Paradyn Parallel Performance Tools

DyninstAPI Test Suite

Release 2.1
June 2000

Dyninst Project

Computer Sciences Department
University of Maryland

College Park, MD 20742
dyninst@cs.umd.edu

DyninstAPI Test Suite 6/9/00

Table Of Contents

oo 13 o3 1o o 4.
O 1 o PRSPPI 4

1.1 Mutator structures and important data variables ... 4

1.2 Mutatee structures and important data variablescccccevieiiiiiiiiiiiiieiecn 5

1.3 HOW tO dd @ NEW TEST CASEuuvviiiiiiiiiiiiiiiiiiieee e e e e e e e e e e sttt e e e e e e e aaaaaeeaaaaanans 5

1.4 Language-independent test case deSCrPtioNScccoveeviiiiiiiiieiiieiiic e, 5
Testl.1 (zero-argument function call)oevvvviiiiiiiiiiiee e 5
Test1.2 (multiple-argument function call) ..., 5
Test1.3 (passing variables to funCtions)cccoveeviiiiiiii e, 6
Testl.4 (snippet eXeCUtioN SEQUENCE)cevvvrrrrrrmniiiaieeeeeeeerrreeeeennennnnnnnnnn 6
Test1.5 (construct if statement without else branches)ccccceevninns 6
Test1.6 (arithmetiC OPErators)ooovviiiiiiiiiiieeer e 6
Test1.7 (relational OPErators)coooovviiiiiiiiiiiiiii e 6
Test1.8 (preserve registers upon expression iNSertions)ccccceeeeeennn. 7
Test1.9 (preserve registers upon function insertions)ccccevvviieeeeennns 7
Test1.10 (INSert SNIPPEL OFUET) ...vuuiiiiiiiiiieieeee e 7
Testl.11 (snippets at entry, exit and call points)cccoceeeeeiiieeiiiiiiiiiiiinnn, 7
Test1.12 (insert/remove, and malloc/free)ooovvviiiiiiiiiiiiiiie, 8
Test1.13 (paramExpr, NUllEXPr and retEXPr)ccocccvvvvviiiiiiiiiieiieeeeeeeeenn 8
Test1.14 (replace/remove function call)ccccooeviiiiiiiiiiiiie, 8
Test1.15 (SEtMULAtIONACLIVE) ...ooeeeiiiiiiiieee e 8
Test1.16 (construct if-then-else statement) ... 9
Test1.17 (return values from function callS)ccccoceeeiiiiiiiiiiiiiiii, 9
Test1.18 (read/write a variable in the mutatee)ooevviiiiiiiiiiieenneennn. 9
Test1.19 (ONETIMECOUE) ...ovvieieiiieeee et 9
Test1.20 (instrument arbitrary points)ooovvviiiiiiiiiie e, 10
Test1.21 (findFunction in MOdUI)covviieiiiiiiiiie e 10
Testl.22 (replace fUNCLONS)ovvvviiiiiiiiiiee e e e e 10
Testl.23 (local variables)uuuuuiiiiiiiiee e 10
Testl.24 (array variables) ..o 11
Test1.25 (UNArY OPEIatOrS)cccoeceeiiiiiiiiiiiee e ee e e e e e e e e e e e e e e e 11
Test1.26 (field OPErators)cccceiiiiiee e e e e e e 11
Test1.27 (type compatibility)ooovreriiiii e 11
Test1.28 (user defined fieldS)ccceeviiiiiiiii e 11
Test1.29 (BPatch_SrcODj ClasS)coevvviiiiiiiiiiiii e 12
Test1.30 (line INfOrmation)oooeiiiiiii e 12
Test1.31 (non-recursive base tramp guard)ccccccceeeirrinniiiiiiiiiiiieeee 12
Test1.32 (recursive base tramp guard)ccoeeeeeeiiiiiiieee e 12

1.5 CH+ language-SPECIfIC tESISccciiiiiiiiiiiiiiiiiiiie e e ettt e e e e e e e e e eeeeeeeeeee 13

1.5.1 How to add @ NEW CH+ tEST ...uuuuiiiieii ittt e e e e e e e e e e e eeeeeeannees 14
1.5.2 C++ Language-specific test case descriptionsccccevvvvvvviiviiiniiiineenn. 14

Test1.33 (class member function argument passing)ccccevvevevvveennnnnnnn 14
Test1.34 (overloaded fUNCHONS)ccovviiiiiiiiiiiiii e 14
Test1.35 (overloaded OPErators)ccevvvivriiiiiiiiieeeeeee e 14
Test1.36 (static member variables and functions)ccccccoeeviveieeiiinnnnee. 15
TESEL.37 (NAMESPACE) ...evvviiiiiiiiiiiiiiie e e e e e e e e e e e e e e 15

DyninstAPI Test Suite June 9, 2000

Release 2.1

Table Of Contents

TeSt1.38 (EXCEPLIONS) ..coeeieieiieiiiiiiii ettt e e e e 15
Test1.39 (TEMPIALES)ccceeeeiiieeeeeee e e 15
Test1.40 (declaration SCOPES) ...ocvvveirriiiiiiiiiaiee e e e ee ettt a e 15
Test1l.41 (derived ClaSSES) ...ccooviiiiiiiiii it 16
Testl.42 (standard C++ libraries)coooovvvviiiiiiiiiiii e, 16
Test1.43 (replace functions in standard C++ libraries)cccccoeeeeeeenes 16
Test1.44 (C++ member fUNCLONS)oooiiiiiiiiiiie e 16
1.5.3 MaKefile Changesccoooiiiiiiieeeccie e e e e e 17
A T PP PP 17
2.1 Mutator structures and important data variablesccccoiiiiiii 17
2.2 Mutatee structures and important data variablescccccoiiiiccici 17
2.3 HOW t0 add @ NEW LESE CASEceiiiiiiiiiiiiiiiiie e ettt e e e e e e e e e e e e eeeeseeennnnas 18
2.4 TeSt CASE UESCIIPLIONSeeeiiiiiiieiieeeee ettt et e e e e e e e e e e e e e e e e e e bbb bbb e e e eee e 18
Test2.1 (run an executable that does not exist)ccccevvvvvveiiiiiiciiceeeeennn. 18
Test2.2 (try to execute a file that is not a valid program)ccccceeeeennn. 18
Test2.3 (attach to an invalid PID)oooiiiiiiiiiiiiiiiieeeeeeeeee e 18
Test2.4 (attach to a protected PID)ccoooeeiieiiiiiiieeeciee e 18
Test2.5 (look up nonexistent fUNCLIONS)oovviiiiiiiiiiiiii s 18
Test2.6 (load a dynamically linked library from the mutatee) 19
Test2.7 (load a dynamically linked library from the mutator) 19
Test2.8 (BPatch_breakPOINtEXPI)iiiiiieeeie e 19
Test2.9 (dump core but do not terminate the mutatee)ccccceeeeeennnene. 19
Test2.10 (AUMP IMAGE) ..uuuiiieiiei e 19
Test2.11 (getDisplacedINSrUCIONS)ccovveiiiieiiieeieeeeee e 19
Test2.12 (BPatch_point query fUNCLIONS)uuveiiiiiiiiiiiiiiieieeees 20
Test2.13 (delete threads)ooooevvviviiiiiiiii e 20
Test2.14 (Process MAaNAGEMENT)uuuuuuiiiiee e e e e e ettt e e e e e e eeeas 20
K 1= 1 P 20
3.1 Mutator structures and important data variablesccccovvvriiiiciiiiii e 20
3.2 Mutatee structures and important data variablesccccoiiii 21
3.3 HOW {0 @dd @ NEW LEST CASEcooiiiiiiiiiititte ettt e e e e e e 21
3.4 TeSt CASE ESCIPLIONScevviiiiiiiiiiie i e e e e eee ettt e e e e e e e e e e e e e e e e e e s e e e e e eaeeaaees 21
Test3.1 (simultaneous multiple-process management)cccceeeeeeeeeeeeeee. 21
Test3.2 (instrument multiple ProCeSSES)ooovviiiiiiiiiiiiiie e 21
Test3.3 (sequential multiple-process management - exit)cccevvvveeen 22
Test3.4 (sequential multiple-process management - abort) 22
N S 22
4.1 Mutator structures and important data variablescccovviiiiiiiiiiiii e 22
4.2 Mutatee structures and important data variablesccveeiiiiiii e 22
4.3 TESE CASE UESCIIPLIONSuuttiiriiiiiiiiieiieeee e e e e e e e e e e s st e e e e e e e e e e e e e aeaeaeeaeaaasaaannnnnes 23
Test4.1 (exit callback fUNCLIONS)ccoooeeieiii e 23
Test4.2 (fork callback funCtions) ... 23
Test4.3 (exec callback fuNCioNS)eeveiiiiiiiiiiii 23
Test4.4 (fork and exec callback functions)ccccovviiiiiiiiiii e, 23
AppendiX A - RUNNING the tEST CASESuuiiiiiiiiiiiiiie e 24

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 4

INTRODUCTION

The dyninst library provides facilities to patch code into a running program. It implements an
interface, the dyninstAPI, for users to call the functionality of the library. In this paper, we discuss
the dyninstAPI test suite in detail.

The dyninstAPI test suite is used to verify that the dyninst library has been installed correctly.
It is also used by the developers of the dyninst library during regression testing. There are four test
programs and up to twenty mutatee programs.

The dyninstAPI introduces two primary abstractions of a running program and its state. These
abstractions arénstrumentation pointand snippets To support multiple processes, two addi-
tional abstractionagmagesand processesare included in the dyninstAPI. The test programs of
the test suite manipulate multiple application processes. They access instrumentation points in the
application images and formulate snippets for insertion into the processes.

The test suite encompasses most of the dyninstAPI methods. First, it covers the classes used to
manipulate code in execution. Related classes include BPatch and BPatch_thread. Second, it uses
a group of classes, BPatch_image, BPatch_module, and BPatch_function, for accessing the origi-
nal program and its data structures. Third, the test suite covers the classes to construct and insert
new instrumentation code. These classes include BPatch_snippet and BPatch_point. Finally, the
BPatch_type class of the dyninstAPI provides a type system. The test suite uses this type system
to access existing application variables and to allocate variables for use in code snippets.

In the following sections, we present the test programs and their corresponding mutatee pro-
grams.

1 TEST1

The testl program examines the basic features of the dyninstAPI. Test cases 1 through 32 test the
interfaces that the mutator program uses to access the mutatee program and its data structures.
They also cover the interfaces for constructing new code snippets and inserting them. Test cases
33 through 44 again use these interfaces. However, the main goal of these tests is to explore dyn-
inst support for the C++ language features, such as inheritance and function overloading. The
mutator is implemented in test1.C. The corresponding mutatee is implemented in testl.mutatee.c.
Utility functions are implemented in test_util.h and test_util.C. The file cpp_test.h defines C++
test case classes.

1.1 Mutator structures and important data variables

As the testl mutator program begins executing, command line options are parsenhairilseb-
routine. Initialization proceeds with a call to tmeutatorMAIN function. A single instance of
BPatchbpatchis created, and the mutatee program is started. Test case functions are called to
insert code snippets.

Mutator test functions are calladutatorTestXXLocal variables within a test case function
are namedexprXX_YYand pointXX_YY where XX denotes test case number, avitd is the
instance number within a test case.

The constant integeMAX_TESTdenotes the total number of test cases implemented in
test1.C. The boolean varialienAllTestsdefaults to true for activating all test cases. The boolean

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 5

variablerunCppswitches on the C++ test cases when the mutatee executable is built with C++
compilers. The boolean arraynTestindicates whether to execute a specific test case depending
on the command line optioun specified when a user executes the testl program. The boolean
arraypassedTegtecords the passed test cases.

1.2 Mutatee structures and important data variables

As the testl mutatee program begins executing, command line options are parsgdsnbrou-
tine. Variables are initialized to control test case coverage. The mutatee performs a test by invok-
ing the appropriate test case functioncXX_1

The mutatee defines data variables for the mutator to access, verify and manipulate. They are
namedglobalVariableXX_Y,YconstVarXX RETXX_YYand MAGICXX_YYTest case functions
are nameduncXX_YYThese are stub functions to which the mutator can attach instrumentation
snippets. Auxiliary functions are namedllXX_YYThe mutatee uses these to determine the cor-
rectness of respective tests by checking their return values, parameter values, or global variable
values.

1.3 How to add a new test case

Adding a new test case requires the following steps:
1. Increment thtMAX_TESTcounts in both test1.C and testl.mutatee.c.

2. On the mutator side, implementautator TestXXunction for the new test case. Call this func-
tion from the functioomutatorMAINafter calling the existing test case functions.

3. On the mutatee side, implemefuincXX_YYfunctions, declarglobalVariableXX_Y\Wari-
ables, and call this function from the functiomain (refer to Section 1.5.1 for details on add-
ing new C++ test cases).

1.4 Language-independent test case descriptions

We first examine the language-independent test cases in testl.

Testl.1 (zero-argument function call)

Testl.1 verifies inserting calls to zero-argument functions into a mutatee. ImutegorTestl
function, the mutator finds the zero-argument functafil_1in the mutatee module. The muta-
tor then inserts a snippet that calls the function into the entry point oiuth&l_1function. The

mutatee determines the correctness of the above operations by examining the value of
globalVariablel J1which was set by the inserted snippet.

Testl1.2 (multiple-argument function call)
Test1.2 verifies inserting calls to multiple-argument functions into a mutatee (passing constant

arguments). These arguments are integers and character stringsmut#terTestZunction, the
mutator finds the multiple-argument functioall2_1in the mutatee module. It inserts a snippet

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 6

that calls this function at the entry point of thenc2_1function. Then the mutatee determines the
correctness of the above operations by examining whether correct input parameter values were
passed by the inserted snippet.

Testl1.3 (passing variables to functions)

Test1.3 verifies inserting calls to multiple-argument functions into a mutatee (passing variable
arguments). These arguments are integers. Imtb&atorTest¥unction, the mutator finds the
two-argument functiorcall3_1 It inserts a snippet that calls the function at the entry point of
func3_1function. Then the mutatee determines the correctness of the above operations by exam-
ining if correct parameter values were passed by the inserted snippet.

Testl.4 (snippet execution sequence)

Testl.4 verifies that the execution order of the inserted code snippets is correct. In the
mutatorTest4function, the mutator first findglobleVariable4_1.Then it constructs snippets
which assigrglobleVariable4 1lthe values of 42 and 43. These snippets are inserted at the entry
point of thefunc4_1function. In functionfunc4_1 the final value of theglobleVariable4 1lis
examined to determine if the snippets were executed in correct order.

Testl.5 (construct if statement without else branches)

Testl.5 constructs IF statements (without ELSE branches). InmiltatorTest5function, the
mutator constructs a snippet of two IF statements, that assign valugehalVariabl5_1and

globalVariable5 21t then inserts the snippet at the entry point of tilaec5_2function. In func-

tion func5_2 the values of thaylobalVariable5 land theglobalVariable5 2are examined to
determine the correctness of the operations.

Note that test1.16 investigates IF-THEN-ELSE statements.

Testl.6 (arithmetic operators)

Test1.6 examines the arithmetic operators provided by the dyninstAPI. The operators verified in
this test are addition, subtraction, division, multiplication, and the comma operator, for both con-
stants and variables. In thenutatorTest6function, the mutator finds mutatee variables
globalVariable6’s It then constructs snippets using the arithmetic operators. The operands of the
operators are either constants or variables declared in the mutatee module. The results of the oper-
ations are assigned to tiggobalVariable6’s The mutator inserts the snippets at the entry point of

the func6_2 function. In function func6é_2 the mutatee examines the values of the
globalVariable6'’sto determine correctness.

Testl.7 (relational operators)
Testl.7 examines relational operators provided by the dyninstAPI. The operators verified in this

test are BPatch_It, BPatch_eq, BPatch_gt, BPatch_le, BPatch_and, BPatch_or, BPatch_ne, and
BPatch_ge. In thenutatorTest/&unction, the mutator finds the variablgtobalVariable7’sand

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 7

constVargleclared in the mutatee module. It then constructs snippets of IF statements, that assign
values to theglobalVariable7’susing the relational operators. The operands of the relational oper-
ators are either constants or the variatdastVas. These snippets are subsequently inserted at the
entry point of thefunc7_2function. In functionfunc7_2 the values of thglobalVariable7'sare
examined to determine the correctness of the inserted snippets.

Testl.8 (preserve registers upon expression insertions)

Test1.8 verifies whether inserting complex AST expressions overwrites mutatee function parame-
ter registers. Mutatee functidanc8_1contains ten integer parameters. In thetatorTestgunc-

tion, the mutator constructs the nested AST expressigiobalVariable8 1 =
((81+82)+(83+84))+((85+86)+(87+88)) This expression is then inserted at the entry point of
func8_1Func8_1contains a long list of parameters, and we have inserted a complex AST expres-
sion at its entry point. We examine if thenc8_1'sparameters maintain their original values after

the expression insertion to determine correctness.

Test1.9 (preserve registers upon function insertions)

Test1.9 verifies whether inserting snippets that call functions will overwrite mutatee function
parameter registers. Mutatee functidonc9_1 contains ten integer parameters. In the
mutatorTest3unction, we construct a function call snippet that passes five parametaidol
function. This call snippet is then inserted at the entry point offtime9_1function. Func9_1
contains a long list of parameters, and we have inserted a function call snippet at its entry point.
We examine if thdunc9_1s parameters maintain their values after the call snippet insertion to
determine correctness.

Test1.10 (insert snippet order)

Test1.10 verifies whether snippets are inserted into mutatees in the requested order. We insert one
snippet and then request two more to be inserted, one before the first snippet and the other after it.

In the mutatorTestl0function, the mutator finds the zero-argument functiaadi10 1,
calll0_2andcall10_3defined in the mutatee module. These functiongwialVariable10’sto
predetermined values. The mutator inserts a catlaitilO_2 at the entry point of théunc10 1
function, and then inserts calls tall10_1andcall1l0_3before and after thealll0 2 snippet,
respectively. In functiofunc10_1of the mutatee module, the values of tilebalVariable10’sare
examined to determine whether the inserted snippets were executed in the correct sequence.

Testl.11 (snippets at entry, exit and call points)

Testl.11 verifies inserting snippets at the entry, call-site and exit points of a function. In the
mutatorTest1lfunction, the mutator finds the functionall1l1l_1 callll 2 callll_3andcallll 4
defined in the mutatee module. It then inserts a caltathll 1 snippet at the entry point of
funcll_1it also inserts calls tgallll_2andcallll_3before and after the call-site point of the
funcll_1function, respectively. Last, the mutator inserts a calcatill 4 snippet at the exit

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 8

point of thefuncll_Ifunction. If any of the above operations fail, the mutator will exit. Other-
wise, the mutatee assumes success and does not conduct validation.

Testl.12 (insert/remove, and malloc/free)

This test case contains two parts, 12a and 12b.

Testl.12aMerifies inferior memory allocation and deallocation. The functrontatorTest1l2a
continuously allocates segments of memory until it exhausts the heap, at which point it reclaims
all of the memory. Then a small amount of memory is allocated once agairmiite#orTest12a
function also inserts a call snippet¢all12_1at the entry point of théunc12_2function. Since

the inserted snippet incrememggi®balVariable12 1the mutatee determines the correctness of the
above operations by inspectigpbalVariable12 1

Testl.12bMerifies the removal of inserted snippets. It also deallocates the heap memory allocated
earlier in the testl.12a. First, tiencl2_1function stops the mutatee’s execution. The mutator
waits for the mutatee process status change, then begins to delete the call snippealid 2hé&
function inserted earlier in 12a. It also deallocates the heap memory allocated in the testl.12a by
freeingvarExprl2_1defined in the mutator module. This sub-test case is dependent on testl.12a.

Test1.13 (paramExpr, nullExpr and retExpr)

Testl.13 examines BPatch_paramExpr, BPatch_nullExpr, and BPatch_retExpr expressions. In
mutatorTest13the mutator finds theall13_1function in the mutatee. It constructs a snippet that
calls call13_1 A five-element BPatch_paramExpr is passecatil3 1 as its argument. The
mutator then inserts the snippet and a BPatch_nullExpr at the entry pdinbhci3 1 To test
BPatch_retExpr, the mutator constructs a snippet that cedlil3 2 A one-element
BPatch_retExpr is passed to the call13_2 function as its argument. This snippet is then inserted at
the exit point offunc13_2 To determine whether execution of these inserted snippets is correct,
the mutatee inspects the parameter valuesltf3 landcalll3_2and decides correctness.

Test1.14 (replace/remove function call)

Testl.14 verifies function replacement and removal in mutatees. Initially mutatee function
funcl4_1contains calls tduncl4_2andfuncl4 3 In the mutatorTestl4unction, the mutator
replaces thduncl4 2call with a call tocalll4_1 It also removes théuncl4 3call from the
funcl4_1function. To determine the correctness of the replacement and removal, the mutatee
examines the values giobalVariablel4 landglobalVariablel4 2o determine if the replaced
code was executed and the removed code omitted.

Test1.15 (setMutationActive)

Test1.15 verifies the correct operationsatMutationsActivenethod, which enables or disables
the execution of all snippets for the mutatee thread. This test case contains two parts, 15a and 15b.

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 9

Testl.15ainitially, the mutatee functionfuncl5 4 contains a call tofuncl5 3 In the
mutatorTest15dunction, the mutator replaces thencl5 3call with a call tocalll5 3 It also
inserts a call teall15_1at the entry point diuncl5 2

Testl.15bin the mutatorTestl5unction, the mutator disables and then enables all the inserted
snippets via theetMutationsActivéunction call. In thefunc15_Ifunction of the mutatee module,

the values ofylobalVariablel5'sare examined to determine correctness. Sub-test 15b is depen-
dent on 15a.

Test1.16 (construct if-then-else statement)

Test1.16 verifies the construction of IF-THEN-ELSE clauses. ImthéatorTestl6unction, the
mutator findsglobalVariablel6's,defined in the mutatee module. It then constructs a few IF-
THEN-ELSE code snippets in which values are assigned tayliblealVariable16’s These IF-
THEN-ELSE snippets are subsequently inserted at the entry poiritsnot6 2 funcl6_3,and
funcl6_4In funcl6_1 the values of thglobalVariablel6’sare examined to determine correct-
ness.

Note that testl.5 investigates IF statements without an ELSE branch.

Test1.17 (return values from function calls)

Test1.17 verifies that instrumentation inserted at a subroutine's exit point does not overwrite the
subroutine's return values. In theutatorTestlfunction, the mutator instruments the mutatee to
call call1l7_1with one constant parameter at the exit pointusfc17_1 Similarly the exit point of
funcl7_2is instrumented to caltalll7_2with one constant parameter. fumncl7_1the mutatee
compares the return valuesfohcl7 _landfuncl7_2to determine correctness.

Test1.18 (read/write a variable in the mutatee)

Test1.18 verifies the reads and writes of global variables in a mutatee. mutia¢or Test18unc-

tion, the mutator findglobalVariable18 Ideclared in the mutatee module. It reads the variable’s
original value, and assigns a new value to it. To determine the correctness of the read and write
operations, we examinglobalVariable18_1'sriginal value in the mutator and examine its new
value in the mutatee.

Test1.19 (oneTimeCode)

Test1.19 verifies the correct operationasfe TimeCodewhich causes a snippet expression to be
evaluated in the mutatee. On the mutatee digle;19 1stops the mutatee process from running.

The mutator waits for this mutatee process status change, constructs a piece of oneTimeCode, and
resumes the mutatee’s execution. This piece of oneTimeCode is then executed. The mutator pro-
ceeds to construct a second piece of oneTimeCode. However, the second piece of oneTimeCode
never gets a chance to execute. The first piece of oneTimeCode assigns a predetermined value to
globalVariable19 1The mutatee examines the variable’s final value to determine its correctness.

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 10

Test1.20 (instrument arbitrary points)

Test1.20 verifies instrumentation at arbitrary points in a function. Imtb&atorTest2@unction,

the mutator finds all instruction points in thenc20_Zunction It then inserts calls teall20_1at

each of these instruction points. Mutatee functionc20_1subsequently calls the instrumented
func20_2function. Since the inserted snippets assigwbalVariable20’'swith new values, the
func20_lexamines their final values to determine correctness. Test1.20 is currently only imple-
mented on AIX and ALPHA platforms.

Test1.21 (findFunction in module)

Test1.21 verifies the correct operation of fhefunctionmethod. In thenutatorTest2Xunction,

the mutator loads the shared libraridgestAandlibtestBinto the mutatee's image. It then tries to

locate functiorcall21_1within the shared libraries. If any of the above operations fail, the muta-

tor exits. Otherwise, the mutatee assumes success and does not conduct any validation. Test1.21 is
not currently implemented on Windows NT. It is also not implemented on AIX because dynamic
linking to shared libraries is not supported on that platform.

Test1.22 (replace functions)

Test1.22 verifies function replacements in mutatee modules. ImtiatorTest2Zunction, the
mutator loads specific modules into the mutatee's image. After locating the necessary functions,
the mutator proceeds with the following four replacement tests:

» lItreplaces a function defined in the mutatee executable with another function defined in that
executable.

* It replaces a function defined in the executable with another function defined in a shared
library.

» It replaces a function defined in a shared library with another function defined in a second
shared library,

* lItreplaces a function defined in a shared library with another function defined in the mutatee
executable.
Test1.22 requires shared library loading and is only implemented on SPARC_SOLARIS and
ALPHA platforms at this point.

Test1.23 (local variables)

Test1.23 verifies finding and manipulating local variables. In rtheatorTest23unction, the

mutator findgglobalVariable23'sdefined in the mutatee. It also finds local variables defined inside

a mutatee function scope. The mutator then assigns values to each of these variables. In mutatee
function call23_1 we examine the values of thidobalVariable23'sand the local variables to
determine correctness. Test1.23 is not implemented on NT or IRIX platforms.

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 11

Testl.24 (array variables)

Test1.24 verifies finding and manipulating array variables. Imb&atorTest24the mutator finds

the one-dimensional array globalVariable24 1 and the two-dimensional array
globalVariable24 8Both of the arrays are defined in the mutatee. It also finds the one-dimen-
sional arraylocalVariable24 1defined in a mutatee function. The mutator then constructs snip-
pets and inserts them at the call-site points ofdak24 1function. The inserted snippets assign
values to the arrays’ elements. fumc24 1 the values of these array elements are examined to
determine correctness.

Note that the two-dimensional arrgjobalVariable24_8s not square so that we may test the
array element address computation. Test1.24 is not implemented on NT or IRIX platforms.

Testl.25 (unary operators)

Test1.25 verifies the unary operators provided by the dyninstAPI. The operators are BPatch_addr,
BPatch_deref and BPatch_negate. In timeutatorTest25 function, the mutator finds
globalVariable25'sdefined in the mutatee. It then constructs snippets to assign values to the vari-
ables using the unary operatorsflimc25_1the values of thglobalVariable25'sare examined to
determine correctness. This test case is not implemented on IRIX platform.

Testl1.26 (field operators)

Test1.26 verifies accessing component fields in a structure. The mutatee defines a structure. In the
mutatorTest26 function, the mutator finds mutatee variablegobalVariable26 1 and
localVariable26_1 which are of the defined structure type. The mutator proceeds to assign the
values of their component fields to other mutatee defined variabldant26_1 the values of

these variables are examined to determine correctness. This test case is not implemented on NT or
IRIX platforms.

Testl.27 (type compatibility)

Testl.27 verifies type-compatibility. The mutatee defines some types. It also declares
globalVariable27’sof the same types. In theutatorTest2function, the mutator examines the
type-compatibility of the mutatee defined types. It then looks up the types of the
globalVariable27’sand verifies their type-compatibility. If all type-compatibility checks succeed,
the mutator sets an indicat@lobalVariable27_Iso that thdunc27_1function can determine the
correctness of the operations. This test case is not implemented on NT or IRIX platforms.

Test1.28 (user defined fields)

Test1.28 verifies the creation of user-defined types. InntlnéatorTest2&unction, the mutator
creates new structure types by calling ttreateStrucimethod. It also creates variables of these
types. The component fields of these variables are subsequently assigned with predetermined val-
ues. The mutator then assigns the values of these component fields to the mutatee variables

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 12

globalVariable28'’s In func28_1 the mutatee inspects the values of tllebalVariable28’sto
determine correctness.

Test1.29 (BPatch_srcObj class)

Test1.29 verifies theBPatch_srcObjectclass, which represents a mutatee image. In the
mutatorTest29unction, the mutator iteratively traverses through the mutatee image to its compo-
nent modules and functions. If the traversal succeeds, the mutator sets an indicator,
globalVariable29 1so that the mutatefinc29_1function may determine the correctness of the
operations.

Note that the traversal of the mutatee image does not search for particular components (mod-
ules or functions of a specific name).

Test1.30 (line information)

Test1.30 verifies the correct operationgaftLineToAddmethods. In thenutatorTest3@unction,

the mutator retrieves the line number of the mutatee func@i30_ 1 Once the mutator has the

line number, it tries to obtain the function’s addressgesl.ineToAddmethod calls. In particular,

the mutator checkgetLineToAddmethods for the mutatee image, the mutatee module, the func-
tion call30_1, and the mutatee thread objects. The obtained function addresses are stored in
globalVariable30’s In func30_1 the mutatee examines these values to determine correctness.

Test1.31 (non-recursive base tramp guard)

Test1.31 verifies non-recursive base trampoline guards. ImthatorTest3Xunction, the muta-

tor sets the base trampoline guards to false by cafiet@rampRecursivét also inserts a call to
mutatee functiorfunc31_3at the entry point ofunc31_2 This snippet is then executed by the
mutatee. The mutator proceeds to insert two additional calleino31_4in func31_3 Since
func31_3has already been instrumented, neither of the new call snippets should be executed. In
func31_1 the mutatee determines the effectiveness of the trampoline guards by examining if
globalVariable31 % value is reset by the insertkohc31_4call snippets.

Test1.32 (recursive base tramp guard)

Test1.32 verifies recursive base trampoline guards. Imiit@atorTest32unction, the mutator sets

the base trampoline guards to true, and inserts a call to mutatee fuhaotioB2_3at the entry

point of func32_2 This snippet is then executed by the mutatee. The mutator proceeds to insert
two additional calls tdunc32_4in func32_3 The mutatee should still execute the two new snip-
pets even though the functidanc32_3has already been instrumented fiimc32_1 the mutatee
determines the effectiveness of the trampoline guards by examimghapiélVariable32_#% value

is reset by the insertédnc32_4call snippets.

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 13

1.5 C++ language-specific tests

In this section, we explore the dyninst support for C++ language features. Mutatee tests in this
section are written in the C++ language. We cover C++ features, including templates and over-
loaded functions. The test cases are numbered from 33 to 44. The C++ test case hierarchy is
shown below in Figure 1.

class cpp_test
cpp_test(){};

virtual void func_cpp()=0;
virtual void func2_cpp(){};

'

class cpp_test_util: cpp_test
cpp_test_util();

void call_cpp(int);

int CPP_TEST_UTIL_VAR;

/\

class arg_test: cpp_test_util class overload_func_test: cpp_test_util
arg_test(); overload_func_test();

void func_cpp(); void func_cpp();

void call_cpp(); void call_cpp();

Figure 1: C++ test case class hierarchy

The classpp_testkerves as a base class in which virtual and pure virtual functions are defined
for later tests. The derived claspp_test_utiprovides common utilities for the derived test case
classes. It also defines common class member variables and functions. The specific C++ features
are examined in the derived classes. For examplearietestclass tests class member function
argument passing, and tbgerload_func_testlass tests function overloading. In each of the test
case classes, mutatee functifumc_cppis used to determine the validity of respective tests.
Mutatee functiorcall_cppis a stub function; the mutator may attach instrumentation snippets to
it.

The mutatee program is compiled with either C or C++ compilers. When compiling with a
C++ compiler, we need to include the C++ test cases. As shown below, we check if the preproces-
sor symbol__cplusplushas been defined to determine whether to include the C++ test cases.

#ifdef __cplusplus
/* C++ test cases */
void arg_test::func_cpp() {...}

#endif

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 14

The C++ compilers we use are the GNU g++ compiler and the native C++ compilers provided
on the various platforms to build mutatee executables. The resulting mutatee executables are
marked with corresponding extensions, such as testl.mutfesnd testl.mutateg++.

1.5.1 How to add a new C++ test

Adding a new test case involves the following steps:

1. Increment thtAX_TESTcounts in both test1.C and testl.mutatee.c.

2. On the mutator side, implementrautatorTestXXunction for the new test case and call this
function from thenutatorMAINfunction after all existing test case functions.

3. On the mutatee side, declare a test case class in cpp_test.h (the class should be derived from
the clascpp_test_ut). Implement the member functiohsic_cppandcall_cpp Instantiate
an object of the new class and call its member funétinoa_cppfrom the functiormain

1.5.2 C++ Language-specific test case descriptions

We now discuss the C++ language-specific test cases.

Test1.33 (class member function argument passing)

Test1.33 verifies class instrumenting member function argument passing. Class member functions
may contain constant, reference, and default arguments. The mutatee fuangtitest:.func_cpp

calls a class member function that contains constant, reference, and default arguments. In the
mutatorTest33unction, the mutator finds this class member function and verifies the existence
and the type of its arguments. The mutator then inserts a call to another class member function,
passing predetermined arguments. The mutatee determines the correctness of the above opera-
tions by examining the values of the passed arguments.

Test1.34 (overloaded functions)

Test1.34 verifies the dyninst support for instrumenting C++ overloaded functions. The overloaded
mutatee functionscall_cpp are defined in the mutatee claswerload func_testin the
mutatorTest34unction, the mutator verifies the existence of the overloaded class member func-
tions. It then examines the parameter numbers of these functions (note that the types of the param-
eters have been checked in test1.33). Finally, the mutator inserts a call to a class member function,
passing predetermined arguments. The mutatee determines the correctness of the above opera-
tions by checking the values of the passed arguments.

Test1.35 (overloaded operators)

Test1.35 verifies the dyninst support for instrumenting C++ overloaded operators. The overloaded
operatoroperator++ is defined in the mutatee claggerload _op_tesin themutatorTest3%unc-

tion, the mutator verifies the existence of the overloaded operator. It then inserts a function call
snippet into the mutatee, passing predetermined arguments. The mutatee determines the correct-
ness of the above operations by checking the values of the passed arguments.

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 15

Test1.36 (static member variables and functions)

Test1.36 verifies instrumenting C++ static member variables and functions. A static member vari-
able and a static function, which manipulates the static variable, are defined in the mutatee class
static_test There are multiple calls to the static member function in skaic_test::func_cpp
function. InmutatorTest36the mutator verifies the existence of the static members. To confirm
that there is only one instance of the static member variable, the mutator locates the static variable
through the different invocation instances of the static function and verifies if the static variable’s
base address remains unchanged. If all the above operations proceed successfully, the mutator
inserts a function call snippet to inform the mutatee of the success of the operations.

Test1.37 (namespace)

Test1.37 verifies that dyninst understands the C++ scoping in the mutatee. Variables of different
scopes are declared in the mutatee. The scopes of the variables are 1) local to a function, 2) local
to afile, 3) local to a class (not inherited from its parent class), and 4) global. mutetorTest37
function, the mutator verifies the existence of the variables by locating them in their respective
scopes. If all the above operations proceed successfully, the mutator inserts a function call snippet
to inform the mutatee of the success of the operations.

Test1.38 (exceptions)

Test1.38 verifies that dyninst can instrument C++ exceptions. A sample exception class and its
exception handler function are defined in the mutatee module. lexbeption_test::func_cpp
function, the mutatee throws an exception in a try clause and catches it with the handler function
in a subsequent catch clause. In thatatorTest38unction, the mutator verifies the instrument-
ability of the try-catch clauses by locating the BPacth_points and finding the called functions and
locally defined variables in the clauses. If all the above steps proceed successfully, the mutator
instruments the exception handler function of the sample exception class so that the inserted snip-
pet informs the mutatee of the validity of the operations.

Test1.39 (templates)

Test1.39 verifies that dyninst can instrument C++ templates. A template class is defined in the
mutatee. In the member functiet@mplate_test::func_cpmultiple template objects are declared.

Each of the objects has a different base element type. ImthiatorTest3@unction, the mutator

finds the base elements of the template objects and verifies their respective types. If the base ele-
ment type verification is successful, the mutator inserts a function call snippet to inform the
mutatee of the success of the operations.

Test1.40 (declaration scopes)
Test1.40 verifies that dyninst understands C++ declaration scopes. Variables and objects of differ-
ent scopes are declared in the mutatee. The scopes include: 1) global, 2) local to a function, and 3)

local to a class (inherited from its parent class). InrthgatorTest4®unction, the mutator verifies
the existence of the variables by finding them in their respective scopes. If all the above operations

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 16

proceed successfully, the mutator inserts a function call snippet to inform the mutatee of the suc-
cessful operations.

Testl.41 (derived classes)

Testl.41 verifies that dyninst can instrument a C++ derived class. The test case class
derivation_tesinherits member functions and variables from its parent class in the mutatee. In the
mutatorTest4Ifunction, the mutator verifies the derivation hierarchy by locating the inherited
class member function in tlierivation_testlass scope.

Test1.42 (standard C++ libraries)

Test1.42 verifies instrumentation of standard C++ libraries. This test attempts to find functions in
standard C++ libraries. In thenutatorTest4Zunction, the mutator locates the standard C++
library libstdc++ in the mutatee's image. It then tries to locate the opemgerator<< in the
standard C++ library. This test case is not implemented on NT or AlX platforms

Test1.43 (replace functions in standard C++ libraries)

Test1.43 verifies instrumentation of standard C++ libraries. This test attempts to replace functions
in standard C++ libraries. After locating target functions, the mutator proceeds with the following
function replacement tests.

» It replaces a function defined in a standard C++ library with another function defined in the
same standard library.

» lItreplaces a function defined in the standard C++ library with another function defined in the
mutatee executable.

» It replaces a function defined in the mutatee executable with another function defined in the
standard C++ library.

This test case is only implemented on SPARC_SOLARIS and ALPHA platforms.

Testl1.44 (C++ member functions)

Test1.44 verifies that dyninst can instrument C++ member functions, including pure virtual, vir-
tual, constant, and inline functions. Functions of these types are defined in the mutatee module. In
the mutatorTest44unction, the mutator verifies the instrumentability of the functions by locating
their BPatch_points. For the inline function, the mutator discerns the inlined instance of the func-
tion inside its caller from the template instance in the defined class.

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 17

1.5.3 Makefile Changes

We build mutatees using C++ compilers that include GNU g++ and the native C++ compilers on
their respective platforms. The mutatees have names sudkst#ls mutatee g++ and
testl_mutatee_CC . In the platform-specific Makefiles, we define

GNU_CXX = g++
NATIVE_CXX = CC

Certain platforms require slight changes to compile the C++ test code, we discuss them below.

The test1.30 verifies C++ templates. Template objects of different base element types are instanti-
ated. When compiling with the native CC compiler on SOLARIS, we add the following to allow
template instantiations to be placed into the current object file and give them static linkage

ifeq ($(MUTATEE_CC), $(NATIVE_CXX))
CXXFLAGS += -instances=static
endif

2 TEST2

Test2 covers most classes of the dyninstAPI. It is complementary to testl in that it examines the
error reporting features of the library. The mutator is implementedst2.C , and the associ-
ated mutatee is implementedt@st2.mutatee.c

2.1 Mutator structures and important data variables

As the test2 mutator program begins executing, command line options are parsenhairilsaeb-

routine. Initialization is then carried out, and a single instance of the BRgdatchis created.

The first four mutator test case functioniegtl, test2, testd8ndtestq attempt to create mutatee
processes under erroneous conditions. These attempts to create mutatee processes should fail, at
which point, a real mutatee process is created via a call tmtitatorMAINfunction. The mutator

then proceeds with subsequent test cases on this mutatee process.

Mutator test functions are naméestXX The functionmutatorMAINis an auxiliary function
which creates a mutatee process according to an executable path@¥denotes test case num-
ber.

The constant integeMAX_TESTdenotes the total number of test cases implemented in
test2.C. The boolean varialienAllTestsdefaults to true for activating all test cases. The boolean
array runTestindicates whether to execute a specific test case depending on the command line
optionrun . The boolean arrapassedTestecords the passed test cases. Note that the mutatees
are not designed to execute on their own. Instead, they must run under the control of the mutator.

2.2 Mutatee structures and important data variables

As the test2 mutatee program begins executing, command line options are parsedaimtbgh-
routine. The mutatee proceeds by invoking the appropriate test case fiunct&ix_1

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 18

Test case functions are nam&dcXX 1 These functions are stub functions to which the
mutator can attach instrumentation code.

2.3 How to add a new test case

Adding a new test case requires the following steps:

1. Increment thtMAX_TESTcounts in both test2.C and test2.mutatee.c.

2. On the mutator side, implementestXXfunction for the new test case and call it from the
subroutinemain

3. On the mutatee side, implemerfuacXX_1function and call it from the subroutineain

2.4 Test case descriptions
We now examine the test cases in test2. Note that test2.1 through test2.4 attempt to create mutatee

processes and test for the failure of these attempts. However, test2.5 through test2.14 operate on
the same mutatee process created imiai@ subroutine.

Test2.1 (run an executable that does not exist)
In test2.1, the mutator attempts to create a mutatee process from a nonexistent executable. The

mutator then examines the return valuemateProcesd\ote that this test case is skipped for the
command line optioattach

Test2.2 (try to execute a file that is not a valid program)
In test2.2, the mutator attempts to create a mutatee process from an invalid file, sdewasl

(not an executable). The mutator then examines the return valereateProcessNote that this
test case is skipped for the command line opditach

Test2.3 (attach to an invalid PID)

In test2.3, the mutator attempts to attach to an inv&lid number PID 65539. It then inspects
theattachProcesseturn value.

Test2.4 (attach to a protected PID)

In test2.4, the mutator attempts to attach f@tected PIDnumber PID 1 - an OS kernel process
that the user process can not read or write). It then inspe@#adahbProcesseturn value.

Test2.5 (look up nonexistent functions)

In test2.5, the mutator attempts to locate a nonexistent fundtioBuchFunctionn the mutatee
image. It then inspects thi@dFunctionreturn value.

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 19

Test2.6 (load a dynamically linked library from the mutatee)

In test2.6, the mutator loads a dynamically linked library from the mutatee’s imadends_1

the mutatee usaediopento load the shared librarfPEST_DYNAMIC _LIBdefined in test2.h). The
mutator then determines if the loading occurred by searching new symbols in the current mutatee
image. This test case is not implemented on AlX or NT platforms.

Test2.7 (load a dynamically linked library from the mutator)

In test2.7, the mutator forces the load of a dynamically linked library into the mutatee’s image by
calling theloadLibrary method. It then checks if a new symb®EST_DYNAMIC_LIB2defined

in test2.h), is found in the current mutatee’s image via a call tg#t®lodulesnethod. This test
case is not implemented on AlX, ALPHA or NT platforms.

Test2.8 (BPatch_breakPointExpr)

There are two parts to the mutator side of this test, test2.8a and test2.8b.

Test2.8ailn test2.8a, the mutator inserts a BPatch_breakPointExpr at the entry point of the
mutatee function func8_1. This test needs to be run before the mutatee process continues. For
example, it can run just after process creation or attach.

Test2.8b:Following test2.8a, the mutator waits for the instrumented breakpoint to be reached. It
then determines if the mutatee process correctly stops.

Test2.9 (dump core but do not terminate the mutatee)

In test2.9, the mutator calldumpCoremethod to dump a core file from the mutatee without
requiring the mutatee process to terminate its execution. The mutator looks for the creation of a
core file,mycore in the current directory to determine the correctness of the operations. This test
case is implemented only on SPARC_SOLARIS, and IRIX platforms.

Test2.10 (dump image)

In test2.10, the mutator dumps a modified program executable file from the mutatee process, by
calling dumplimagemethod. Note that only the modified executable is written. Shared libraries
that have been instrumented and the current dyninst library are not written. The mutator searches
for the creation of the image filegyimagein the current directory to determine the correctness of

the operations. This test case is not implemented on NT platforms.

Test2.11 (getDisplacedinstructions)
Test2.11 verifies the correct operation of tyetDisplacedInstructionsnethod, which retrieves

instructions at an instrumentation point of a specified size. Iteid 1function, the mutator finds
instructions at the entry point of the mutatee functiancl1l_1 It inspects the contents of the

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 20

retrieved instruction buffer to determine the correctness of the operations. This test case is only
implemented on AIX platforms.

Test2.12 (BPatch_point query functions)

Test2.12 verifies the correct operation of the BPatch_point query funcigei8ddressand
usesTrap_NPIn the testl2function, the mutator uses these functions to retrieve information
about thdunc12_1function’s entry point.

Test2.13 (delete threads)

Test2.13 verifies the deletion of a mutatee process from the currently defined processes. The cur-
rently defined processes include those created using the dyninst library and those created with the
UNIX fork or Windows NT spawn system calls. In thest13function, the mutator searches the
thread list of all currently defined processes and removes the mutatee thread as requested.

Test2.14 (process management)

Test2.14 verifies the correct operation of the dyninst process management metbatds hreagd
continueThreadandterminateThreadin thetestl4function, the mutator creates a new mutatee
process by callingreateProcesdt then puts the mutatee into the running state by callingtire
tinueExecutioomethod. Finally, the mutator stops the mutatee execution by cadiignateExe-
cution Termination status is then examined.

3 TEST3

The test3 program verifies the correct operation of the dyninst classes used for manipulating code
during execution. This group of classes includes BPatch and BPatch_thread. For each test case in
test3, the mutator createsultiple mutatee processes. It instruments them and examines their
behaviors. The mutator is implemented in test3.C, and the associated mutatee is implemented in
test3.mutatee.c.

3.1 Mutator structures and important data variables

As the test3 program begins execution, command line options are parsedmaithgubroutine.
Initialization is then carried out, and a single instance of BPhfutchis created. The subroutine

main proceeds by calling the test case functimutatorTestX and passing along commands.

Inside each of the test case functions, the mutator creates multiple mutatee processes based on the
commands given. These mutatee processes run, with or without instrumentation, until completion.
The mutator inspects their termination conditions to determine the correctness of operations.

Mutator test case functions are nanmadtatorTestXwhereX denotes the test case number
andY is the instance number within a test case.

The constant integeMAX_TESTdenotes the total number of test cases implemented in
test3.C. The boolean variabtanAllTestsdefaults to true to activate all test cases. The boolean

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 21

arrayrunTestin themainsubroutine indicates whether to execute a specific test case depending on
the command line optiorun . The boolean arrgyassedTesecords the passed test cases.

3.2 Mutatee structures and important data variables

Based on the commands passed from the subrouotaig the mutator creates multiple mutatee
processes and executes test code in the respective test case functions. During execution, the
mutatee processes change their states by setting variable values or writing to files. The mutator
observes the state changes. The mutatee processes terminate witxietnabort calls.

The mutatee module defines a data variatdst2ref for the mutator to access, verify, and
manipulate. Test case functions are nataestl) and auxiliary functions are namfohcX_Y

3.3 How to add a new test case

Adding a new test case requires the following steps:

1. Increment thiIAX_TESTcount in test3.C.

2. On the mutator side, implementrautatorTestXunction for the new test case. Call this
function frommain, passing the commands associated with a corresponding mutatee test
case.

3. On the mutatee side, implementeatXfunction and call it from awitchstatement inside the
subroutinemain

3.4 Test case descriptions

We now examine the test cases in test3.

Test3.1 (simultaneous multiple-process management)

Test3.1 verifies the management of multiple mutatee processes, including process creation, execu-
tion, and state-monitoring. The mutator creates two mutatee processes and allows them to run
simultaneously. No instrumentation is added. The mutatee processes run until termination. The

mutator monitors and processes the events from each mutatee.

Test3.2 (instrument multiple processes)

Test3.2 verifies the instrumenting of multiple processes. The mutator creates two mutatee pro-
cesses and inserts different code into each mutatee. The inserted code assigns a value to the global
variabletest2ret Each mutatee then writes thest2ret’'svalue to a file. After both mutatees exit,

the mutator reads the files to verify that the correct code executed in each mutatee process. The
first mutatee process should veria 1 to thefile, and the second should write a 2. If no code is
patched into the mutatees, the original value is Oxdeadbeef.

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 22

Test3.3 (sequential multiple-process management - exit)

Test3.3 verifies the management of multiple processes, including process creation, execution, and
state-monitoring. The mutator creates one mutatee process and waits for it to exit. Then the muta-
tor creates a second process and waits for it to exit. This test case differs from the test3.1 in that
the two mutatee processes run one after the other.

Test3.4 (sequential multiple-process management - abort)

Test3.4 verifies the management of multiple processes, including process creation, execution, and
state-monitoring. The mutator creates one mutatee process and waits for its termination. Then it
creates the second mutatee process and waits for its termination. This test case differs from the
test3.3 in that the mutatee processes terminate wibamcall rather than aexit call.

4 TEST4

The test4 program examines the callback facilities provided by the dyninstAPI. These facilities
include callback function registration and callback function invocation. The mutator is imple-
mented in test4.C, and the associated mutatee is implemented in test4a.mutatee.c. Note that
test4.3 and test4.4 check tleeeccallback. The mutatee process malksgcsystem calls and
overlays its own image with a new mutatee image. The new image is constructed based on the
implementation in test4b.mutatee.c.

4.1 Mutator structures and important data variables

As the test4 mutator program begins executing. command line options are parsenhairiiseb-

routine. Initialization proceeds with a call to the functiorutatorMAIN A single instance of
BPatchbpatchis created, and callback functions are registeredretgsterCallbackcalls. Test
case functions are then called to conduct their respective tests.

Mutator test functions are namedutatorTestXwhere X is test case number. The constant
integerMAX_TESTdenotes the number of test cases implemented in the test4 program. The bool-
ean variableunAllTestsdefaults to true to activate all test cases. The boolean anraiestindi-
cates whether to execute a specific test case depending on the command lineuptspecified
when the user executes the test4 program. ApagsedTestecords the passed test cases, array
failedTestrecords the failed test cases, and integpeeadCountrecords the current number of
mutatee threads.

4.2 Mutatee structures and important data variables

As the test4 mutatee program begins executing, command line options are parsedaimtbgh-
routine. The mutatee performs a test by calling the appropriate test case fiumatinl

The mutatee defines data variables and auxiliary functions for the mutator to access, verify
and manipulate. The variables are nangtdbalVariableXX_Y.YThe auxiliary functions are
nameduncX_Y(Yis greater equal 1). The valuesgibbalVariableXX_YYare set in the auxiliary
functions.

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 23

4.3 Test case descriptions

We now examine the test cases in test4.

Test4.1 (exit callback functions)

Test4.1 verifies the exit callback function registration and invocation. Inntb&atorTestl
function, the mutator creates a mutatee process based on the passed executable pathname and
command line options. The mutatee process begins execution argla®b/ariablel X value
before terminating. This mutatee termination event triggers the execution of the installed exit call-
back function. The mutator verifiggobalVariablel 3 value in the exit callback function. This
test case is not implemented on LINUX, IRIX, AIX, APLHA or NT platforms.

Test4.2 (fork callback functions)

Test4.2 verifies the fork callback function registration and invocation. Innb&atorTest2
function, the mutator creates a mutatee process based on the passed executable pathname and
command line options. Once execution has began, the mutatee forks a child process. This spawn-
ing event triggers the execution of the installed fork callback function. In the fork callback func-
tion, the mutator setgllobalVariable2_1'svalue different between the parent and the child
processes. This test case is not implemented on LINUX, IRIX, AIX, APLHA or NT platforms.

Test4.3 (exec callback functions)

Test4.3 verifies the exec callback function registration and invocation. ImtitatorTest3
function, the mutator creates a mutatee process based on the passed executable pathname and
command line options. Once the mutatee process begins execution, it overlays its own image with
anexecvof test4b This exec event triggers the execution of the installed exec callback function.
In the exec callback function, the mutator instruments the mutatee process by inserting a call to
func3_2at the exit point offunc3_1 Note that botHfunc3_landfunc3_2are defined irtest4b
This test case is not implemented on LINUX, IRIX, AIX, ALPHA or NT platforms.

Test4.4 (fork and exec callback functions)

Test4.4 verifies that multiple mutatee events trigger the execution of multiple callback func-
tions in the mutator. In thenutatorTest4unction, the mutator creates a mutatee process based on
the passed executable pathname and command line options. Once execution has began, the pro-
cess forks a child mutatee process. The child process then overlays it own image extcapf
test4b The two mutatee events (fork and exec) trigger the execution of the installed fork and exec
callback functions.

The fork callback function operates on the parent mutatee process. It inserts afeati4o3
at the exit point ofunc4_2 The exec callback function operates on the child mutatee process. It
inserts a call tdunc4_4at the exit point of a differenfunc4_2function. Note that the functions,
which the exec callback function manipulates, are defingdst#b The inserted call snippets set
globalVariable4_3 value different between the parent and the child mutatee processes. This test
case is not implemented on LINUX, IRIX, AIX, ALPHA or NT platforms.

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 24

APPENDIX A - RUNNING THE TEST CASES

This section describes how to run the dyninstAPI test programs. There are four mutator programs
(test{1,2,3,4}) and currently some twenty or so mutatee programs
(test{1,2,3,4a,4b}.mutatee_{gcc,cc,g++,CC}) in this test suite.

To compile the tests suite, typmake in the appropriate platform-specific directory under
core/dyninstAPl/tests . This should produce, depending on the platform and compilers
available, sixteen to twenty programs and several shared libraries.

The test programs take the following command line options:

-attach
Run the mutatee process and have the mutator attach to it rather than usinegtie®rocess
method. Theattach option is not available for test3.

-mutatee <mutatee name>
Run the mutatee namednutatee name> rather than the default mutatee for this test.
This is useful to run test cases with versions of the mutatee compiled with the systems native
C, C++ or the GNU C++ compilers in addition to the GNU C compiler. If currently
supported, the mutatee for the native C compiler is named testN.mutatee_cc (currently
supported on Sparc/Solaris and AlX), the mutatee for the native C++ compiler is named
testN.mutatee_CC (or testN.mutatee xIC on AIX platforms), and the mutatee for the GNU
C++ compiler is called testN.mutatee _g++.

-n32
Run the 32-bit version of the mutatee test. This flags is only valid on SGI platforms. This
command line flag changes the shared libraries that are loaded to libtest? n32.so, it also
changes the mutatee to test?.mutatee_gcc_n32. If you want to test 32-bit mutatees compiled
with the native compiler, us@32 and-mutatee test?.mutatee_cc_n32 . The
order of-n32 and-mutatee is important.

-run <subtest #> <subtest #> ...
Only run the specific sub-tests listed. For example, to run sub-test case 4 of test2 you would
entertest2 -run 4

-skip <subtest #> <subtest #> ...
Skip the specific sub-tests listed. For example, to skip sub-test case 4 of test2 you would
entertest2 -skip 4 . All other tests are run.

-V
Print out the name of the dyninst runtime library which will be used to run this test. This is
useful to check that your environment is correctly setup to run mutator programs.

-verbose
Enable detailed debugging output. This is useful when trying to track down the reason that
one (or more) of the test cases failed.

_V+
Enable the printing of warning level error messa@gm{chWarning) to standard output.
This is useful for debugging the test cases.

-V++

DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 25

Enable the printing of information and warning level messages via the error reporting
callback functionBpatchWarning andBpatchinfo). These options are useful for
debugging the test cases.

Some test cases are not implemented on all the platforms (due to OS restrictions or missing fea-
tures). If a test is not run on a specific platform, the mess&jepped test #XX” will be
displayed. If any of the tests produces a line of the foftffiFailed test #XX” there is
something wrong with the version of the API or its installation. Each test should still produce a
message of the fornfPassed test #XXX” , and a message at the end indicating that either

all tests were passed, or all requested tests were passedrfiith@ption is used).

Note: test2 produces a few lines that look like error messages since it is testing the error
reporting features of the API (e.qg., file not found). Check for thdl tests passed” mes-
sage at the end to confirm correct execution.

DyninstAPI Test Suite June 9, 2000 Release 2.1

	DyninstAPI Test Suite
	Introduction
	1 Test1
	1.1 Mutator structures and important data variables
	1.2 Mutatee structures and important data variables
	1.3 How to add a new test case
	1. Increment the MAX_TEST counts in both test1.C and test1.mutatee.c.
	2. On the mutator side, implement a mutatorTestXX function for the new test case. Call this funct...
	3. On the mutatee side, implement funcXX_YY functions, declare globalVariableXX_YY variables, and...

	1.4 Language-independent test case descriptions
	Test1.1 (zero-argument function call)
	Test1.2 (multiple-argument function call)
	Test1.3 (passing variables to functions)
	Test1.4 (snippet execution sequence)
	Test1.5 (construct if statement without else branches)
	Test1.6 (arithmetic operators)
	Test1.7 (relational operators)
	Test1.8 (preserve registers upon expression insertions)
	Test1.9 (preserve registers upon function insertions)
	Test1.10 (insert snippet order)
	Test1.11 (snippets at entry, exit and call points)
	Test1.12 (insert/remove, and malloc/free)
	Test1.12a
	Test1.12b

	Test1.13 (paramExpr, nullExpr and retExpr)
	Test1.14 (replace/remove function call)
	Test1.15 (setMutationActive)
	Test1.15a
	Test1.15b

	Test1.16 (construct if-then-else statement)
	Test1.17 (return values from function calls)
	Test1.18 (read/write a variable in the mutatee)
	Test1.19 (oneTimeCode)
	Test1.20 (instrument arbitrary points)
	Test1.21 (findFunction in module)
	Test1.22 (replace functions)
	Test1.23 (local variables)
	Test1.24 (array variables)
	Test1.25 (unary operators)
	Test1.26 (field operators)
	Test1.27 (type compatibility)
	Test1.28 (user defined fields)
	Test1.29 (BPatch_srcObj class)
	Test1.30 (line information)
	Test1.31 (non-recursive base tramp guard)
	Test1.32 (recursive base tramp guard)
	1.5 C++ language-specific tests
	Figure�1: C++ test case class hierarchy
	1.5.1 How to add a new C++ test
	1. Increment the MAX_TEST counts in both test1.C and test1.mutatee.c.
	2. On the mutator side, implement a mutatorTestXX function for the new test case and call this fu...
	3. On the mutatee side, declare a test case class in cpp_test.h (the class should be derived from...

	1.5.2 C++ Language-specific test case descriptions

	Test1.33 (class member function argument passing)
	Test1.34 (overloaded functions)
	Test1.35 (overloaded operators)
	Test1.36 (static member variables and functions)
	Test1.37 (namespace)
	Test1.38 (exceptions)
	Test1.39 (templates)
	Test1.40 (declaration scopes)
	Test1.41 (derived classes)
	Test1.42 (standard C++ libraries)
	Test1.43 (replace functions in standard C++ libraries)
	Test1.44 (C++ member functions)
	1.5.3 Makefile Changes

	2 Test2
	2.1 Mutator structures and important data variables
	2.2 Mutatee structures and important data variables
	2.3 How to add a new test case
	1. Increment the MAX_TEST counts in both test2.C and test2.mutatee.c.
	2. On the mutator side, implement a testXX function for the new test case and call it from the su...
	3. On the mutatee side, implement a funcXX_1 function and call it from the subroutine main.

	2.4 Test case descriptions
	Test2.1 (run an executable that does not exist)
	Test2.2 (try to execute a file that is not a valid program)
	Test2.3 (attach to an invalid PID)
	Test2.4 (attach to a protected PID)
	Test2.5 (look up nonexistent functions)
	Test2.6 (load a dynamically linked library from the mutatee)
	Test2.7 (load a dynamically linked library from the mutator)
	Test2.8 (BPatch_breakPointExpr)
	Test2.8a
	Test2.8b

	Test2.9 (dump core but do not terminate the mutatee)
	Test2.10 (dump image)
	Test2.11 (getDisplacedInstructions)
	Test2.12 (BPatch_point query functions)
	Test2.13 (delete threads)
	Test2.14 (process management)

	3 Test3
	3.1 Mutator structures and important data variables
	3.2 Mutatee structures and important data variables
	3.3 How to add a new test case
	1. Increment the MAX_TEST count in test3.C.
	2. On the mutator side, implement a mutatorTestX function for the new test case. Call this functi...
	3. On the mutatee side, implement a testX function and call it from a switch statement inside the...

	3.4 Test case descriptions
	Test3.1 (simultaneous multiple-process management)
	Test3.2 (instrument multiple processes)
	Test3.3 (sequential multiple-process management - exit)
	Test3.4 (sequential multiple-process management - abort)

	4 Test4
	4.1 Mutator structures and important data variables
	4.2 Mutatee structures and important data variables
	4.3 Test case descriptions
	Test4.1 (exit callback functions)
	Test4.2 (fork callback functions)
	Test4.3 (exec callback functions)
	Test4.4 (fork and exec callback functions)
	Appendix A - Running the test cases

