in Figure 9 ensures that the sampled value includes that interval.
It assumes the existence ofget-remote-time(primitive—a way for paradynd to somehow
obtain the current time of the application being measured. (Theremotecomes from the fact
that they're different processes.)

Now that we understand the basic code daftTimer , stopTimer , and sampling, we can
explain the need for synchronization. Imagine if a sample is taken after the application has exe-
cuted line 1 in Figure 8 but before it has executed any of line 2. In that g&aeynd will see the
count field non-zero, so it will execute line 3 of Figure 9, using an undefined valuataf !

Clearly, some kind of synchronization is needed. Note that an interrupt of some sort (such as a
thread context switch or a signal handler) could happen at any time, and if such code re-enters the
instrumentation code, deadlock would result. In short, using locks would render instrumentation
code unsafe for reentrancy. Our solution involpestector variablestwo counters which are part
of the timer structure. ThetartTimer ~ andstopTimer operations increment the first protector
variable, then perform their work, then increment the second protector variable. The sampling
routine reads the second protector variable, then the count, start, and total fields, and finally the
first protector variable. Note that the protector variables are read in the reverse order that they are
written. If the (sampled values of) the two protector variables are equal, then the sampled values
of the count, start, and total fields are consistent. If not, the sample is thrown out, and the timer is
re-sampled later. Figure 10 and Figure 11 show the new codsaiorimer , stopTimer , and
sampling.

Developer’'s Guide January 10, 2002 Release 3.3

Page 29

startTimer(tTimer *t) {

Q) t->protectorl++;
(2 if (t->count++ == 0) {
3) t->start = get-current-time()
(4) }
(5) t->protector2++;
}
stopTimer(tTimer *t) {
Q) t->protectorl++;
(2) if (--t->count == 0) {
3) t->total += get-current-time() - t->start
(4) }
(5) t->protector2++;
}

Figure 10: Final pseudo-code for startTimer/stopTimer operations

(1) prot2 = t->protector2;

(2) sampled-value = t->total,

(3) if (t->count > 0)

4) sampled-value += get-remote-time() - t->start
(5) protl = t->protectorl;

(6) if (protl==prot2) {

(7) use sampled-value ;reportitto front-end
(8) } else {
(9) throw out the sample; re-sample later

}

Figure 11: Final pseudo-code for timer sampling

5.5.1.2 The need for get-remote-time(primitive

We have not found a way to implement tget-remote-time(primitive in line 3 of Figure 9 (and

line 4 of Figure 11) on all platforms; this prevents shared-memory sampling from being ubiqui-
tous. Simply put, there isn’t a standard way in UNIX to obtain the virtual (CPU) time of another
process (in this casearadynd needs to obtain the virtual time of the application process). The
Iproc file system does provide a way; hence, shared-memory sampling is implemented on Solaris
(both sparc and x86). Under Windows NT, we use ¢aeProcessTimes function to obtain the

CPU time of another process.

5.5.1.3 Source code for shared-memory sampling

All code for shared-memory sampling resides in paeadynd directory; none is in theynin-

StAPI directory. fastinferiorHeapMgr.[hC] contains a class for managing a shared-memory
segment (with no interpretation of its contentsperTable.[nC] , baseTable.[hC] , SuperVec-
tor.[nC] , and fastinferiorHeap.[hC] manage allocation and deallocation of counters and

timers from the shared-memory segment. Currently, we use more source code files than are
needed; the extra levels of indirection superTable contains severalaseTable s, which in turn

Developer’'s Guide January 10, 2002 Release 3.3

Page 30

contains severalupervector s — are put into place now in anticipation of later support of allo-
cating timers and counters for multi-threaded programs.

The methoddoMajorSample() within fastinferiorHeap.C Is a good place to start for
understanding shared-memory sampling. It samples as many counters and timers as it can; those
which it cannot sample (due to disagreeing “protector” variables—see Figure 11) are re-sampled
later indoMinorSample() . ThedoMajorSample() routine is invoked byerfStream.C s chec-
kAndDoShmSampling() , which is called each time througlradynd ’s main loop.

5.5.2 Alarm sampling

Since shared-memory sampling isn’t ubiquitous, we have retained the method of sampling used in
earlier releases of Paradyn; we callatarm-samplingbecause sampling is triggered via a
SIGALRM in the application. During initialization of the runtime library (Section 8), the applica-
tion is set up so that it executes the routineNINSTalarmExpire() (in RTinst.c of the run-time
instrumentation librarystinst , directory) several times per second. This in turn caNslIN-
STreportSamples , which callsDYNINSTsampleValues() . DYNINSTsampleValues() IS an inter-
esting function; at first glance, it appears empty. However, in alarm sampéirgynd actually
instruments this routine to cablYNINSTreportCounter() or DYNINSTreportTimer() as appro-
priate for each counter and timer that needs to be sampled. These routines in torNoadT-
generateTraceRecord() to (rather inefficiently) send this information to the Paradyn daemon
via a pipe. From there, alarm sampling is similar to shared-memory sampling — both portions of
paradynd forward the sampled data to Paradyn by callingupuatevalue() method of the met-

ric instance fpetric.C), which eventually forwards bulk data to Paradyn via ithghSample-
DataCallbackFunc() Igen routine.

5.6 Retroactive instrumentation

[Relevant filesparadynd/src/metric.C contains most of the logic for this mechanism and
dyninstAPI/src/inst-{platform}.C files contain helper functions.]

Retroactive (catchup deetchup[sic]) instrumentation is a special mechanism to deal with a
problem which arises with dynamic instrumentation. When a function is instrumented with code
near the beginning of a function, and this instrumentation is inserted while the program is run-
ning, the possibility arises of the instrumentation being missed by the currently running function.

In instrumentation where code inserted near the end relies on code inserted near the beginning, or
where the function only runs once, the inserted code may enter an inconsistent state, or not ever be
executed.

A good example is the timing of a function. At the beginning of the function, a timer is started.
At the end, a timer is stopped. If the function is executing, the timer will not be started for this
execution of the function: this is a problem if a single execution of the function runs for long peri-
ods of time.

The solution is to retroactively execute the snippets of instrumentation which have been
missed at the time which the function is being instrumented. Unfortunately, it is impossible to
know all of the prior execution history of an uninstrumented process. It is possible, however, to
recreate a partial (minimal) history which corresponds to the functions currently found on the
call-stack: to arrive at the current call-stack state, each function must have been entered (but not
exited) and made a call to its successor (but not returned from such a call). Any corresponding

Developer’'s Guide January 10, 2002 Release 3.3

Page 31

entry-point and pre-call instrumentation snippets would have also been executed in a previously
instrumented execution, and therefore these snippets should be retroactively executed.

Note that it is entirely likely that additional functions have been called and already exited, e.qg.,
a call located earlier in a function than the call currently found on the stack, but there is insuffi-
cient residual evidence to reliably suggest that their associated instrumentation snippets should
now be executed. (A complete control-flow graph for each function would allow some such cases
to be determined, but many cases would require missing dynamic control-flow information.) This
means that the retroactively-constructed instrumentation state is necessarily incomplete where
there is an instrumentation dependence other than the following cases:

» (parent) function entry precedes any internal calls to (child) functions precedes function exit,
and

» function pre-call precedes function post-call (within the context of any function).

Fortunately, these are exactly the relations typically used in instrumentation to delimit inclu-
sive (i.e., entry to exit, or equivalently pre-call to post-call) and exclusive (i.e., entry to exit
excluding internal calls) metrics for functions (or function calls). Other relations may be defined,
such as between two calls or arbitrary points, however, there is insufficient residual information
for retroactive instrumentation to be reliably used in such cases and conforming metrics must
therefore not rely on associated snippets being executed.

Paradyn already contains a mechanism for causing code to be run in the inferior process: the
inferior RPC. By using this mechanism when appropriate, we can preempt the execution of the
current function and execute required snippets of retroactive instrumentation.

The following algorithm is used to determine if it is appropriate to launch a catchup inferior-
RPC for a specific snippet of instrumentation:

» If the instrumentation is to be placed at the function entry point, and that function is currently
anywhere on the call stack, a catchup inferiorRPC should be launched to execute it.

* If the instrumentation is to be placed just before a call site, and that call site is in fact on the
stack, a catchup inferiorRPC should be launched for it. In other words, if the PC of the call
site is on the stack, but not at the top.

This check is performed in theocess.C file in the functionriggeredinStackFrame

There are a few additional aspects which need to be addressed:

* On some architectures (SPARC in particular), instrumentation must be deferred if it is not safe
to insert code immediately. If this happens for instrumentation which depends on the instru-
mentation being considered for catchup, we must not do the catchup. Executing the early code
without the late code may cause more inconsistencies than executing only the late code. A
special case of this, is when the function at the top of the stack cannot be instrumented due to
the PC currently being located within a potential instrumentation footprint: not only should
catchup instrumentation not be executed for this particular function instance, it should also not
be executed for any other instances of this function found lower on the stack, as the function
itself is currently uninstrumentable, and there is correspondingly no catch-up to be done.

* On x86 architectures, where traps are used in tight instrumentation points (see Section 6),
inferiorRPC execution may be interrupted by the delivery of a signal raised by a current trap
instruction: since processing traps is relatively time-consuming, interruption at such points is
quite likely. The usual trap handling Im¥NINSTtrapHandler , which expects to be delivered

Developer’'s Guide January 10, 2002 Release 3.3

Page 32

an instrumentation-trap PC value, must recognize and ignore an inferiorRPC-adjusted PC
value, and resume execution of the inferiorRPC(s) before returning to re-execute (and handle)
the interrupted trap (and its associated instrumentation). Note that traps in code executed by
calls to functions from the inferiorRPC require appropriate handling.

* The ordering of catchup instrumentation within each function and on the stack can be very
important. For each set of instrumentation snippets to be inserted, a list of instrumentation to
be executed via inferiorRPC must be kept: ordering should be chronological with respect to
the implied program execution (derived from the call stack) to arrive at the current state, i.e.,
starting from the base of the stack, each subsequent frame is considered in turn to decide
whether to launch catchup inferiorRPCs for that frame. When the catchup inferiorRPCs are
launched, they must follow this order.

* The address of the PC at each stack frame must be mappable to the function in the program to
which it corresponds. In the cases where the PC is instead within our instrumentation code, we
must properly find the function to which that instrumentation corresponds.

* When we are within instrumentation code on the stack, we must amend the above check for
being within a call site to take into account that we usually relocatedhe instruction itself
to within the instrumentation code base-trampoline.

» Furthermore, if the pending instrumentation snippet happens to be new/additional instrumen-
tation for the current instrumentation point, careful analysis needs to be made to determine
whether catchup execution is required. If it has been added to the existing base/mini-trampo-
line infrastructure at a poirdfter the current location, then it will be executed normally and
catchup execution is inappropiate, otherwise a catchup inferiorRPC should be launched to
execute it. For example, if the call-stack contains an instrumentation mini-trampoline for the
same instrumentation point as the pending instrumentation snippet, then catchup execution is
required forprependedsnippets but should not be executedafopendedsnippets.

» The catchup inferiorRPCs must be executed immediately, while the inferior is paused. If the
inferior is allowed to execute anything other than our inferior RPC, the function may exit and
re-enter before the inferior RPC is launched. If this happens, it is quite possible for the inferi-
orRPC to run while the same instrumentation is executing within the inferior on the same data.
This is particularly bad with our timers, which have critical sections which assert on failure.
Therefore, we cannot finish the checking of instrumentation and rely on theparaiynd
loop to launch the inferiorRPCs, we must make a special loop which launches them, and
which keeps the inferior process paused between inferiorRPCs. Note that it is fine for a
catchup inferiorRPC to be launched to start or stop a timer when interrupting a timer operation
corresponding to a distinct metric/focus instance, but not the same metric/focus instance since
in that case the timers are identical. Luckily, if we find ourself interrupting one of our timer
operations, then we can be assured that we are executing an already-instrumented function
and there is consequently no need for retroactive instrumentation.

* In the case of successful instrumentation of an on-stack function with an exclusive metric
(which relocates it’s currently active call instruction to our instrumentation base-trampoline)
and execution of appropriate (entry and pre-call) retroactive instrumentation for it, it is ulti-
mately necessary to update the return address of the succeeding stack frame to return to imme-
diately after the call instruction relocated in the base-trampoline instead of the now-
overwritten location. This thereby ensures the usual execution of corresponding post-call

Developer’'s Guide January 10, 2002 Release 3.3

Page 33

instrumentation, which would otherwise be missed, or worse, the resumption of execution
within a now-corrupted instruction sequence.

An example of retroactive function instrumentation is shown in Figure 12

main() Virtual instrumentation
SUbA() execution record
subB() if(..) main.entry
subC() main.pre-call(subA)
loop subA.entry
\ subD1() if(..) SUbA.return
subD2() if(..) malln.post-call(subA)
subD3() main.pre-call(subB)
until (...) subB.entry
subB() SubB.return
main.post-call(subB)
Code structure main.pre-call(subC)
Interrupt execution asubD2 0| subC.entry
to (retpro-)instrumerﬂ;ubC > subC.pre-call(subD1)
subD1.entry
Call-stack subD1.return
Fr. currAddr subC.post-call(subD1)
0| subC.pre-call(subD2)
0. subD2+32 subD2.entry
1. subC.subD2 |H |-

2. main.subC

Figure 12: Retroactive instrumentation example.

The program has been interrupted during the executionsabD2 (with the call-stack as

shown) with a request to instrumesubC. In addition to instrumenting the appropriate points
in subC, to support the illusion thasubC was already instrumented it is necessary to
retroactively execute its entry-point andsubD2-precall [J instrumentation snippets (if they
constitute part of the instrumentation request). Italicized parts of the virtual execution record
can't be recovered from available state information. To ensure that following the completion of
subD2, execution will correctly continue with angubD2 -postcall instrumentation snippets, it
is also necessary to update the return addressuifD2’s stackframel] with that of the base-
trampoline now containing the relocated call instruction.

5.7 Dynamic Heaps

Paradyn and Dyninst use a dynamic heap to store code and data for instrumentation and inferior
RPCs in the application process. Dynamic heaps enable an arbitrary amount of instrumentation
code to be placed in the application process. Also, on platforms with restricted single-instruction
branch rangese(g, RISC processors), they can be directed to allocate memory near a particular
address in memory. These directed allocations are used to place base trampolines within the range

Developer’'s Guide January 10, 2002 Release 3.3

Page 34

of a single instruction branch from the corresponding instrumentation point. Dynamic heaps are
currently not used on NT.

All memory allocation requests in the Paradyn daemon and Dyninst mutator are made

throughinferiorMalloc , defined inprocess.C . inferiorMalloc maintains the inferiorHeap
data structure, which organizes the memory that has been allocated in the application process for
Paradyn/Dyninst, and includes a list of free mematfgriorMalloc takes a parameter named

size , the number of bytes to be allocated in the application process. For directed allocation it also
takes an optionalear parameter, a pointer to which the requested memory should be close. (The
definition of close is platform-specific and defined at compile-time, as explained below.) Finally,
inferiorMalloc takes a type parameter to specify the type of heap segment used to satisfy the
request. The type parameter includes all heap segments except the low memory heap, which is
explained below.

Ordinarily, inferiorMalloc can satisfy a request by finding suitable space in the inferi-
orHeap free list. When it cannot, it makes an inferior RPOY6IINSTos_malloc in the run-time
instrumentation library (defined RTheap.c). DYNINSTos_malloc allocates new segments of the
address space of the application process for use as heap segments by Paradyniidtirinst.
orMalloc callsDYNINSTos_malloc in two circumstances: (1) when there is not enough memory
in the free list to satisfy the request, or (2) when the request is directed, but there is not enough
free memory within the range of the near pointerNINSTos_malloc takes three parameters: the
number of bytes to allocate, and low and high address bounda@gNSTos_malloc is not
intended to satisfy a singleferiorMalloc request, but rather to allocate new heap segments in
the inferior process from which subsequent allocation requests can be satisfied; the size parameter
is thus usually much greater than that of the curneatiormalloc request. On directed alloca-
tions, the address boundaries are the range of the address space in which the new memory can be
allocated. When the request is undirected, they are opened to the entire address space. When an
inferior RPC tODYNINSTos_malloc returns,inferiorMalloc satisfies its current request from
the new heap segment, and adds the remainder of the new segment to the free list.

inferiorMalloc IS aggressive in its use ofyNINSTos_malloc . If DYNINSTos_malloc can-
not satisfy its first requestferiorMalloc makes several additional callSmNINSTos_malloc
with increasingly relaxed parameters. For example, it will reduce the request size of the new seg-
ment, and lift the address space boundary restriction. This retry sequence happes indlo@
of inferiorMalloc

DYNINSTos_malloc has two mechanisms for allocating new memory. On platforms that use
directed allocation, it callsalloc if the near pointer is within the range of the heap of the inferior
process. Otherwise)YNINSTos_malloc calls constrained_mmap , which in turn callsmmap
constrained_mmap reads/proc to determine the layout of its own address space. The platform-
specific memory information returned fraptoc is translated into an array of a generic structure
calleddyninstmm_t . Within this arrayconstrained_mmap searches for a hole into which mem-
ory of size and location satisfying tiBerNINSTos_malloc request can be allocated. It then calls
mmapto try to allocate that memory. As some platforms may restrict the location of mmapped
memory,constrained_mmap makes a call to mmap for every hole it finds until one is successful.
If none are successful it returns an error toferiorMalloc (which may retry
DYNINSTos_malloc using relaxed parameters). When it is successftMINSTos_malloc returns
the address of the first byte in the newly allocated memory.

Developer’'s Guide January 10, 2002 Release 3.3

Page 35

On all platform the run-time instrumentation library contains a static buffer of heap space
calledDYNINSTdata . It is added to the free list used nferiorMalloc , and will be used to sat-
isfy memory allocation requests if it is sufficiently large and, for directed allocations, suitably
located. On platforms that don't use directed allocationnlliorMalloc requests are satis-
fied in the static heap before a dynamic heap is allocatedifefore a call t®YNINSTos_malloc
is made).

From DYNINSTdata a small static buffer called the low memory buffer is reserved during
heap initialization. Its purpose is to ensure there is always enough space in the inferior process to
make a new dynamic heap allocation. The only time the low memory buffer is used is when an
inferior RPC toDYNINSTos_malloc is made. It is distinguished from the other heap segments by
its heap typdowmemHeap, which no other heap segment has.

Restrictions in the range of address space that can be used to allocate a new heap segments
are determined in two ways. First, the callerigériorMalloc can use directed allocation to
make an explict restriction. The range of a directed allocation depends on the range of control
transfer instructions of the processor. This range is computed bygdibe lo andregion_hi
macros in the architecture header fileg(arch-sparc.n). If the control transfer range is unre-
stricted, these macros are defined to include the entire user-accessible portion of the address
space. Second, platform-specific characteristics of the address space may preclude some ranges
from being safe places for new heap segments. For example, it is not safe to allocate new seg-
ments near the top of the stack, as the stack may eventually grow into the segment. The run-time
instrumentation library set these limits with two variableBYNINSTheap_loAddr and
DYNINSTheap_hiAddr . Their values are checked DyYNINSTos_malloc and they take precedence
over directed allocation constraints. On some platforeng,(Solaris) these values can vary from
process to process, and are thus initialized at run time after consultatiagprauith

5.8 Trampoline Guards

The basic trampoline structure has one dangerous flaw: it is possible to inadvertently cause an
infinite recursion in the instrumentation which will cause the instrumented program to crash. Spe-
cifically, instrumentation can never safely call any other function (even in a library) which is
instrumented. Making instrumentation safe in this manner is both difficult to ensure and limiting.

To avoid this effect, Paradyn now includes guards in the trampoline structure which will pre-
vent any recursion from taking place. These guards detect if the current base tramp is being exe-
cuted inside instrumentation, and if so skips the instrumentation contained within the trampoline.
The end result of this is instrumentation can call any function with impunity, without having to
worry about side effects. Currently these guards are implemented on AlX, IRIX, and SPARC-
Solaris. Support on other platforms will be available shortly.

To motivate our use of trampoline guards, let's use an example. A typical metric used by Para-
dyn is the io-wait metric, which instruments the system weaie() with a wall timer. Inside the
instrumentation, we us@rintf() to report timer rollbacks and we assert that the timer is not
started twice without being stopped. With this setup, any timer rollback would cause an infinite
recursion in the process being instrumented. Specifically, the cpHiroy() would cause the
timer to be started again whenite() was called. This would trigger the assertion, which would
print an error and terminate the program. Unfortunately, the act of printing the error would cause
the timer to be started yet again and trigger another assert. Using the trampoline guards in this

Developer’'s Guide January 10, 2002 Release 3.3

Page 36

case will ensure that the call fprintf() within the timer routine will not set off any other
instrumentation.

On platforms where the guards are implemented, an additional word of memory is allocated in
the processes address space. This flagpdess::trampFlagGuardAddr) is used to store
whether the current execution point is inside a base tramp or not. The value actually used is plat-
form-dependent. When a base tramp is entered, the value of the flag is checked. If the flag is true,
then the intrumentation is skipped. Otherwise, the flag is set to true and the instrumentation
entered.

The trampoline guards have the following general structure:

<save registers>

if (flag == true) then skip terestore registers>

<set flag to true>

<enter minitramp>

<set flag to false>

<restore registers>

Note that the guard code is added at the base trampoline level, so it is correct to speak of the
guard code at an instrumentation point, rather than the guard code for a piece of instrumentation
code. All the mini-tramps that are called by the same base tramp are guarded by an unique piece
of guard code that resides in the base tramp. At the present time, there is no way to guard (against
recursion) only certain minitramps. Whether a base tramp is guarded or not is determined when it
is first inserted and is unchangeable.

By default, all Paradyn instrumentation is inserted with the trampoline guard enabled. This
also has another strong benefit: Paradyn can now call functions without disturbing the data being
reported about the inferior process. For example, if a piece of instrumentation calls an instru-
mented function which is particularly CPU hungry, then the CPU usage for the function when
called by instrumentation will not be reported.

5.9 Timer Levels

Paradyn includes support for two timer levels for both process and wall timers. This allows
unique time querying functions, native time units, native time bases, availability test functions,
and other features to be associated with timer levels. One of the levels is the hardware timer level
which can be used for time querying functions that are less in time cost or greater in granularity
than the software timer level, typical when directly accessing the hardware. The other timer level
is the software timer level, which is for time querying functions that access the time through soft-
ware and is less desirable than a possible hardware timer level. The notions of software and hard-
ware in regards to timer levels were not meant to be rigid, but serve to inform that the hardware
timer level has a smaller time cost and/or higher granularity than the software timer level. There
are platforms which don’t have both timer levels implemented, yet at least one timer level needs to
be implemented for each platform for process and wall timers. An example of a platform with
only one timer level is the sparc-solaris version of Paradyn. The software timer level for this plat-
form has low time cost and high granularity so hardware timer levels for process and wall timers
are not implemented on this platform. At any point in time, there might also exist platforms for
which a hardware level version of a timer is not possible with the platform’s current state of tech-
nology.

Developer’'s Guide January 10, 2002 Release 3.3

Page 37

A boolean availability test function is associated with each timer level in order to aid in choos-
ing which timer level to use. The hardware timer level will be chosen if the availability test func-
tion informs that the level is available. If the level is not available, the software timer level will be
chosen (assuming it is available). However, it is possible to override this mechanism by setting the
environment variables PD_SOFTWARE_LEVEL _WALL_TIMER or
PD_SOFTWARE_LEVEL_CPU_TIMER which will cause the software level timer to be chosen
over the hardware level timer. The timer level that is chosen can be displayed in the terminal by
setting the environment variable PD_SHOW_TIMER_INFO.

One benefit that came with this multiple timer level feature, though not inherently related, is
that the rtinst library no longer needs to convert time into a standard time unit (used to be micro-
seconds). Now time querying functions in the rtinst library can return time in the native time unit
that was queried. The daemon now will do the appropriate conversion from the native time unit
into a generic time object (timeStamp for wall time and timeLength for cpu time). This offloads
work from the time querying functions in the rtinst library and hence the application also. Sam-
pling by the daemon occurs no more frequently than 5 times per second which is much less fre-
guent than the number of times an application calls a time querying function when
instrumentation is being done.

The notion of a level in Paradyn is represented by a class called timeMechanism (para-
dynd/src/timeMechanism.h). The notion of a set of levels is represented by a class called timeM-
anager (paradynd/src/timeMgr.h). The timeMgr handles all interaction to a timer level and
therefore there should not be a need to access a timeMechanism object directly. For example, the
timeMgr class has member functions for installing a timer level (installLevel), determining the
best available timer level (determineBestLevels), or retrieving the native or converted time (get-
Time, getRawTime). The timeMgr class was made a template class in order to handle different
requirements for interacting with timer levels. The first template argument is used for the different
contexts for which given function pointers may be called. For example, the function pointer for a
process time querying function is a member of the process class. This function pointer needs to be
called differently than the function pointer for the wall time querying function, which is not a
member function. The second template argument specifies the type of the argument required
when calling the time querying function. For example, the process time querying function for the
multi-threaded Solaris version of Paradyn requires the light weight process id to be passed as an
argument.

In an execution of Paradyn, there will always be one and only one instantiation of a timeMgr
for handling the wall timers, named wallTimeMgr. Functions for instantiating and accessing the
wallTimeMgr are in paradynd/src/init.[hC]. There, will be one instantiation of a timeMgr for
every process a daemon is monitoring. The timeMgr instantiation for process timers is the vari-
able cpuTimeMgr which is a member of the process class. The process class has functions for
interacting with the cpuTimeMgr such as initCpuTimeMgr, getCpuTime, and getRawCpuTime.

The selection of which timer level to choose is done solely by the daemon. The daemon than
informs the rtinst library of which time querying function to use by assigning the function pointer
pDYNINSTgetCPUtime or pDYNINSTgetWalltime in rtinst the address of the chosen time que-
rying function. The daemon verifies that the chosen timer level is also available in the rtinst
library by checking the value of the rtinst variables hintBestCpuTimerLevel and hintBestWallTi-
merLevel.

Developer’'s Guide January 10, 2002 Release 3.3

Page 38

Implementing a new timer level

In order to implement a new timer level, there are particular functions that need to be modified
or added. For both process and wall timers, in the RTinst library, in the appropriate RTetc-<plat-
form>.c file, the time querying function associated with the level (DYNINSTgetCPUtime_hw or
DYNINSTgetCPUtime_sw) will need to be implemented. In this same file, in the
PARADYNos_init function, the appropriate variable hintBestWallTimerLevel or hintBestCpuTi-
merLevel needs to be assigned the macro define HARDWARE_TIMER _LEVEL or
SOFTWARE_TIMER_LEVEL depending on whether the hardware timer level is available.

For implementing a process timer there are changes that need to be made in the daemon also.
In the operating system specific file in dyninstAPI/src (eg. linux.C) the function process::initCpu-
TimeMgrPIt needs to be updated so that the new timer level is installed in the cpuTimerMgr. Also
in this file, the function process::getRawCpuTime_hw or process::getRawCpuTime_sw that cor-
responds to the timer level, needs to be implemented. These functions are the process time query-
ing functions used by the daemon. Also, support functions and class variables may need to be
added to the process class. This may involve an update to process.h for adding member functions
or variables to the process class.

For implementing a wall timer, in the directory paradynd/src in the init-<platform>.C file, in
the function initWallTimeMgrPlIt, a level needs to be installed for the new timer level into the
wallTimeMgr. This file is also where wall time querying and availability test functions should be
implemented. For example, for the NT platform in init-winnt.C, the function dm_isTSCAvalil tests
whether the hardware level wall timer is available and the function dm_getTSC queries the hard-
ware level wall time for the daemon.

6 X86 PORT

Instruction representation

The representation of x86 instructions is different from other platforms. Because the size of
instructions are variable, we represent an instruction by an object of class instruction, which is
defined in the filearch-x86.n . The representation includes a type descriptor, the size of the
instruction in bytes, and a pointer to the actual instruction (in the memory mapped executable
image).

When instructions are processed, we need to decode instructions in order to find the size and
type information about each instruction. The instruction decoder is implemented in thetfile
x86.C . The decoder is invoked through a method in class instrugitettinstruction)

Parsing the executable image

As in other platforms, the executable is parsed one function at a time. We start at the beginning of
each function and decode instructions sequentially until we reach the end of the function (which is
defined by the address of the next symbol in the symbol table).

The entry point is defined as the first instruction in the function. Call points are call instruc-
tions. Return points are return instructions and jumps that leave the current function. There is no
check for tail-call optimization on the x86.

Developer’'s Guide January 10, 2002 Release 3.3

Page 39

Data mixed with code (e.g. jump tables) is a problem as they could cause us to decode instruc-
tions incorrectly. We use some heuristics to try to identify some jump tables that may be within
the code. We look for indirect jump instructions of the form

jmp dword ptr [reg + addr]

wherereg is one of the general registers aaddr an immediate address, which is the base the

jump table. If the base address is within the current function and precedes the jump instruction,
we may have parsed instructions incorrectly and we don’t instrument the current function. In most
cases, the jump table is just after the jump instruction, or near the end of the function. In this cases
we can try to guess the size of the table by looking at the words following the base address and
checking if their contents is an address within the current function. If so, we assume that it is part
of the jump table and keep looking at the following addresses until we find an address that is not
within the current function. Those locations that are found to be part of the symbol table are
skipped. While this heuristic can not guarantee that we can find all jump tables, it is effective in
detecting the jump tables generated by many compilers. A more general solution to this problem
would require data and control flow analysis of the executable.

Since instrumentation points may not have enough bytes to replace with a jump (5 bytes), we
may need to get additional instructions and add them to the smaller points. We can get instructions
from before or after the point. For the entry point, we can only get extra instructions from after the
point. For return we would usually only get instructions before the return, but since it is common
to have nops oint3 instructions after a return, we can also use those instructions. For call sites,
we only get instructions from before the point for reasons that are explained later (although most
calls are 5 bytes and don’t need extra instructions).

We must check that there are no jumps into the middle of a sequence of instructions that we
add to a point. To do that, we keep a list of all known jump targets, and check the instruction
sequences against this list. The target of all direct jumps found while the image is parsed are
added to the list, and also the addresses in the jump tables found by the heuristic described above.
Since we can have jumps to other functions, we add the necessary number of instructions to the
point here, and check later, when the point is instrumented that there are no jumps to the middle of
the instruction sequence. Since there may be some indirect jumps for which we don’t know the
target, we may have problems if we use an instruction sequence that can be the target of an indi-
rect jump. With the jump table heuristic above, we should be able to handle most cases.

Inserting instrumentation

Whenever we need to replace a sequence of multiple instructions, we must check that there are no
jumps into the middle of the instructions. To do that, we keep a list of all known jump targets, and
check the instruction sequences against this list. The list contains the target of all direct jumps
found while the image is parsed, and the addresses found by the heuristic to skip jump tables
(described above). Since there may be some indirect jumps for which we don’'t know the target,
we may have problems if we use an instruction sequence that can be the target of an indirect jump.
With the jump table heuristic, we should be able to handle most cases.

When we replace an instruction sequence with a jump, we must also check that the program is
not currently executing in the middle of the sequence. Since we are modifying that sequence, we
could execute the wrong code. If this is the case, we change the program counter to the address of
the relocated instruction in the basetramp. We could also have a problem if we had calls in the

Developer’'s Guide January 10, 2002 Release 3.3

Page 40

middle of an instruction sequence. The call could be active, and eventually the callee could return
to an invalid location. For this reason, we avoid putting calls in the middle of instructions
sequences that are replaced with jumps. We should also check all possible contexts of the applica-
tion (threads and exceptions), but this is not being done yet.

In some cases, we can'’t find enough instructions to replace with a jump, but we may be able to
insert an indirection. We take enough space for two jumps in the entry point (if possible). If
another point does not have enough space for a long jump (5 bytes), but has enough space for a
short jump (2 bytes), and that point is within a short distance from the entry point (less than 128
bytes), we can insert a jump to the basetramp in the second jump slot of the entry point, and insert
a short jJump to this slot. In this case, whenever we activate the second point (which uses the entry
point slot), we must also activate the entry point, even if there are no instrumentation requests for
the entry point

Function Relocation

If there are not enough instructions to replace with a jump, and we cannot make an indirect jump
to the basetramp, we expand and relocate the function. This involves creating a copy of the func-
tion with nop instructions inserted into those instrumentation points that are too small to replace
with a jump instruction. The nops expand the instrumentation points, making them large enough
to hold 5-byte jump instructions. A jump to the expanded copy of the function is then placed at the
entry to the original function. It should be noted that function expansion and relocation often
causes the targets of PC-relative call and jump instructions to be incorrect, since the relative loca-
tions of these instructions has changed. This requires that we update the displacements of some
PC-relative instructions. In the extreme case, where the target address of a 2-byte jump instruction
is no longer within the range of the jump, we must change the 2-byte jump into a 5-byte jump.

The relocation of a function is done the first time a request to instrument the function is made.
This occurs even if the current instrumentation request is for an instrumentation point that is large
enough to replace with a jump. Currently there are three types of functions that we do not relo-
cate. These are functions that contain a jump table, are too small (less than 5 bytes), or are too
large (greater than 16384 bytes). In such functions, when we can't find enough instructions to
replace with a jump, we must insert a breakpoint instructiaa (). When the breakpoint is exe-
cuted it generates an exception that can be caught in the application or by the Paradyn daemon.
The address of the base tramp is entered into a hash-table, that is used by the breakpoint handler
to find the address of the base tramp. The handler then changes the context of the application so
that it executes the base tramp. On Solaris, the handler runs in the application, while in Windows
NT and Linux, it runs iparadynd .

Base trampoline

The base trampoline for the x86 has some differences from other platforms. First the relocated
instructions do not always go in the same place. Only the instruction at the point goes at the usual
slot for relocated instructions, in the middle of the base tramp code. Any extra instructions from

before the point, are relocated to the beginning of the trampoline, and extra instructions from after
the point are relocated to the end of the trampoline, right before the jump back to the application
code. One of the advantages of placing the instructions in different points of the base trampoline
is that we can add jump instructions to a point when we need extra instructions. For example, if

Developer’'s Guide January 10, 2002 Release 3.3

Page 41

we have a return after a conditional jump, we can use that jump to insert a jump to the base tram-
poline for the return. Since the jump is relocated to the beginning of the trampoline, if the jump is
taken the rest of the trampoline code will not be executed (which is the right thing).

The base trampoline for the x86 is not of fixed size, like in other platforms, since the size of
the relocated instructions is variable. Unlike in the other platforms, where there is a template for
the base trampoline code, in the x86 the code is generated when the trampoline is created.

There is one special case when the instruction at the point is a conditional jump. We relocate it
to the top of the base trampoline, and change the code so that the trampoline is executed only if
the branch is taken.

Code generation

The code generated for the x86 platform uses virtual registers, that are allocated on the stack.
They are addressed as an offset from the frame pointer register (EBP). The virtual register are
allocated on the base trampoline.

Example

Here we show the instrumentation of a function, and sample trampoline code.

f: pushl %ebp

f+1: movl %esp,%ebp

f+3: subl $0x4,%esp

f+6: movl $0x0,0xfffffffc(%ebp)
f+13: subl %eax,%eax

f+15: incl %eax

f+16: movl %eax,0xfffffffc(%oebp)
f+19: cmpl $0x3e8,%eax

f+24: jl <f+15>

f+26: subl %eax,%eax

f+28: leave

f+29: ret

f+30: nop

f+31: nop

This function has two instrumentation points: the entry point (the first instruction, at address f)
and the return point (thet instruction, at address f+29). Both places have one byte instructions,
that can’t be replaced by a jump. For the entry point, we can add the instructions at f+1 and f+3,
which sum to a total of 6 bytes. For the return point, we need to add instructions from before the
return. We need to add the instructions at f4284€), f+26 (subl), and f+24j().

Developer’'s Guide January 10, 2002 Release 3.3

Page 42

After the insertion of instrumentation for the entry and return points, the function will look
like:

f: jmp baseTrampO

f+5: *** garbage ***

f+6: movl $0x0,0xfffffffc(%ebp)
f+13: subl %eax,%eax

f+15: incl %eax

f+16: movl %eax,0xfffffffc(%oebp)
f+19: cmpl $0x3e8,%eax

f+24: jmp baseTrampl

f+29: ret

f+30: nop

f+31: nop

(Note that most debuggers will not disassemble this code correctly, they get confused by the
garbage at location f+5).
Base trampoline for the entry point:

/I relocated extra instructions from before the point go here
/l there are no extra instructions from before the point in this case

/I pre-point instrumentation

baseTrampO: jmp <baseTramp0+5>// slot to skip pre instrumentation
baseTramp0+5: pushl %ebp Il set-up stack frame for minitramps
baseTramp0+6: movl %esp,%ebp

baseTramp0+8: subl $0x80, %esp // allocate virtual registers
baseTramp0+14: pusha Il save registers
baseTramp0+15: pushf

baseTramp0+16: jmp <minitramp> // jump to minitramp
baseTramp0+21: popf /I restore registers
baseTramp0+22: popa

baseTramp0+23: leave // undo minitramp stack frame
baseTramp0+24: addl 0x29, DYNINSTobsCost // update observed cost

/I relocated instruction at entry point

baseTramp0+34:

pushl %ebp

/I post-point instrumentation

baseTramp0+35: jmp <baseTramp0+51> // skip post-instrumentation
baseTramp0+40: pushl %ebp /I set-up stack frame for minitramps
baseTramp0+41: movl %esp,%ebp

baseTramp0+43: subl 0x80, %esp // allocate virtual registers
baseTramp0+49: pusha Il save registers

baseTramp0+50: pushf

Developer’'s Guide

January 10, 2002

Release 3.3

Page 43

baseTrampO+51: jmp <baseTramp0+48> // slot for jump to minitramp
baseTrampO0+56: popf /I restore registers
baseTrampO0+57: popa

baseTramp0+58: leave /l ' undo minitramp stack frame

/l relocated extra instructions at entry point

baseTrampO0+59:
baseTrampO+61:

movl %esp,%ebp
subl $0x4,%esp

/l jump back to application code

baseTrampO0+64:

jmp 0x805038a <f+6>

The base tramp for the return point:

/ relocate instructions before the point

baseTrampl+0: jl 0x8050393 <f+15>
baseTrampl+6: subl %eax,%eax
baseTrampl1+8: leave

/I pre-point instrumentation

baseTrampl+9: jmp <baseTrampO+5> // slot to skip pre instrumentation
baseTrampl+14: pushl %ebp /I set-up stack frame for minitramps
baseTrampl+15: movl %esp,%ebp

baseTrampl+17: subl 0x80, %esp // allocate virtual registers
baseTrampl1+23: pusha Il save registers
baseTrampl+24: pushf

baseTrampl+25: jmp <minitramp> // jump to minitramp
baseTramp1+30: popf /I restore registers
baseTrampl1+31: popa

baseTrampl1+32: leave /l ' undo minitramp stack frame
baseTrampl1+33: addl 0x29,DYNINSTobsCost // update observed cost

/l relocated instruction at point

baseTrampl1+43:

ret

/I post instrumentation -- never reached in this case

baseTrampl+44: jmp <baseTrampl+63>//slot to skip post instrumentation
baseTrampl1+49: pushl %ebp /I setup stack frame
baseTrampl1+50: movl %esp,%ebp

baseTrampl+52: subl 0x80, %esp // allocate virtual registers
baseTrampl+5: pusha /I save registers
baseTrampl+44: pushf

baseTrampl+45: jmp <baseTrampl1+60> // slot for jump to minitramp
baseTrampl1+50: popf /I restore registers
baseTrampl+51: popa

baseTrampl+52: leave /l undo stack frame

/I relocated extra instructions from after the point go here
/I there are no extra instruction from after the point in this case

/I return to user code
baseTrampl1+60: jmp <f+30>

The base tramp for the return point is similar to the base tramp for the entry point, except that
the extra instructions added to the point, fhe thesubl and theleave , which were taken from

Developer’'s Guide January 10, 2002 Release 3.3

Page 44

before the point, are relocated to the beginning of the tramp. In this examplejlif thetruction
branches, no instrumentation code will be executed.

The following example shows a minitramp fostatwallTimer primitive:

minitramp: movl $0x8044f390,0xfffffffc(%eebp) // load timer address
I/ in virtual register
minitramp+7: pushl Oxfffffffc(%eebp) /l push argument
minitramp+10: movl $0x80585a4,%eax /l'load function address
minitramp+15 call *%eax /I call startWallTimer
minitramp+17: add| $0x4,%esp /I pop argument
minitramp+23: movl %eax,0xfffffffc(Yoebp) /I store result
minitramp+26: jmp <baseTramp>
The references toxffffffc(%ebp) a re references to a virtual register. (We are not doing

code optimizations, though there are many opportunities to optimize this code.)

7 LINUX PORT

Inferior process modification and information througface and/proc
[dyninstAPI/src/linux.C]

The first major difference in Linux from Solaris is that tlveoc interface doesn’'t support
many of the process control features. The Limuxc filesystem is a generally read-only setup,
with most files simply providing information about the process in a text format.

Within /proc , there is a directory for each process, rather than a file on Sole@sh direc-
tory contains different files for different pieces of information about the process. In Solaris, each
file contains the process’ memory space, and IOCTLs on that file are used to gather other infor-
mation and control that process.

Iproc/*/mem contains the process’ memory space, but it is currently read-only, due to con-
cerns about the possibility of overwriting kernel memory in corner cases.

Iproc/*/stat contains a list of numbers in ASCII format, space-delimited. Used information
includes the process state (that is a char), and the process CPU times.

Iproc/*/maps contains a list of mapped regions in the process memory space, along with
device number and inode number, if the region is a file mapped to memory. This is especially use-
ful in finding shared libraries which are loaded into memory.

Iproc/*lexe is a link to the executable file for the process.

See ‘man proc’ andisr/src/linux/fs/proc for further information.

Instead of usingproc to control and modify the process, we use the gltlare interface.

For reading from the process memory space, we first try to simply read/froon/mem ,
and if this fails, we usetrace(PTRACE_PEEKTXT, ...) which reads a single word from the pro-
cess at a time. Therefore, we must implement a function which reads a word at a time from the
process, realigns the words, and re-packs them into the proper memory location in the parent pro-
cess.

For writing to the process memory space, we pigge(PTRACE_POKETXT, ..) and write
the data one word at a time, properly realigned to the addresses in the inferior process.

2. Is this still true for Solaris7?

Developer’'s Guide January 10, 2002 Release 3.3

Page 45

To obtain the registers from the inferior process, weptisee(PTRACE_GETREGS, ..) and
ptrace(PTRACE_GETFPREGS, ...) which write the registers to a buffer.

To change the registers in the inferior process, weptraee(PTRACE_SETREGS, ..) and
ptrace(PTRACE_SETFPREGS, ..) which write the registers from a buffer to the inferior pro-
cess.

NOTE: The registeptrace commands are only available in linux-2.0.35 and higher. We no
longer support older versions of linux-2.0.x!

To obtain the actual state of the inferior process (running, stopped, etc.), we read from the
Iproc/*/stat file. The third space delimited field is a character which specifies the status. ‘R’ is
running, ‘T’ is stopped, etc.

To wait on the inferior process for signals, we ugdipid , which simply waits until the infe-
rior process receives a signal. We then check to see if the signal is one we should deal with. If it is
not, the signal is forwarded back to the process usirge(PTRACE_CONT, ..) , the last
parameter of which is the signal to send to the inferior process.

To continue the inferior process, we BI®RACE_CON®again with no signal.
To stop the inferior process, we simply WBESIGSTOP)

To obtain the CPU time of the inferior process, we read the values for the inferior process user
and system CPU time fromroc/*/stat , and do the proper arithmetic. The values are in ticks,
or timeslices, which on a standard x86 Linux system occur at a rate of 100/second. This is
checked for, however, through a one-time piece of code which finds the system idle time in ticks
and in seconds and figures out the ticks/second.

Handling shared libraries in the inferior proce@sninstAPl/src/linuxDL.C]

The process for handling shared libraries in the inferior process is very similar to the process
used on Solaris. The main difference is the problem of findindd!s® library, which handles all
of the other shared libraries. On Linux 2.0.x systems/gdtwe/*/maps file shows all of the map-
pings, along with device number and inode number information, but there is no way to find the file
from this information directly. Therefore, there is no way to tell which filédiso. The method
used is to search the expected directory for a file matching the paddeso “ ”, finding its device
and inode number, and comparing it against each mapping. Then, the shared library handling can
continue by the ELF method used in Solaris. On Linux 2.2.x and higher, howeveragiadiles
also contains a path to each shared library. In this case, the pattesa “” is checked against
these, and the file is found much more easily.

Inserting a shared library into the inferior process
process::dlopenDYNINSTIib [dyninstAPI/src/linux.C]

In order to insert a shared library into the inferior process, we depend on inserting code into
the inferior to calldlopen on our library. This works well on Solaris, and for some programs on
Linux. However, the version dibc currently used on Linuxdlibc 2.X) does not include the pub-
lic interface todlopen . Instead, a separate library call@otll.so is used. If we insert code to call
dlopen into a program not already linked tiodl.so, it will not work. Fortunately, the internal
_dl_open function is available in all Linux programs which are dynamically linked. By inserting

Developer’'s Guide January 10, 2002 Release 3.3

Page 46

code to call this function instead, we can assure compatibility with all dynamically-linked Linux
programs.

To deal with differences iglibc, we search for the _libc_version symbol, which contains
a version string. If the string matches a known versioglidfc, we work with that version. If the
string is not found, or the version is unknown, we use the 2.0.x method.

In glibc 2.0.x _dl_open takes the same parametersiapen , and the process is as simple as
changing the name of the function to call.

In glibc 2.1.x _dl_open takes an extra parameter of the modules which caltgen . In this
case, we need to provide this address, which is straightforward. Additionalllgpen uses a
special function call convention because it is interngjlibc. Instead of pushing the parameters
onto the stack, it passes all three in registers. To deal with this problem, we have to avad the
Node structure and generate a raw call and modify the registers for the parameters directly.

NB: This will probably change with each minor version changegldic, and this code must
be updated.

Inferior RPC9gdyninstAPI/src/process.C]

The majority of the usual method for executing inferior RPCs works fine on Linux. The prob-
lem is only in the checking for and dealing with the case where the inferior process is within a
system call. It is dangerous to simply change the location to which the system call will return
(which is the most simple approach), as this can corrupt the return value from the system call.
Using PTRACE_SYSCALIseems promising, but this call traps at the entry and exit of the next sys-
tem call, and so it would need to be used for every system call in the program, rather than just the
current one: this is grossly inefficient. Instead, we simply find the location the system call will
return to, and set a trap (or illegal instruction, actually) there. When this is hit, we restore the orig-
inal code, save the registers, and move the process to the code we wish to execute. Since the regis-
ters were savafter the system call instead déiring it, the return value is safe.

Paradyn front-end threading package [libthread]

The threading package in Paradyn makes usetpip andlongjmp . This is not generally a
problem, except that we use a function pointer to the appropsgigo andlongjmp functions
on that platform. In Linuxsetjimp is simply a macro taigsetimp , with the additional parameter
specificied. This necessitates changing the threading package to use a maegmforin the
Linux case, as a function pointer simply will not work.

8 RUN-TIME INSTRUMENTATION LIBRARY

The run-time instrumentation librarytigst, libdyninstRT) contains auxiliary functions and

data for dynamic instrumentation. It contains functions to get wall and process time used by a pro-
cess, to start and stop metric timers, to sample timers and counters, to report values to the Paradyn
daemon, to report resources (such as message tags), and to report that a process is forking or
doing and exec.

When an application process starts, it receives a signal that is caught by the Paradyn daemon
(this signal is set up bytrace or /proc file system calls). At this point, the daemon inserts the

Developer’'s Guide January 10, 2002 Release 3.3

Page 47

initial instrumentation in the application process. The initial instrumentation consists of inserting
calls in some functions and system calls to call initialization and termination functions, or to
reports events of interest, such as new resources, a fork, or an exec. The following functions are
instrumented:

main : call toDYNINSTinit() and the entry point ahain, andDYNINSTexit() — at the return point.
exit : call toDYNINSTexit() at the entry point.

fork : call toDYNINSTfork() at the return point

execve : call toDYNINSTexec at entry point, call tDYNINSTexecFailed() at return point.
pvm_send : call toDYNINSTrecordTag() at entry point.

DYNINSTsampleValues : call toDYNINSTreportNewTags() — at the entry point.

The functionDYNINSTinit() is called at the start of the application process to initialize the
run-time instrumentation library. Its main function is to set an alarm that sends a signal to the
application process periodically. The alarm handbemiiINSTalarmExpire() , iS responsible for
calling the functions to sample timers and counters and report the values to the Paradyn daemon.
It also callsDYNINSTreportBaseTramps() to report the cost of instrumentation.

Enabled timers and counters are sampled by a calvtoiNSTsamplevalues() . This is an
empty function, but it is instrumented each time a metric is enabled, so that timers or counters are
sampled when this function is called. The code that is inserted calls either
DYNINSTreportTimer() or DYNINSTreportCounter() to read the timer or counter. The values
are reported through a pipe that is created when the application is started by the Paradyn daemon,
or by a stream socket that is created after the application has forked.

New dynamic heap segments are allocated in the application process by calling
DYNINSTos_malloc. Section 5.7 describes dynamic heaps in detalil.

Other functions ofrtinst are called to report new resources, such as message tags
(DYNINSTreportNewTags()), and to handle fork and exec by an applicatiomNINSTfork() and
DYNINSTexec()).

9 MDL IMPLEMENTATION

The Metric Description Language is used to specify what performance data to collect, and
where. For the language specification, see Pagadyn User's Guide For a good high-level
description of the implementation techniques, see the p&pbBL" A Language and Compiler for
Dynamic Program InstrumentatidiiHollingsworth et. al.). The purpose of this section is to pro-
vide a better understanding of the MDL code, describing features and issues that are not docu-
mented elsewhere, and for providing a complementary and hopefully better reference than the
code itself.

The MDL code consists of two parts: the front-end Paradyn process and the back-end Paradyn
daemon. The front-end MDL code does lexical analysis, syntax analysis, and some type checking
(which is part of the semantic analysis in the parlance of programming languages); the back-end
does the rest of semantic analysis and intermediate code generation. The reason for the semantic
checking being done by both the front-end and the back-end is due to the feature of dynamic
instrumentation: the decision about what to instrument is deferred until after execution starts.
Therefore, there are certain things that the front-end cannot check and must be relegated to the
back-end. An example is an MDL expression containing a function call. The front-end can only

Developer’'s Guide January 10, 2002 Release 3.3

Page 48

check that the arguments of the call are valid MDL expressions and that the function call is used
in valid syntactic context; whether the function exists in the application and is instrumentable can
only be checked by the back-end MDL. However, the idea is to push static checking as much as
possible into the front-end, so that errors can be caught early before the metrics are specified at
runtime. Flex and Bison are used for lexical and syntax analysis.

The intermediate code generation is the process of translating a piece of MDL code into a
DAG of AstNode s (see Section 5.4). The code generation is the process of translating-the
Nodes into trampolines and inserting them into the application. This section does not describe the
code generation of MDL, which is part of Paradyn’s dyninstAPI (seeDyr@amic Instrumenta-
tion API Guide). We first list the important files of the MDL implementation. We then go through
each stage of the analyses. At the end of this section we give a short reference list of the defini-
tions of some frequently seen C++ classes in the MDL implementation.

9.1 Important files

Figure 13 lists the most important files in the MDL implemetation together with brief descrip-
tions.

paradyn/h/dyninstRPC.| An igen file containing class definitions for all of the
MDL components such as Metric, Constraint, State
ment, and Expression. Used by both the front-end and
the back-end.

paradyn/src/met/mdl.h Constant definitions and definitions for classes
mdl_var , mdl_env . If you see some constants with a
upper case letters while reading the MDL code,
chances are that they awfine 'd in this file. An
mdl_var IS an MDL variable, and thedl_env is a
repository ofmdl_var S. You can think ofndl_env as
the symbol table of MDL plus some methods. The
MDL variables are collected into the static data mem-
bermdl_env::all_vars . MDL variables are pushed
into mdl_env::all_vars when their scopes are
entered, and popped out when their scopes are exited.
Used by both the front-end and the back-end.

paradyn/src/met/globals.h This file contains the declaration of global variables
that both the front-end and the back-end need access to.
The global variables include all MDL metrics, con-
straints, and resource lists. These MDL components are
collected during the syntax analysis phase. Used by
both the front-end and the back-end.

paradyn/src/met/metScanner.| The input file to Flex for lexical analysis. All tokens
and keywords can be found here. Only used by the
front-end.

Figure 13: Crucial MDL files

Developer’'s Guide January 10, 2002 Release 3.3

Page 49

paradyn/src/met/metParser.y The input file to Bison for syntax analysis. Contains t}-\e

entire MDL grammar, and hence is the definitive refer-
ence for the syntax and for determining whether some
features are (should be) supported. Metrics, con-
straints, statements, etc. are created as part of the
parse/grammar actions and collected into the globg
repositories declared tiobals.h . Only used by the
front-end.

paradyn/src/met/mdl.C Type checking andpply() functions. See Section 9.2.
Only used by the front-end.

paradynd/src/mdl.C The major file of the back-end of MDL. Semantic
checking and intermediate code generation. Only used
by the back-end.

paradynd/src/metric.C The definition of the classetricDefinitionNode ,
which describes metric instances. There are two types
of node: aggregates and non-aggregates. For the aggre-
gates, amnetricDefinitionNode contains a vector o
othermetricDefinitionNode s, for non-aggregates,

node contains a vector agétaReqNode S. Only used by

the back-end.

Figure 13: Crucial MDL files

9.2 Lexical and syntax analysis

Lexical and syntax analysis are done by the Paradyn front-end. The associated files are under
the directoryparadyn/src/met . It is important to be familiar with Flex and Bison before reading
metScanner.l andmetParsery , and it is a good idea to get familiar with these two files, or the
parts that you are interested in, before going on to others.

We do not explain the details of the files heras the code itself serves exactly that purpose.
Here we only point out some of the interactions among the files to help navigate.

The scanning and parsing of the configuration files starts from the rowgtvan() in
metMain.C . This routine call®open N _parse() that calls the Bison functiopyparse() , which
in turn triggers the scanner and parser actionsninScanner! and metParsery *. Files
meClass.C andmetParse.h are support files for the scanner and parser, for example; they contain
the definition oktruct parseStack

A bulk of the work done by the Paradyn front-end is type checking, which is done after Flex
and Bison have already disected and collected all the syntactic parts. In the code, this occurs in

3. Those who do not need to know the details of MDL implementation, yet have to cwstBaliser.y
for MDL grammars, may wonder what the symbols $$, $1, $2, etc. meantiparser.y . $$ represents
the left-hand-side of the rule, andi®presents thigth component on the right hand side of the rule, with
starting from 1. The type of those $-symbolsisict parseStack as specified by the lingdefine
YYSTYPE struct parseStack in bothmetScanner.l andmetParser.y.

4. In fact, Flex functions are called by Bison functions.

Developer’'s Guide January 10, 2002 Release 3.3

Page 50

metMain.C 's mdl_apply() , afteropen_N_parse() is done. The type checking is implemented in
routines with a heavily overloaded nameply() . Many developers consider theply() func-

tions one of the most difficult to understand parts of the MDL implementation, probably because
there are so many of thermot only in the front-end, but also in the daemamd eachapply()

does different things. For a good grasp of those functions, we need a clear picture of the corre-
sponding C++ classes and their relationships. fdtadyn/src/met/dyninstRPC.1 is the place

to look for the class definitions of those syntactic components suchmdigmetric,
mdl_constraint, mdl_stmt , etc. Let’s use an example to show heppty() functions work.

Below is a metric called “procedureCalls” taken fresnfig/paradyn.rc

metric procedureCalls {
name “procedure_calls”;
units operations;
unitStyle unnormalized;
aggregateOperator sum;
style EventCounter;
flavor = { winnt, unix, cow, pvm, mpi };

constraint procedureConstraint /Code/* is replace counter {
prepend prelnsn $constraint[0].entry
(* procedureCalls++; *)
}
constraint moduleConstraint /Code is replace counter {
foreach func in $constraint[0].funcs {
prepend prelnsn func.entry (* procedureCalls++; *)
}
}

base is counter {
foreach func in $procedures {
append prelnsn func.entry constrained
(* procedureCalls++; *)

We draw a tree (Figure 14) to show the action of the parser. The tree also reflects the syntactic
structure in this metric, with the relationship of the parent and children of the “nodes” being a
containing relationship (e.g, procedureCalls metgontainsa base statement and two con-
straints). We number each node to make the exposition clearer. Shown in parentheses are the
actual C++ classes implementing the components.

The wayapply()) member functions work is essentially a pre-order visit of the tree starting

from the root.mdl_metric::apply() (node 1) gets called, which would call tagply() mem-

ber function on the statements in the base part of the metric (node 2), then
mdl_for_stmt::apply()(node 3) , Which in turn callsmdl_instr_stmt::apply()(node 4) ,

and thenmdl_icode::apply()(node 5) , etc. After the subtree rooted adde 2 is done, the

subtree rooted ahode 7 is visited, and so on until the whole tree is “applied”, and
mdl_metric::apply()(node 1) returns.

Developer’'s Guide January 10, 2002 Release 3.3

Page 51

1’ procedureCalls (mdl_metric) ‘

11

2
’ base... (mdl_stmt) ‘ 7’ procedureConstraint (mdl_constraint) ‘ ’ moduleConstraint (mdl_constraint) ‘

5 | [| o
’foreach...(mdl_for_stmt) ‘ 8’ prepend... (mdl_instr_stmt) ‘ ’ foreach... (mdl_for_stmt) ‘

* procedureCaIIs++;*)(mdl_icode)‘ ’ prepend... (mdl_instr_stmt) ‘13

0
(* procedureCalls++; *) (mdl_icode)‘ procedureCalls++; (mdl_expr) ‘

4 ’ append... (mdl_instr_stmt) ‘

5

(* procedureCalls++; *) (mdl_icode)‘ 14

6’ procedureCalls++; (mdl_expr) ‘ ’procedureCaIIs++; (mdl_expr)‘ 15

Figure 14: An example demonstrating howapply() functions work.

While visiting the tree, different checks are done insidgly() depending on which object
the function is invoked. For instance, whedl_v_expr::apply() is invoked on the expression
procedureCalls++ , it checks thaproceduceCalls is of valid type (integers or counters).

At run-time, the sequence apply() member functions starts from thell_apply() in met-
Main(), in the filemetMain.C .

9.3 Semantic analysis and intermediate code generation

Semantic analysis and intermediate code generation are done by the back-end of Paradyn.
This part of MDL comprises a few files undgdradynd/src , with the major one beingdl.C .
The twomdl.C 's (one in the front-end, one in the daemon) use the same class definitigns-in
dyn/h/dyninstRPC.I . In other words, the C++ classes for MDL metrics, constraints, statements,
etc. encapsulate a superset of the functionalities needed for both the front-end and the daemon.
Because of this, we can see some dummy function definitions in either file, since all definitions
must be present to pass the compiler, even though they may not actually be used.

Due to the above reason, and also for symmetry, the semantic analysis and intermediate code
generation of the daemon are also implemented with the hierarchigplpff member func-
tions. Again, the code is executed in the same pre-order-visit tree-like fashion as in the example of
Section 9.2, with the exception of replace constraints as we will explain in a moment. This time,
we generate intermediate code instead of mere checkings inside@#gh . For instance, for

the expressiomrocedureCalls++ (node 6 in Figure 14)mdl_v_expr::apply(AstNode*) is
called, and we generate astNode* as a result of evaluating this expression. After node 1 is suc-
cessfully applied, aetricDefinitionNode is generated.

In the front-end, the syntax analysis is done on every syntactic component in the configuration
file, yet the intermediate code and trampolines are only generated for those components that are
actually used. For our example, if the metpi@cedureCalls is not enabled with a focus, it
would not get processed by the back-end, and no intemediate code or trampolines would be gener-
ated for it. Furthermore, the two replace constraints (se®#nadyn User’'s Guiddor a descrip-
tion of replace constraintyrocedureConstraint and moduleConstraint would be applied

Developer’'s Guide January 10, 2002 Release 3.3

Page 52

only if their match paths/€ode/* and/Code respectively) match the focus. If neither one

matches the focus, neither would be applied; if one matches the focus (note that there would be at

most one match), the instrumentation statements inside the matching replace constraint are

applied, and the instrumentation statements in the base of the metric are not. This is one exception

in ourapply() tree visit in our example: some subtrees may not be visited, hence applied, at all.
When the back-end receives a request to enable a metric-focus pair, it uses the MDL to gener-

ate intermediate code in the form of a DAG AftNode s. TheAstNode s specify what code to

generate for the metric-focus pair. For each metric-focus pabtécDefinitionNode is cre-

ated (increateMetricinstance() in paradynd/src/metric.C). ThemetricDefinitionNode

contains the DAG ofastNode s and the information about where the generated instrumentation

code (trampolines) should be inserted. After itfegricDefinitionNode is successfully created,

the trampolines are generated and inserted into the application executalasiNeee::gener-

ateCode() andAstNode::generateCode_phase2() (code generation is part of dyninstAPI).

9.4 Where these classes are defined

The classes below are important to the MDL implementation. Although tools like ctags/etags
can be used to pinpoint their definitions, they are listed here just for reference. (This is a very
short list, hope to add some more).

Class Where it is defined
AstNode dyninstAPl/src/ast.h
dataReqNode paradynd/src/metric.h
function_base dyninstAPl/src/symtab.h
instPoint dyninstAPI/src/instPoint-power.h

dyninstAPl/src/instPoint-sparc.h
dyninstAPI/src/instPoint-x86.h

resource paradynd/src/resource.h

metricDefinitionNode paragynd/src/metric.h

Figure 15: Important MDL classes.

10 IGEN INTERFACE GENERATION

10.1 Overview of Igen
Igen automates the creation of remote interfaces. Interfaces are like remote procedure calls, but

the endpoints (client and server) can be threads or processes. Igen supports generation of RPC
calls using either threads or XDR (or PVM?) as transport.

10.1.1 Synopsis

igen -xdr | -thread | -pvm [-header | -code] <spec>.1

Developer’'s Guide January 10, 2002 Release 3.3

Page 53

10.1.2 Output

The<spec>.l file specifies the interface template to use to generate the source and header
files. All generated files will use <spec> in their name:

<spec>.C - bundlers for the types that can be passed.

<spec>.CLNT.C - client side code for users of the interface.

<spec>.SRVR.C - server code for providers of the interface.

<spec>.h ,<spec>.CLNT.h ,<spec>.SRVR.h - class headers.

Note that member functions declareddispec>.SRVR.h are not generated by Igen, except

for the class constructor and mainLoop. These functions are called by the server when it receives
a request from the client. These functions must be provided by the programmer.

10.1.3 Memory

Igen frees all memory that it allocates, with one exception. Return types in the client code may
be a structure or an array class. The memory allocated for these return types will not be deallo-
cated by Igen.

10.1.4 Upcalls

Upcalls from the server to the client are supported, however, they will only be seen when
the client is waiting for a response from a synchronous call to the server. There is a way to force
the client to attempt to handle an upcall. The client has a member function awaitResponce which
will handle any upcall requests that exist, but awaitResponce will block. The file descriptor
should be checked to see if it is ready for reading before calling awaitResponce.

10.1.5 Interface template

An interface looks like:

$remote <interfaceName> {
$hase <int>;
$version <int>;
$virtual [$async | $array] <member function definitions>
$virtual $upcall [$async] <member function definitions>
$cmember type variable;
$smember type variable; }

The $array keyword causes igen to genarate an array class and use this as the array type. The
class has a member specifying the size of the array and a pointer to the data.

The $virtual keyword causes the igen generated functions to be declared virtual. For upcalls,
the client function is declared virtual. For non-upcalls, the server function is declared virtual.

The $smember and $cmember keywords cause igen to put the type and variable declaration
into the client or server class. $smember specifies that the server class is to include the type and
variable as a public data member. $cmember specifies that the client class is to include the type
and variable as a public data member.

Developer’'s Guide January 10, 2002 Release 3.3

Page 54

The $base keyword defines the first message tag to use for creating request and responce mes-
sage types. Since TAGS should be unique to an application, this value should not confilct with
other interfaces that might get linked into the same process.

The integer after the keyword $version indicates the protocol version of this interface. For
XDR based protocols this version is verified when the client and server rendevous. For thread
based interfaces, Igen relies on the fact that changes to an interface generally change the signature
of at least one function in the interface, and that version incompatabilities should be resolved by
the C++ linker in that case.

The member functions are the basis of the interface. A provider of an interface defines the
member functions in the class <interfaceName>. Igen generates a shadow class <interface-
Name>User with the same member functions. The <interfaceName>User member functions are
really RPC style stubs that invoke the remote member functions.

The $upcall keyword permits interfaces to support upcalls. Upcalls are a way for an interface
to indicate to its user that an "interesting" event has occured. Upcalls are by default synchronous,
but can be made asynchronous by adding the keyword $async after the keyword $upcall.

The $async keyword placed before a function definition prevents igen from generating a wait
for reply after make the remote procedure call. No reply will be made by the receiver of the
remote procedure call.

10.2 Ilgen grammar

[Words in lowercase are nonterminals; words with punctuation in them (e.g., $), surrounded
by quotes, and in all CAPITALS are terminals.]

completeDefinition -> parsableUnitList

| error
parsableUnitList -> parsableUnitList parsableUnit
| lambda
parsableUnit -> interface_spec
| typeSpec
interfacePreamble -> interfaceName { interfaceBase interfaceVersion
interface_spec -> interfacePreamble definitionList } ;

interfaceName -> |IDENTIFIER
interfaceBase -> $base UNSIGNED_INT_LITERAL ;
interfaceVersion -> $version UNSIGNED_INT_LITERAL ;

forward_spec -> ‘forward’ IDENTIFIER ;
definitionList -> definitionList definition

| lambda
optUpcall -> $virtual

| $async

| $virtual $async
| $upcall $async

Developer’'s Guide January 10, 2002 Release 3.3

optFree
optRef

definition

optignore
optAbstract
classOrStruct
typeSpec
optDerived
fieldDeclList
fieldDecl
typeName
optConst
pointers

funcArg

nonEmptyArg

arglist

Developer’'s Guide

Page 55

| $virtual Supcall $async
| lambda
-> $free
| lambda
> &
| lambda
-> optFree optUpcall optConst typeName pointers optRef
IDENTIFIER (arglist) ;
| $cignore[*$]*$cignore
| $signore[*$]*$signore
-> $ignore["$]*$ignore
| lambda
-> ‘abstract’
| lambda
-> optAbstract ‘class’
| ‘struct’
-> classOrStruct IDENTIFIER optDerived {
fieldDeclList optignore } ;
-> IDENTIFIER
| lambda
-> fieldDeclList fieldDecl
| lambda
-> optConst typeName pointers IDENTIFER ;
-> IDENTIFIER
| IDENTIFIER : : IDENTIFIER
| IDENTIFIER < typeName pointers >
-> ‘const’
| lambda
-> * pointers
| lambda
-> optConst typeName pointers
| optConst typeName pointers IDENTIFIER
| optConst typeName & IDENTIFIER
| optConst typeName &
-> funcArg
| nonEmptyArg , funcArg
-> nonEmptyArg
| lambda

January 10, 2002 Release 3.3

Page 56

11 MAKEFILE ISSUES

11.1 Overview of Makefile organization

The filesmake.config , make.program.tmpl , andmake.library.tmpl (located at the root of the
Paradyn source code tree) are the basis for compiling the Paradyn system. They define generic
rules and Makefile dependencies, and are flexible enough thatvmksitte s for Paradyn sys-

tem components are kept short and simple. The shadownfileiee.config , etc., are similar and

only required bynmakeon Windows NT; they are also simpler, supporting only that one platform.

A Makefile for a given platform (such as SPARC/Solaris) and given program (such as Para-
dyn, Paradynd, or Igen) is typically organized as follows. Several Makefile variables are first
defined; for example, you will see lines such&ES_TCLTK=true andUSES_FLEX=true in the

Paradyn platform Makefil@sThen the Makefile executes the limelude ../../make.config ,
which reads in the filenake.config . This file defines default dependencies, default compiler
flags, library paths, include directories, and so on. At many pairts:.config will check to see

if certain Makefile variables (such aseS_TCLTKandUSES_FLEX are defined; if so, it performs
additional tasks.

For example, IUSES_TCLTKis defined, themake.config sets thercL2Cc makefile variable to
the appropriate path (for when th#2c script is run), adds the path to the Tcl/Tk include files to
the compiler flags, and adds the path to the Tcl/Tk libraries to the compiler’s library-search path.

After make.config is read in, the Makefile may make a few changes to the Makefile vari-
ables, asnake.config has assigned them. For example, the tiXXFLAGS += -O3would make
C++ compile its files with the highest level of optimization (because the Makefile vaitaixe
FLAGSISs in turn used by GNU make when compiling C++ files).

Next, a Makefile should have the lim&lude ../make.module.tmpl . This file is the plat-
form-independent part of the module build (just asMagefile is the platform-specific part). Its
function is to set Makefile variables that will be used.lbymake.program.tmpl , Which is
included next. The most important of these Makefile variablestarssET(which specifies the

name of the final binary that the linker should WriteatCSRCS(WhiCh specifies the source files),
LIBS (which specifies additional libraries not automatically definednaye.config), andsys-

LIBS (similar toLIBS, but intended for non-Paradyn libraries). Note that these Makefile variables
are usually appended to, as opposed to overwritten.

For example, we see the liné8S += -lpdutil -Ipdthread in the make.module.tmpl for
Paradyn, instead of the lingBS = -Ipdutil -lpdthread . This is important, because typically,
make.config will already have defined some initial values for these Makefile variables, which
should be appended to, rather than overwritten.

Makefiles for libraries (such as VisiLib) follow a similar approach; the major difference is that
at the last stepy../make.library.tmpl is included instead of../make.program.tmpl

5. Note that most Makefile tests concern whether something is defatefd (), and thereforany non-
empty definition is equally considered: be careful to comment-out or undefine undesired definitions
rather than ineffectively settingSES=false (which will still be considered defined!). For consistency,
true is the prefered definition when one is required.

6. Some modules require to (sometimes) build/install muliBIBGET Sor an alternativ LT _TARGET

Developer’'s Guide January 10, 2002 Release 3.3

Page 57

Note that there are features used in the make configuration files that are specific to the GNU
version of make (we currently use version 3.74) and may not be understood by other makes.

11.2 Site-dependency issues

While the top-leveiakefile is (Unix) system-independent), the fileake.config will need to

be edited to conform to your system’s configuration. For example, the path to your Tcl/Tk library,
the path to your flex library, and the path to X-Window’s include files will likely differ from set-
tings we have used. You should edit tfeke.config file and make the following changes:

* The destinations for installing Paradyn libraries and programs are specédiative to the
core of the Paradyn source distributioby LIBRARY_DEST and PROGRAM_DESNote that
while alternate locations may be specified, modification of the standard Paradyn build and
install directory structure is not recommended. Whenever make is performed from the
toplevel source (core) directory, a check is made to determine whether these directories
already exist, an attempt is made to automatically create them. If this fails, or make is run
directly from module subdirectories without these directories existing (and writable), the build
will likely be unsuccessful, as it relies on installing and using components as they are built.

» Search foBACKUP_CORENd replace its path with either/’. " or the location of the root of
the Paradyn distributiorPARADYN_ROQTMost sites will not need to use this variable; it spec-
ifies alternate locations to search in the event that the primargOREvariable doesn't find
that it was looking for. Search theake.config file for uses offO_COREBINdBACKUP_COR®D
get an understanding of how they are used as (primary and secondary) directory prefixes.

» Search for the lin@CLTK_DIR and replace the path with the location where Tcl/Tk has been
installed on your system. Also check that the names of your Tcl and Tk libraries corresponds
to those listed iImMCLTK_LIBS: on some systems the libraries may be calksts andtks.3
instead of simplycl andtk . More specifically, the directorgTCLTK_DIR)/lib should con-
tainliotcl.a andiibtk.a (or the equivalent names specifiedTi®g TK_LIBS).

» Search folFLEX_DIR and change its value to the location where the flex libréws.4 or
libfl.lib) has been installed on your system.

* Depending on where the X-Windows include files have been installed on your system, you
may need to tell the compiler where to find them. Searclugs_x11and observe the con-
tents of what's already there. There are checks for different platforms and corresponding
changes. For some platforms, nothing is done because in our configuration, the compiler
doesn't need to be told where the X-Windows include files are, where the X-Windows librar-
ies are, and so on. Depending on your system setup, you may need to make some changes here
to X11_LIB , X11DIR and possibly others.

» Check that utilities, such asacc(bison) andPERL (version 5 or later) are available with the
names (and perhaps paths) specified.

* A private make.config.local file is read (if it exists) aftemake.config itself, and can be
used to override general make configuration defaults. This is generally an appropriate place to
(optionally) defineBuILD_MARKandBUILD_NUM(build identifiers), etc.

* The nmake.config file for Windows NT’s nmakeis similar (and generally simpler) and
should be modified as described above. One additional configuration option relates to the use

Developer’'s Guide January 10, 2002 Release 3.3

Page 58

of Unix shell utilities (such as those freely available from Cygnus) or roughly-equivalent stan-
dard Windows NT commands: currentlyrifmakeis run from a shell (and theHELL environ-
ment variable is duly defined) then the more functional Unix utilities are used.

11.3 TheDEPENDSiIle

The first time a program is compiled for a given platform (ejspradynd/sparc-sun-

solaris2.4), the equivalent of the commamehke depend is automatically issued. It creates a

file DEPENDSIN the platform directory which contains header file dependencies for all of the
source code files; these dependencies will automatically be includeshi®yprogram.tmpl

You can manually recreate this file (a good idea if you change the source code in such a way that
you modify whath files are included in one or mare files) by typingmake depend .

If the Makefile variableEXPLICIT_DEPENDS is not defined, then the make system will (for
consistency) performmake depend every time a source file changes. This can take a good bit of
time, so you may wish to defirexPLICIT_DEPENDSIN a platform-specific Makefile to avoid this
(or you could define it inmake.config to make it the default). Simply put the line
EXPLICIT_DEPENDS=true in the appropriate location (befareke.program.tmpl is included).

Note that automatic generation DEPENDSiles is not supported under Windows NT. The
DEPENDdiles must be manually updated as dependencies change.

11.4 Igen Files

Paradyn, VisiLib and Paradynd use Igen-language files (withi th&uffix) to define the remote
procedure call interface between them. Whenever you chandjies, it is important to re-com-
pile all Paradyn components which use them. To do this, ty&e clean ” followed by make in
the appropriate platform directories for these programs.

11.5 Building on Windows NT

We are using the Visual C++ 6.0 compiler and Microsuftakeprograms to build Paradyn on
Windows NT. Because the configuration and Makefiles used on other platforms are not compati-
ble withnmake there are a different set of configuration files for Windows NT caileake.con-

fig , nmake.module.tmpl , nmake.library.tmpl and nmake.program.tmp |. Each file is the
equivalent of the similarly named configuration file for the Unix platforms. To compile a module,
go to the Windows NT platform directory in the moduigsg-unknown-nt4.0) and typenmake

(or nmake install). There is no top-level Makefile (there/Makefile will not work with
nmake, though thescripts directory contains both Unix shellm@ke-nt.sh) and command
(make-nt.bat) scripts that will try to compile everything.

The following packages are needed to build Paradyn: bison, flex, Tcl/Tk, and ONC RPC (an
implementation of Sun RPC). One of the include files in the ONC RPC packa&gzxdr.h ,
needs to be modified to compile with the Visual C++ compiler. (We have these packages installed
under p:/paradyn/packages/winnt , and this path should be updated as appropriate for your
system. A gzipped tarfile of ONC RPC v1.12 with tReC/xdr.n file already modified is avail-
able fromftp://grilled.cs.wisc.edu/paradyn/etc/oncrpcl12winnt.tar.gz).

Developer’'s Guide January 10, 2002 Release 3.3

Page 59

To run the Paradyn daemon on Windows NT, the dynamic link libsaeypc.dl must be in
some directory that is listed on yoBATHenvironrment variable, so that the Paradyn daemon can
use Sun RPC calls to communicate with the Paradyn front-end.

12 MPI APPLICATION SUPPORT

Paradyn currently supports native MPI on AIX/SP and MPICH on x86/Linux and x86/Solaris.
Metrics based on MPI library functions are defined in the usual way in the Paradyn configuration
file (paradyn.rc). This section describes special support for starting MPI applications (i.e.,
distributed collections of MPI processes) under Paradyn control. Since application startup is not
specified in the MPI standard, the mechanisms used by each implementation typically vary and
Paradyn requires implementation-specific support for each case. In all cases, support is currently
only available for creating/starting MPI applications under Paradyn control, rather than attaching
to existing collections of MPI application processes.

12.1 MPICH Support

Paradyn includes support for MPICH applications on collections of workstations. The current
implementation has several limitations which are given below.

» Cluster nodes should share a common file system with the host used to launch the application.
For each MPI application being launched, the Paradyn frontend creates a startup file that
should be accessible from all nodes in the cluster. In the future, the frontend may ship this file
to other nodes via an rcp-like mechanism or use environment variables to avoid this need.

» Only x86/Linux and x86/Solaris platforms are currently supported, both as homogeneous and
heterogeneous collections. A proper SPARC/Solaris implementation would require an ability
to access function arguments off the stack (parameter 7 and higher).

» Paradyn requires MPICH version 1.2.0. Older versions of MPICH can be supported by re-
linking an MPI application with the profiling librarjppmpich.a and the Paradyn wrapper
library libpdmpich-1.1.0.a

» Paradyn currently does not support any MPICH drivers other than the default P4 driver, how-
ever, other drivers can be handled in a similar fashion. The pure shared memory
driverishmem) can be supported by enabling the default follow-fork instrumentation in the
daemon. The same method may be sufficient for the mixed P4+shmem driver, however, the
last driver performs severakec() system calls at startup which may not be handled reliably
by Paradyn. A potential solution may be to allawe exec() calls to happen unnoticed,
which should not involve many changes in the daemon.

12.1.1 MPICH job startup procedure

Consider an MPI application that is to be started on 3 nodes (A, B, C) via the following com-
mand:mpirun -np 3 hello . Figure 16 provides a step-by-step description of the default P4
driver startup procedure. In the diagrams, black/solid arrows indicate process creation, red/dashed
arrows indicate communication and blue/dotted arrows indicate process control.Long dashed lines
indicate machine boundaries. Figure 17 describes startup of the rgdime application under

Developer’'s Guide January 10, 2002 Release 3.3

Page 60

Paradyn. The core idea is to make MPICH start Paradyn daemons instead of the real application

nodes. It is the daemon’s responsibility to launch the application after that.
Figure 16: MPICH Job Launch Procedure

Host A Thempirun command is issued on Host A.
mpirun -np 3 hellc

Host A Thempirun script performs certain preprocessing
m steps: createsmocgroup file with the three host

names and sets up environment variables, if neces-
sary. After that, it launches the first copy of the

application locally, passing theocgroup file
hello -p4pg P11234 name P11234) as an argument. This program
instance (the “master”) plays a special role in the

master startup process, but it becomes an ordinary compu-
tational process once all nodes are started.

The master starts running and hits the_init()
function. This function analyzes the procgroup file
and creates computational processes (slaves) on
the other nodes (B and C). Actual process creation
may happen either through an rsh-like program or
through the special P4 daemon. Each slave is
started with the master location (hostA, port#)
passed through the command line:

hello -p4amslave hostA port#

Notice that user-supplied command line arguments
are hidden from the slaves at this point.

The slaves run until they hit theP1_Init) func-
tion. This function analyzes the command line
arguments and connects back to the master. The
master ships the user-supplied command line argu-
ments to the slaves, completes the initialization
and all processes start running.

Developer’'s Guide January 10, 2002 Release 3.3

Page 61

Figure 17: Paradyn MPICH Job Launch Procedure

Host P
P

aradyn: create the scrip
pdd.AAA_saGEA

The user enters a complete mpirun command in a
Paradyn command file or in the Paradyn (Setup,
Define a New Process) command field. Paradyn
parses the command line, creates a helper script,
replaces the program name with the script name in
the command line and executes the command line
on the specified target machine. The purpose of the
script is to start paradynd with proper arguments
(frontend_host,frontend_port,prog_name).
These arguments can not be included in the user-
specified command line, because MPICH hides it
from slave processes (paradynd’s) until they com-
pleteMPI_init().

Host P |
Paradyn
/

read:

paradynd

\

mpirun proceeds as described in Figure 16 and
starts the first pdd script. The script launches para-
dynd, paradynd starts the user application, stops it
at the beginning ahain() and communicates to
the frontend.

Host P

The user hits therRun” button and the application
starts running. This instance becomes the master,
So it attempts to create slaves, but runs our scripts
on the remote hosts instead. The scripts create
Paradyn daemons. The Paradyn daemons create
inferior processes and communicate to the front-
end. The frontend adds these processes to the
resource hierarchy and tells paradynd’s to continue
them. Finally, slave processes mitl_init(),

notify the master of arrival and the MPI applica-
tion starts running

Developer’'s Guide

January 10, 2002

Release 3.3

Page 62

12.1.2 Supporting MPICH on other platforms

Most of the described infrastructure is platform-independent. To support MPICH on a new plat-
form, one may not need to change the frontend. Following is a list of the required changes to the
daemon. Segaradynd/src/init-linux.C for details.

Instrumentfork() with the specializedYNINSTmpi_fork() ~ routine instead of the standard
DYNINSTfork(). Currently, we do not need to followwrk() in MPI applications. The goal
of theDYNINSTmpi_fork() ~ routine is to perform cleanup afterk().

Do not instrument thexec() call.

InvokeinstMPI() to instrument several MPI functions with tag and group- recording code
snippets.

Developer’'s Guide January 10, 2002 Release 3.3

	Developer’s Guide
	1 Overview
	1.1 Document revision history
	1.2 New functionality for release 3.0
	1.3 New functionality for release 2.1
	1.4 Paradyn subsystems and source code structure
	Figure�1: Paradyn (and dyninstAPI) subsystems.
	Figure�2: Paradyn/dyninstAPI module structure and dependencies.
	Libraries and associated include files are common module dependencies, often supplemented with pr...

	2 Paradyn Package Dependencies
	3 Paradyn Front-end
	3.1 Data Manager
	Performance data collection
	Performance data delivery from the Paradyn daemon(s)
	Metrics and resource hierarchies management
	DM objects

	3.2 Visi Manager
	Visi Manager types
	Visi Manager interface routines
	Figure�3: Visi Manager interface

	3.3 Visi threads
	Visi thread types
	Figure�4: VISIthreadGlobals struct members.

	The Visi thread and the Visi interface
	The Visi thread and the Data Manager
	Interface routines

	3.4 User Interface (UI) thread
	UI main loop
	Where Axis
	Performance Consultant window (Search History Graph)
	Tunable constants
	Status lines
	Paradyn Main Control window

	3.5 Performance Consultant thread
	The data stream
	Experiment definition
	Search control
	Starting up a particular experiment
	1. Get estimated cost: when a node is expanded, a request is made to the Data Manager for the pre...
	2. Enable request(s): when a node is launched from the PC run queue, one or more enable requests ...
	3. Change to true: when a node’s status changes from unknown to true, both parent and children ma...
	4. Change to false: when a node’s status changes from unknown to false it is deactivated and not ...

	4 Visi Library
	5 Paradyn Daemon
	5.1 Introduction
	1. Starting and controlling the execution of application processes.
	2. Reading the application’s symbol table.
	3. Reading the application’s binary image to find instrumentation points.
	4. Evaluating metrics, generating code, and inserting instrumentation into application processes.
	5. Periodically sampling performance data from the application and forwarding values to the Parad...

	5.2 Application processes
	5.3 Object file processing
	5.4 Shared-object processing
	Figure�5: Process class and shared objects.
	Process 1 and process 2 are the same executable and share a.out and shared object images. Process...
	Figure�6: image, module, pdFunction, and instPoint classes.
	Each image consists of a number of modules, each module consists of functions, and each function ...
	Metric Evaluation and Code Generation
	Figure�7: Data structures of the Paradyn daemon.

	5.5 Performance data sampling
	5.5.1 Shared-memory sampling
	5.5.1.1 Synchronization issues for shared-memory sampling
	Figure�8: Pseudo-code for startTimer and stopTimer operations
	Figure�9: Pseudo-code for shared-memory sample of a timer
	Figure�10: Final pseudo-code for startTimer/stopTimer operations
	Figure�11: Final pseudo-code for timer sampling

	5.5.1.2 The need for a get-remote-time() primitive
	5.5.1.3 Source code for shared-memory sampling

	5.5.2 Alarm sampling

	5.6 Retroactive instrumentation
	Figure�12: Retroactive instrumentation example.
	The program has been interrupted during the execution of subD2 (with the call-stack as shown) wit...

	5.7 Dynamic Heaps
	5.8 Trampoline Guards
	5.9 Timer Levels
	Implementing a new timer level

	6 x86 Port
	Instruction representation
	Parsing the executable image
	Inserting instrumentation
	Base trampoline
	Code generation
	Example

	7 Linux port
	Inferior process modification and information through ptrace and /proc [dyninstAPI/src/linux.C]
	Handling shared libraries in the inferior process [dyninstAPI/src/linuxDL.C]
	Inserting a shared library into the inferior process process::dlopenDYNINSTlib [dyninstAPI/src/li...
	Inferior RPCs [dyninstAPI/src/process.C]
	Paradyn front-end threading package [libthread]

	8 Run-time instrumentation library
	9 MDL implementation
	9.1 Important files
	Figure�13: Crucial MDL files

	9.2 Lexical and syntax analysis
	Figure�14: An example demonstrating how apply() functions work.

	9.3 Semantic analysis and intermediate code generation
	9.4 Where these classes are defined
	Figure�15: Important MDL classes.

	10 Igen Interface Generation
	10.1 Overview of Igen
	10.1.1 Synopsis
	10.1.2 Output
	10.1.3 Memory
	10.1.4 Upcalls
	10.1.5 Interface template

	10.2 Igen grammar

	11 Makefile Issues
	11.1 Overview of Makefile organization
	11.2 Site-dependency issues
	11.3 The DEPENDS file
	11.4 Igen Files
	11.5 Building on Windows NT

	12 MPI Application Support
	12.1 MPICH Support
	12.1.1 MPICH job startup procedure
	Figure�16: MPICH Job Launch Procedure
	Figure�17: Paradyn MPICH Job Launch Procedure

	12.1.2 Supporting MPICH on other platforms

