
EXPERIMENT MANAGEMENT SUPPORT

FOR

PARALLEL PERFORMANCE TUNING

BY

KAREN L. KARAVANIC

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the University of Wisconsin—Madison

1999

© Copyright by Karen L. Karavanic 1999
All Rights Reserved

i

nary

the

t the

els

com-

r or

hedul-

totype

mance

plica-

he life

lud-

ta col-
EXPERIMENT MANAGEMENT SUPPORT FORPARALLEL PERFORMANCETUNING

Karen L. Karavanic

Under the supervision of Professor Barton P. Miller

at the University of Wisconsin—Madison

The development of a high-performance parallel system or application is an evolutio

process. It may begin with models or simulations, followed by an initial implementation of

program. The code is then incrementally modified, and continues to evolve throughou

applications’s lifespan. At each step, a key question for developers is:how and how much did

the performance change?This question arises while comparing an implementation to mod

or simulations; considering versions of an implementation that use a different algorithm,

munication or numeric library, or language; studying code behavior by varying numbe

type of processors, type of network, type of processes, input data set or work load, or sc

ing algorithm; and benchmarking or regression testing. We present a design and pro

implementation of an experiment management environment designed to answer perfor

questions that span multiple program executions from all stages of the lifespan of an ap

tion.

We have developed a concise representation for the set of executions collected over t

of an application. In our model, information from all experiments for one application, inc

ing the components of the code executed, execution environment, and performance da

lected, is gathered in the Program Space.

ii

s. The

envi-

eports

ploring

pplica-

necks.

form

MPI

cate
We developed techniques for automating comparison between measured execution

structural difference operator determines differences in the source code and the runtime

ronment; the performance difference operator compares performance results and r

results that differ by more than a specified amount. We present several case studies ex

the use of these operators with large-scale parallel applications.

We also developed a novel approach to automated performance diagnosis that uses a

tion data gathered in previous executions to guide the search for performance bottle

Adding historical knowledge about an application provides a means for the tool to per

more effective diagnosis. We evaluated our technique using different versions of an

application on an IBM SP/2, and found reductions of 31% to 98% in the time needed to lo

performance bottlenecks.

iii

sup-

n me

d-

my

re-

.

ro-

ve pro-

tended

d with

mem-

osel,

mel-

ages,

rious

oSa-
Acknowledgments

I thank my advisor, Bart Miller, for these past years of encouragement, guidance, and

port. By guiding me through many periods of intense, deadline-driven work, he has give

the gift of knowing my own strength and wisdom.

I thank David Wood, Marvin Solomon, and Miron Livny for their time and effort spent rea

ing my dissertation, and for providing valuable criticisms and suggestions for improving

work. I thank my entire committee -- Marvin Solomon, Miron Livny, David Wood, and G

gory Moses -- for a lively and thorough discussion of my dissertation during my defense

I gratefully acknowledge financial support provided by the NASA GSRP Fellowship P

gram, the United States Department of Energy, and the National Science Foundation.

The members of the Paradyn Performance Tools research group, past and present, ha

vided me with technical discussions, ideas, advice, and encouragement, and have at

more practice talks than anyone might reasonably expect. Many other people have share

me technical discussions, guidance, and interesting ideas, including Douglas Pase, the

bers of the IBM Parallel Tools Group in Poughkeepsie, Joann Ordille, John May, Mary Z

Mary Vernon, Janet Wiener, Jerry Yan, Bob Hood, Steve Huss-Lederman, and Doug Kim

man.

I am grateful to many special people who have provided me with meals, rides, bever

laughter, the occasional roof over my head, and lots of positive energy through the va

stages of my dissertation work: Elizabeth Webster, Richard Russell, Phil Kaveny, Mary L

iv

lain

ys-

lives

pagne
rdo, Mom, Beth Martinson, Terry Mika, Steve Swartz, Michael Rawdon, Doug Pase, A

Kagi, Doug Burger, Anne at Portabella, Rich Maclin, Beth Cole, Tia Newhall, all of my S

ters, and my fellow Starfish. The folks in Nancy Pullen’s dissertators group shared their

with me and taught me to eat live toads.

I thank Sam Pottle for the abundance of loving encouragement, chocolate, and cham

that saw me through.

v

v

. .

.

 . . . 1

. . . . 4

 7

 . .

. . . . 8

. . . 10

 . . 13

 . . . 15

 . . . 19

 . . 20

 . . . 22

. . . 24

 . . . 28

. . . 30

 . . 31

. . . 31

. . 32

 . . 35

. . . 36

. . . 42
Contents

Abstract . i

Acknowledgments . iii

Contents . v

1 Introduction . 1

1.1 Motivation .

1.2 Contributions .

1.3 Roadmap .

2 Related Work .. 8

2.1 Parallel Performance Tuning .

2.2 Automating Parallel Performance Diagnosis .

2.3 Scientific Experiment Management .

2.4 Comparing Program Versions and Runs .

2.5 Summary .

3 The Program Space .

3.1 The SpaceMap .

3.2 The EventMap .

3.3 Performance Results .

3.3.1 The Focus .

3.4 Retrieving Information from the Program Space .

3.4.1 Choosing Program Events Using the SpaceMap

3.4.2 Combining EventMaps with the Structural Merge Operator

3.4.3 The Structural Difference Operator .

3.4.4 The Performance Difference .

3.4.5 Matching and Mapping Resources .

vi

. . 44

. . . 45

 . . 45

. . 49

. . . 50

 . . . 51

 . 53

 . . .

 . . 61

. 64

 . . . 66

68

. . . 68

 . . . 71

. . . 74

 . . . 77

. . 77

. . 81

 . 83

 . . . 89

91

. . . 91

. . . 92
3.4.6 Making Selections from the EventMap .

3.5 Implementation Considerations .

3.5.1 Existing Experiment Management Systems .

3.5.2 Implementing the Program Space with an Object Relational DBMS

3.5.3 Other Implementation Strategies .

3.6 Summary .

4 Case Studies: Applying the Experiment Management Approach

to Common Performance Activities .

4.1 Draco .54

4.2 Performance Tuning a Shared Memory Application .

4.3 Comparing Alternate Implementations: Porting a PVM Application to MPI . . .

4.4 Summary .

5 Using Historical Data in Performance Diagnosis .

5.1 Introduction .

5.2 Paradyn’s Performance Consultant .

5.3 Types of Search Directives .

5.4 Experiments and Results .

5.4.1 Using Pruning and Priority Directives .

5.4.2 Using Thresholds Determined from Historical Data

5.4.3 Using Historical Data with Different Code Versions

5.5 Discussion and Conclusions .

6 Summary and Directions for Future Research .

6.1 Dissertation Summary .

6.2 Directions for Future Research .

References . 95

1

nary

the

es to

ers is:

n

t use

avior

set or

e the

tools

tation

nswer
Chapter 1

Introduction

1.1 Motivation

The development of a high-performance parallel system or application is an evolutio

process. It may begin with models or simulations, followed by an initial implementation of

program. The code is then incrementally modified to tune its performance, and continu

evolve throughout the applications’s lifespan. At each step, the key question for develop

how and how much did the performance change?This question arises while comparing a

implementation to models or simulations; considering versions of an implementation tha

a different algorithm, communication or numeric library, or language; studying code beh

by varying number or type of processors, type of network, type of processes, input data

work load, or scheduling algorithm; and benchmarking or regression testing. Despit

broad utility of this type of comparison, the current generation of parallel performance

focuses on measuring the performance of a single program execution. This disser

describes a design and prototype implementation of a performance tool designed to a

2

pan of

n pro-

cludes

f the

view

com-

ion of

ader,

g and

us to

l pro-

gist’s

scien-

both

viron-

po-

cted, is

ram

descrip-

meta-
performance questions that span multiple program executions from all stages of the lifes

an application.

Recent work in the more general area of scientific experiment management focuses o

viding the means to record data used in or generated by experiments[38,43,56]. This in

a potentially distributed, large, and varying store of experimental data; descriptions o

experimental methodology; and indexing information to link the data to its source. We

performance tuning as a specialized instance of scientific experimentation, with each

plete or partial application execution viewed as an experiment. This changes our definit

a performance tool from the traditional, single program execution approach to a new bro

inherently multi-execution approach. The engineers or scientists engaged in studyin

improving the behavior of medium to large scale parallel scientific codes, are analogo

chemists or biologists carrying out experiments at a lab bench. Each complete or partia

gram run, simulation result, or program model is an experiment, analogous to the biolo

gene-expression experiment or the chemist’s chromatography study. We have used this

tific experimentation archetype as a basis for designing anExperiment Managementenviron-

ment for Parallel Performance. Such an environment would be directly useful to

application and system developers, as well as creators of models and simulation en

ments, and represents a qualitative change from the state of the art.

In our model, information from all experiments for one application, including the com

nents of the code executed, the execution environment, and the performance data colle

gathered in aProgram Space. Performance data of many forms may be stored in the Prog

Space, including scalars, tables, traces, and graphs. The Program Space also includes

tive data, or metadata, which characterize the execution. Examples of possible types of

3

, or a

cution

xis of

sents

be

ing a

ming

avior

iffer-

used

ce on

ques-

y to

al dif-

the per-

to the

cution

. The

cution

xceed,
data are environment variable settings, compiler options used to build the executable

description of the machine used for the run. The possible combinations of code and exe

environment form the multi-dimensional Program Space, with one dimension for each a

variation and one point for each individual experiment. The Program Space repre

instances of a program selected from different points in its lifetime, during which it may

modified, ported to different architectures, tuned, or compiled with different options or us

different compiler. Program Space views serve as a user interface to the system.

An Experiment Management tool enables exploration of this space with a simple na

mechanism, a selection and query facility, and a set of visualizations. Examining the beh

of more than one version of a program, or the behavior of one version of a program in d

ent environments, is a common task; for example, developers of libraries that will be

across a variety of platforms require a complete performance picture in which performan

a single platform is less important than the performance across all platforms.

Performance tuning across multiple executions must answer the deceptively simple

tion: what changed in this run of the program? A key component of this work is the abilit

automatically describe the differences between two runs of a program, both the structur

ferences (differences in program source code and the resources used at runtime), and

formance variation (how were the resources used and how did this change from one run

next). The difference information is not necessarily a simple measure such as total exe

time, but may be a more complex measure derived from details of the program structure

items being compared may include an analytical performance prediction, a previous exe

of the code, a set of performance thresholds that the application is required to meet or e

or an incomplete set of data from selected intervals of an execution.

4

n com-

cation,

com-

cation

d net-

put-

past

truct-

repre-

ly and

rfor-

cessi-

ch to

enta-

xecu-

nts

viron-

o each

ent-
These automated comparison techniques have several potential applications: they ca

pare an actual execution with a predicted or desired performance measure for the appli

or compare dictinct time intervals of a single program execution. An example of a more

plex environment in which these comparison techniques might be useful is resource allo

for metacomputing [16], the use of distributed heterogeneous computers and high-spee

works to perform scientific computation previously possible only on dedicated supercom

ers. Effective resource allocation in such an environment requires knowledge of

performance on a variety of architectures and machine configurations.

1.2 Contributions

In this dissertation, we describe our solutions to several key problems that arise in cons

ing a complete experiment management based performance tool: First, we developed a

sentation for the space of executions; second, we developed techniques for quantitative

automatically comparing two or more executions, and tested them out in a variety of pe

mance related tasks. Finally, as further evidence of the utility of a well-organized and ac

ble store of application performance data, we developed and studied a new approa

automated performance diagnosis using historic performance data and dynamic instrum

tion.

The first research contribution of this thesis is a concise representation for the set of e

tions collected over the life of an application. In our model, information from all experime

for one application, including the components of the code executed, the execution en

ment, and the performance data collected, is gathered in a Program Space. We refer t

experiment as aProgram Event. A Program Space comprises a SpaceMap, one or more Ev

5

t

in the

ata set

ble, a

Each

func-

lts, and

time

mance

tween

two or

pera-

rence

fer by

oper-

paral-

data

l his-

more

llec-
Maps, and a collection of Performance Results. TheSpaceMapcontains descriptive data tha

characterizes Program Events, distinguishing the various Program Events described

same Program Space. Examples of descriptive data stored in the SpaceMap are: input d

characteristics, environment variable settings, compiler options used to build the executa

description of the machine used for the run, code version number, or laboratory name.

EventMapcontains a detailed list of one Program Event’s resources, such as individual

tion names and machine components. It serves as an interface to the performance resu

provides a naming scheme for the potentially large collection of performance data.Perfor-

mance Resultsare measured values for an execution’s behavior, for example, total CPU

for a specified function. The Program Space is designed to accommodate stored perfor

data of many forms, including scalars, tables, traces, and graphs.

The second research contribution is a set of techniques for automating comparison be

measured executions. We developed techniques for determining the difference between

more program runs. Difference is computed by two operators: the structural difference o

tor compares two EventMaps and reports resources that differ; and the performance diffe

operator compares two collections of performance results and reports results that dif

more than a specified amount. We implemented a prototype that computes the difference

ators, and performed several case studies in which we explore their use with large-scale

lel applications.

The third contribution of this research is an investigation of the use of the historical

contained in the Program Space for improving performance diagnosis. Harvesting usefu

torical knowledge requires an available store of performance data gathered from one or

previous program runs. Our research explores novel opportunities for exploiting this co

6

appli-

ucted

nosis

mance

pro-

nce.

ome

ich it

erfor-

eneck

ance

lica-

ives to

ed our

und
tion of data to focus data gathering and analysis efforts to the critical sections of a large

cation. This approach allows a complex performance evaluation to be specified and cond

with a minimum of user intervention. We present a novel approach to automated diag

that uses application data gathered in previous executions to guide the search for perfor

bottlenecks. This method leverages off of the repetitive nature of the performance tuning

cess — it is rare for a parallel application to be examined with a performance tool only o

Adding historical knowledge about an application provides a means for the tool to bec

more effective that does not rely on assumptions about all possible applications with wh

might be used.

Our starting point was an existing diagnostic research tool, the Paradyn Parallel P

mance Tool [54]. Paradyn’s Performance Consultant performs online, automated bottl

detection in a single execution of a parallel or serial program. We modified the Perform

Consultant, incorporating several different types of historical knowledge about an app

tion’s performance into the tool’s search for performance problems:pruning directivesthat

tell the tool to ignore some resources entirely;priorities that tell the tool which aspects of the

application and run-time environment to look at first; andthresholdsthat tell the tool specific

values against which to measure the application’s actual performance. We use the direct

guide online performance diagnosis with an enhanced version of Paradyn. We evaluat

technique by testing different versions of an MPI application on the IBM SP/2, and fo

reductions of 31% to 98% in the time needed to locate performance bottlenecks.

7

ace, a

of all

sen-

ta for

r tech-

gram.

tation

erfor-

t. We
1.3 Roadmap

We discuss related work in the following chapter. Chapter 3 presents the Program Sp

flexible and uniform mechanism for describing and naming selections from the space

executions throughout the lifetime of an application. It includes a flexible canonical repre

tation, called Resource Normal Form, for storing the variety of program performance da

which our automatic analysis techniques have been developed. We also describe ou

niques for describing, representing, and comparing multiple versions and runs of a pro

In Chapter 4 we present results of three case studies using an initial prototype implemen

of an experiment management system. In Chapter 5 we describe the use of historical p

mance data in improving the diagnosis abilities of Paradyn’s Performance Consultan

summarize our results and discuss future research directions in Chapter 6.

8

serta-

rvey

ientific

gram

ccept-

appli-

t data

de or

e tuned

tego-

ol is

rrowly
Chapter 2

Related Work

In this chapter we discuss the array of research efforts most closely related to this dis

tion. In Section 2.1 we examine parallel performance tools. In Section 2.2 we su

approaches for automating parallel performance diagnosis. In Section 2.3 we discuss sc

experiment management. Section 2.4 surveys work that involves comparing different pro

versions. We summarize in Section 2.5.

2.1 Parallel Performance Tuning

Performance tuning is a cyclic process that involves repeating a series of steps until a

able application performance is achieved: (1) formulate one or more hypotheses about

cation behavior; (2) gather data to support or dismiss each hypothesis; (3) analyze tha

(by direct inspection, analytical techniques, or some combination); and (4) change the co

the environment experimentally based on these hypotheses. Parallel applications may b

many times, for example when ported to a new platform or after code revision. We can ca

rize performance tool research efforts by identifying the particular steps (1)-(4) the to

designed to accomplish or guide. For the most part, performance tools are rather na

9

lating

m run

by a

tion

rocess

define

ents

urrent

ance

e[66].

based

as the

ocess.

h step

Hon-

this

e tool

fes-

ions.

tech-
defined as a mechanism for gathering data (step 2) or as an aide to a human formu

hypotheses about an application’s behavior (step 1) during a single observed progra

[27,54,55,61,69,77,80]. In this common approach, much of the work is done manually

knowledgable expert conducting the tuning study, frequently with the use of visualiza

tools [27,41,51,73]. Recently, research has focused on automating the diagnostic p

(steps 1, 2, and 3) [20,28,45,50,70]. Several projects [30,25,44,49] are attempting to re

performance tuning as an interactive run-time activity that may perform steering adjustm

or debugging fixes as the application runs (step 4). Completing the spectrum, there is c

research focused on complete automation of all four steps, by a tool that includes perform

measurement, analysis, and code or environment adjustments to improve performanc

There is also research into self-tuning applications that include code to trigger changes

on measured performance values, either as a prelude to a full execution [75] or online

application is running [31].

The tools detailed above address single iterations of one or more steps in the tuning pr

Our approach is to provide a framework that can incorporate existing techniques for eac

of the performance tuning cycle, and extend the scope to include repeated iterations.

droudakis and Procter [33,34] have proposed the term “tuning in the large” to refer to

complete process of tuning, as opposed to a single instance of running a performanc

with one iteration of a program. Their recent survey of high performance computing pro

sionals cited the need for maintaining performance related information from tuning sess

They proposed storing tuning information in a generally accessible database so that

niques used in tuning similar applications might be tried by others.

10

el pro-

might

st par-

tools.

ecks.

Auto-

o the

advice

ostic

viding

is not

gen-

rm an

gnose

uced

4] to

mance

xperi-

ually

ys.
2.2 Automating Parallel Performance Diagnosis

A variety of research projects address the issues in automating the diagnosis of parall

grams. Some of this work is limited to proposed designs and architectures for tools that

automate the process; however there have been several tools implemented that at lea

tially automate the diagnostic portion of the tuning task. In this section, we survey these

Cray developed two tools that provide automated diagnosis of performance bottlen

ATExpert [45] uses an expert system to analyze performance data gathered from their

tasking Fortran compiling environment. Performance characteristics were matched t

source and to a set of performance rules, and the results were used to generate specific

for the programmer tuning the code. Cray’s MPP Apprentice [77] also generates diagn

feedback and advice for the programmer, necessarily more general (and therefore pro

less direct guidance to the programmer) than that of ATExpert because Apprentice

closely tied to a parallelizing compiler. Both of these are post-mortem tools, that is, they

erate some performance measurements during the application’s execution and perfo

analysis after execution has completed.

S-Check [50,71], a tool developed at NIST, uses a partially automated approach to dia

performance-critical parts of large-scale applications. The tool uses artificially introd

delays together with the statistical technique known as Design of Experiments or DEX [

focus attention on synchronization points that are the cause or potential cause of perfor

bottlenecks. In their approach, called Synthetic-Perturbation Screening, parts of the e

mental setup, such as narrowing down potentially fruitful locations to test, are done man

through a GUI. The tool provides a single metric, sensitivity to artificially introduced dela

11

ent S-

of

lation

rame-

areas.

pplica-

mers

e but-

erfor-

ge in

nosis

l pro-

e list

ould

clud-

s. The

ppli-

loped;

roach
The relationship to our experiment management system is that our system might implem

Check functionality as one of the types of experimentation.

Chitra [2,52] provides descriptions of the performance of multiple executions in the form

parameterized models using semi-Markov chains and CHAID-based models. The calcu

uses data from summarized trace files. Aggregation, filtering, and reduction of model pa

ters provide visual feedback to the tool user that focuses attention to potential problem

This is one of the few multiple-execution performance tools.

Paradyn’s Performance Consultant [54] performs an automated search through an a

tion, inserting and removing instrumentation as it tests hypotheses to focus the program

attention on a small set of performance bottlenecks. It is a completely automated, singl

ton system that requires no user interaction to complete a diagnosis. We chose the P

mance Consultant as the testbed for our technique of incorporating historical knowled

diagnosis, described in Chapter 5.

The Projections:Expert project [70] developed partially automated performance diag

capabilities, via an automated postmortem analysis. The tool was developed for paralle

grams written in the Charm object-oriented programming language. It narrows down th

of performance problems found by estimating the reduction in execution time that w

result from removing each bottleneck, and outputs a phase-specific list of bottlenecks in

ing location and cause.

Several architectures have been proposed for a tool to perform automated diagnosi

Poirot project [28] proposed an architecture for a tool to automatically diagnose parallel a

cations across a range of platforms. The project ended before a prototype was deve

however the work contributed an analysis of existing diagnostic approaches and an app

12

ools.

inter-

h dif-

nd in

of

rently

ed a

early

assing

ple-

r each

delays

ed to

osis,

atic

ased

ing

f per-

with

tely

quire
to constructing a more general tool to include the methods found in several different t

Their design included a store of application version data. The approach combines a tool

face and problem-solving environment within a knowledge-based system. Our approac

fers in choosing as its foundation a scientific experiment management environment, a

addressing the inherent multi-execution nature of performance diagnosis.

KOJAK [20] (Kit for Objective Judgement and Automatic Knowledge-based detection

bottlenecks) is a proposed generic automatic performance analysis environment cur

under development. This work builds on Gerndt’s earlier work [19] that also describ

design for an automated analysis tool, but was never implemented. The work is in

stages; a first component, a programmable tool for event trace analysis of message p

programs called EARL [78], has been implemented. Each specific type of analysis is im

mented as a TCL script. They demonstrated scripts that calculate the execution time fo

program region, locate out-of-order message-passing, and determine synchronization

incurred by issuing an MPI_recv before issuing an MPI_send. New scripts may be add

target the tool to specific needs.

During the course of our work on using historical data in automated performance diagn

a multi-organization effort has started in Europe, the Esprit IV Working Group on Autom

Performance Analysis: Resources and Tools (APART). This project is focusing incre

attention to the potential benefits of automating part or all of the currently time-consum

and difficult diagnostic process. The project is currently focused on defining the goals o

formance analysis [67], and the types of bottlenecks typical to parallel codes written

OpenMP, MPI, or HPF [13]. The overall objective is a tool that will be used for comple

automated performance diagnosis on a variety of common platforms. Such a tool will re

13

nage-

up, we

to the

f bot-

iven

rt for

peri-

in the

ccess

ect at

data

er full

ct at

peri-

scien-

ental

se sys-

erent
some of the same infrastructure that we have been developing for our Experiment Ma

ment system, such as a representation for program resources. As members of the gro

are actively engaged in sharing our results and participating in their design. In contrast

stated goals of the working group, we have not focused on developing an inclusive set o

tlenecksper se, rather we have focused on the effects of adding historical knowledge g

some existing mechanism for locating bottlenecks.

2.3 Scientific Experiment Management

A variety of ongoing research efforts are attempting to provide flexible computer suppo

scientific experimentation. This work can be categorized by the part of the scientific ex

mentation process addressed: Some work focuses on support for the individual scientist

lab or office, while other work focuses on techniques for the organization, storage and a

for a large central data store to be accessed by a large number of distributed scientists.

Work on support for large-scale scientific data stores includes the DataFoundry proj

LLNL[15]. Researchers are developing solutions for storing large collections of scientific

that includes the use of metadata, summary information that characterizes the much larg

set of stored data. The Extensible Computational Chemistry Environment (ECCE) proje

Pacific Northwest National Laboratory [43] includes design and implementation of an Ex

ment Management system for computational chemists. The project includes a focus on

tific metadata, and attempts to provide a central store in which scientists record experim

methods as well as the (raw) input and output data. They use an object-oriented databa

tem as the underlying storage engine. Their Basis Set Advisor stores information on diff

14

d “best

ical

, is a

fine a

col-

and

rvices

can be

se an

xperi-

this

hereas

iscuss

tronic

share

uire-

f sig-

rrently

evel-

etero-

simple
algorithms that have been used to calculate chemical results, and performs an automate

fit” selection for chemists trying to solve related problems.

Ioannidis and Livny describe scientific experimentation and identify unmet technolog

opportunities [37]. Their desktop experiment management system, called ZOO[39,38]

proposed solution for the needs of an individual scientist’s desktop. The researchers de

life cycle of local experimental studies, which iterates through experimental design, data

lection, intialization request, data analysis, and follow-up. They point to the significant

expanded role that conceptual schemas must play in providing the rich set of data se

needed for scientific experiment support. They elevate the role of schemas, so that they

manipulated by the user for forming queries or used to display query answers. They cho

object-oriented data model for their database, which sets them apart from other major e

ment management efforts[76]. While there is some overlap in functionality between

project and ECCE, ECCE focuses on issues related to serving as a national repository w

ZOO focuses more on the process happening locally as a single scientist works. We d

the potential for using the ZOO system in our work in more detail in Section 3.5.

The other main branch of experiment-related research falls under the heading of elec

notebooks. An Electronic Notebook System is “a system to create, store, retrieve and

fully electronic records in ways that meet all legal, regulatory, technical and scientific req

ments” [7]. The goal of completely replacing scientists notebooks entails development o

nature, verification, and security features to allow use of such data as evidence, as is cu

possible with paper notebooks. The DOE 2000 Electronic Notebook Project [18] has d

oped electronic notebooks currently in use in a variety of sites, that enable sharing of h

geneous data among geographically dispersed collaborators. They have focused on a

15

. They

ich is

s one

s and

rated

o cor-

gram

ences

f sim-

es or

efined

com-

nt data

s no

ging

ek to

aden-

les of
notebook interface through web browsers, and handling non-text data such as sketches

are developing a general-purpose information sharing utility, as opposed to our work wh

targeted specifically to parallel performance tuning. However, a notebook-like approach i

possibility for an eventual GUI to our system.

2.4 Comparing Program Versions and Runs

Several research efforts have developed approaches for comparing different program

program executions. In this section, we briefly survey approaches that might be incorpo

into our structural and behavioral comparison operators.

The most closely related research effort to our own takes a multi-execution approach t

rectness debugging, referred to as “relative debugging.” GUARD [72] compares the pro

currently being debugged with a reference version of the same program, to detect differ

in variable values at user-defined points during the execution. Comparisons are made o

ple or complex data types; the programs compared may be written in different languag

run across heterogeneous environments. Program comparison is limited to user-d

<variable name, location> pairs. They have defined difference operators for simple and

plex data types that can compare complex structures and factor out machine depende

representations. The difference operation determines only “different” or “equal”; there i

notion of quantifying the difference. This approach, while useful in a correctness debug

environment, is not sufficient for performance debugging.

Comparison of programs is inherent to the performance prediction problem. We se

include performance predictions and models in the scope of our tuning approach by bro

ing our definition of Program Execution to include models and predictions. Some examp

16

y

s pre-

cross

erved

ach,

xecu-

ation

by a

appens-

hich

y

nduced

s

igi-

ng

they

e both

ists of

type of

gram

ution
predictive tools are the MK Toolkit [3] and MTOOL [21]. The MK Toolkit developed b

Block and Sarukkai automates the predictive analysis task. They compare actual versu

dicted total execution time. Their work does not include any effort to compare results a

platforms, environments, or code changes. MTOOL includes a metric that compares obs

and predicted execution times at the granularity of individual basic blocks. Their appro

useful only for memory tuning, defines the difference between predicted and observed e

tion time as a memory bottleneck.

A different approach to comparing program executions is found in the trace transform

approach to performance prediction of Mendes [53]. They represent a parallel program

directed graph in which each node represents a trace event and each edge defines a h

before relation as defined by Lamport[47]. A stable program is defined as a program for w

the resulting execution graphs will always be identical or nearly identical. Similarits

between two graphs is defined as the degree of the largest isomorphic graphs that are i

subgraphs of each of the two original graphs. The distanced between the graphs is defined a

d = n - s, wheren is the number of vertices of each of the original graphs (so if the two or

nal graphs are isomorphic,d = 0). This is a different approach from our method of compari

first structural, then quantitative differences.

Two program similarity metrics are described in work by Saavedra and Smith [68];

developed a machine-independent model of sequential program execution to characteriz

machine performance and program execution. They developed a benchmark that cons

abstract operations, and model the code on each platform based on the number of each

abstract operator included in the code. They use two metrics for program similarity: pro

characteristic similarity, which is a normalized squared Euclidean distance; and exec

17

time

lating

preci-

l per-

s for

ource

com-

s used

l of

rsion,

code

e new

tation

iffer-

a vari-

isplay

tion,

Slic-

nces

orate

ctural
time similarity, which uses a coefficient of variation of each variable, which represents

for a particular abstract operation. They defined thirteen parameters to be used in calcu

program similarity, which are types of operations such as memory bandwidth and single

sion addition and division. Their approach might be extended to develop a program-leve

formance distance metric for use in our experiment management system.

The Wisconsin Program Slicing Project at UW-Madison [35] has investigated method

determining syntactic and semantic differences between two versions of a sequential s

code. Foundational work [57,74] defined “the slice of a program with respect to a given

ponent c” as the set of program components that might affect the values of the variable

at component c. Horwitz [36] described an alternative partitioning algorithm with the goa

identifying changed parts of a sequential pascal program from an old version to a new ve

and classifying the changes as either semantic or textual. The difference between two

versions is defined as the number of semantically or textually changed components of th

version plus the number of new flow or control dependence edges in the graph represen

of the new version. Wang [81] developed a comparison algorithm that detects syntactic d

ences between two sequential Pascal program versions by constructing and comparing

ant of their parse trees. The results are visualized using a simple textual side-by-side d

of the two versions with differences color coded. Reps [64] investigated program integra

or merging different versions of a pascal program in a semantically acceptable way. The

ing Project’s work focuses on precise characterization and identification of the differe

between two program versions. An interesting possibility for future research is to incorp

program slicing techniques into our tool as a means of performing a more precise stru

difference of the code hierarchies.

18

e data

ously

ns,

adyn

tions

pro-

o the

ceived

such

. Work

d

form

chine

rithm

ams,

source

ecified

. This

data

semi-
Several research efforts have examined methods for using visualization of performanc

to compare different versions of programs. Ribleret al at Virginia [65] have developed alter-

native methods for visualizing categorical trace data, including recent work on simultane

visualizing multiple traces. IPS-2 [40] allowed visualization of data from different ru

matching them by normalizing to total execution time. Our previous work combined Par

and Devise [42] to enable side-by-side, linked visualization of data from multiple execu

of a parallel application. Open problems remain, for example in matching phases of the

gram across two runs of different execution time.

The problem of mapping resources between different program versions is similar t

problem of mapping resource requirements to resources available. This problem has re

recent attention because of the advent of metacomputing environments [10, 16, 23]. In

environments, mapping is used to fit a specified job request onto the available resources

by Bruneet al at Paderborn Center for Parallel Computing[5,6,17] describes a language an

API for Resource and Service Description (RSD). Their goal is to provide a cross-plat

mechanism for specifying a resource request and for returning information about a ma

platform, appropriate for use in a metacomputing environment. Gehring presents an algo

for generating formal descriptions of the dynamic execution behavior of distributed progr

with the goal of using these in schedules, load balancers, or routing systems. The Re

and Service Description project has the goal of allowing resources and services to be sp

for complex heterogeneous computing systems and metacomputing environments

description language is designed to specify resources for both provider and requestor.

The classad matchmaking framework used for Condor [60] uses a semistructured

model to represent both potentially available resources and resource requests. (The term

19

not as

ibTex

re con-

of con-

y are

work:

paring

lized

y been

s its

gested
structured data refers to data that has some structure, but for which the structure is

explicitly defined as in relational databases; one example is the data contained in B

files[1].) The classad task is complex because, in addition to resource attributes, there a

straints that must be met for a match to be made. These constraints represent a variety

ditions such as “only people in my research group can use my machine,” and the

independently specified by different parties with different goals.

2.5 Summary

In this chapter we have reviewed the state of the art in research areas related to our

parallel performance tools, experiment management systems, and techniques for com

program versions or executions. Viewing Parallel Performance Tuning as a specia

instance of scientific experiment management is a novel approach that has not previousl

investigated. Similarly, creating an adaptive parallel performance tool that change

approach based on historical application performance data has not been previously sug

or implemented.

20

ari-

gram

f data

tudy-

large

ance

gram

tween

ailed

s for

ata.

vior

ent;
Chapter 3

The Program Space

TheProgram Spaceis a representation for a collection of performance results and the v

ous program versions, runs, and runtime environments to which they refer. The Pro

Space provides the functionality needed to name, store, and retrieve a large collection o

pertaining to an application’s structure and behavior. It is directly useful to a developer s

ing an application’s behavior, as a means of organizing and navigating a potentially

amount of data. Also, it can be incorporated into performance tools to allow past perform

to be included in conclusions about current performance. At the topmost level, the Pro

Space provides a way to describe program executions that allows us to distinguish be

different runs and versions of an application. At a fine-grained level, it provides a det

description of each individual program run that allows us to refer to specific sub part

which we have data. Finally, it provides a representation for the collected performance d

In creating the Program Space we were motivated by the following design goals:

• to provide an intuitive user interface that highlights differences in application beha

between program runs, and helps relate them to differences in code and environm

21

t can

a, and

erfor-

ail-

ressed

s the

plat-

za-

ts the

urate

ins data

y be

related

in one

ifferent

ource
• to provide a uniform naming mechanism and interface for performance data tha

accommodate a large quantity of heterogeneous, incomplete, and distributed dat

that can be used by a variety of visualization and data exploration tools;

• to address the dynamic nature of the data (new program runs and new types of p

mance results will be added over time);

• to allow an efficient and practical implementation to be built on top of commonly av

able database management systems;

• to provide answers to common performance related questions that cannot be add

by tools that incorporate only a single program run. Such questions include: What i

scaling behavior of my code? How do the results I just gathered compare to other

forms? Did the performance of this function improve when we compiled with optimi

tion, and if so, by how much? Are the performance requirements being met? Wha

highest amount of I/O waiting time seen in a run on more than 16 nodes? How acc

was my predictive model?

To address these goals we developed the Program Space. The Program Space conta

describing a collection of one or more Program Events. AProgram Eventis an individual

complete or partial run of a program, simulation, or predictive model. Although there ma

any number of Program Events represented in the space, all Program Events are from a

group of code versions (as defined by the user). We do not combine unrelated programs

Program Space. The Program Events represented in one Program Space may be d

repeated runs with identical parameters, or they may be runs performed using modified s

code, different input data sets, or different platforms.

22

of Per-

nts,

ples of

escrip-

nts. It

poten-

n

es of

ified

p, the

s. In

e dis-

.

a

, plat-

atory

col-

tically
A Program Space comprises a SpaceMap, one or more EventMaps, and a collection

formance Results. TheSpaceMapcontains descriptive data that characterizes Program Eve

distinguishing the various Program Events described in the same Program Space. Exam

descriptive data stored in the SpaceMap are: input data set characteristics, platform d

tion, code version number, or laboratory name. EachEventMapcontains a detailed list of one

Program Event’s resources, such as individual function names and machine compone

serves as an interface to the performance results, and provides a naming scheme for the

tially large collection of performance data.Performance Resultsare measured values for a

execution’s behavior, for example, total CPU time for a specified function.

From one point of view, the SpaceMap and EventMap each contain different class

information collected from different sources. From another view, they represent a un

body of attributes over which we can query (see Section 3.4.6).

We examine each of the three components of the Program Space — the SpaceMa

EventMap, and the Performance Results — in more detail in the next three section

Section 3.4 we describe retrieving information from the Program Space, in Section 3.5 w

cuss implementation considerations, and in Section 3.6 we present a chapter summary

3.1 The SpaceMap

The SpaceMap is an organized collection ofmetadata: descriptive data that characterizes

collection of one or more Program Events. Examples are input data set characteristics

form description, code version number, algorithm name, compiler options used, or labor

name. Information useful in distinguishing a particular Program Event within the entire

lection is considered metadata in this context. The list of attributes that serve as seman

23

e any

the

ination

add-

vent.

ossible

ed by

ined by

gram

ing

oint

single

pace

ator to
meaningful metadata varies for different applications. For this reason, we do not requir

particular attributes, or limit the total number of attributes. The only restriction on

SpaceMap is that each execution must be uniquely specifiable by selecting some comb

of attribute values. This property is not restrictive in practice, since it may be enforced by

ing the attribute “EID” and assigning a unique identifier as the value for each Program E

Each attribute stored in the SpaceMap labels one axis in the Program Space. The p

attribute values translate into coordinates in the resulting multi-dimensional space defin

these axes. Each execution is therefore one point in the space, with coordinates determ

its specific attribute values.

We illustrate this concept of a multi-dimensional space with a simple example. The Pro

Space pictured in Figure 1 contains data from four Program Events with the follow

attributes and values:

The first column shown contains the EID. Conceptually, if we zoom in on one particular p

of the Program Space, we find an EventMap and Performance Results pertaining to a

Program Event.

Our characterization of the complete set of application data as a multi-dimensional s

allows us to apply multi-dimensional database techniques such as the data cube oper

EID PLATFORMSIZE INPUTDATA CODE VERSION

1 8 A original

2 16 A original

3 8 A newSolver

4 8 B original

24

pera-

acter,

aggre-

le for

ion of

e, and

cated.

might

igating

re and

ds to

sult of

ution

h the

more

om-

p rep-

ts the
efficiently perform queries over the Program Space. The functionality of the data cube o

tor [22] allows efficient aggregation operators over an N-dimensional space.

In this simplified example, we have used simple types for attribute values: integer, char

and character string. However, in practice, values can be more complex user-defined or

gate types. For example, rather than the simple identifiers A and B used in this examp

inputData, we might describe the input data set used with a string name plus a descript

the input consisting of the size of a grid being represented, the name of the data sourc

the start time in seconds, plus the name of the file in which the actual input data set is lo

In a heterogeneous environment, attribute “platformSize,” shown here as an integer,

instead be represented with a list of processor types and counts.

The SpaceMap serves as an interface to the data contained in the Program Space. Nav

the SpaceMap allows the user to visualize and query the Program Space, both its structu

its contents. Selecting a valid combination of values from the SpaceMap correspon

selecting one or more Program Events with data stored in the Program Space. The re

such a selection is an EventMap display showing details of either a single program exec

or a collection of executions, depending upon how many of the stored executions matc

specification selected. We discuss extracting information from the Program Space in

detail in Section 3.4 and underlying implementation issues in Section 3.5.

3.2 The EventMap

The EventMapcontains structural information about a Program Event gathered from c

pile- and execution-time information. As described in the previous section, the SpaceMa

resents the experiment metadata. The EventMap, on the other hand, represen

25

nt. A

nts the

Events

rogram

ication

, for an
of the
components of a program execution: the program’s structure and execution environme

Program Space contains one EventMap for each Program Event it describes. It represe

program structure and serves as an index to the Performance results. As new Program

are added to the Program Space, new EventMaps are created, adding data for one P

Event at each step. Definitions related to the EventMap are listed in Figure 2.

We organize the program resources into classes according to the aspect of the appl

they represent, and structure each class as a tree, called aresource hierarchy (similar to the

Figure 1: The Complete Collection of Data forms the Program Space.In this illustration each
cluster of data visualizations represents all of the data, both EventMap and Performance Results
application. The numbers refer to the “EID” column of the table. The inset shows the contents

SpaceMap for this Program Space.

Platform Size

Code Version

Input Data Set

PlatformSize∈ {8, 16}

InputData∈{A, B}

Version∈{original, newSolver}

4

3

2

1

26

code,

s. Each

rarchy

des a

each

it with

s a par-

el of

e hier-

ction

f an

dule-

:

representation used in Paradyn [54]). Possible program resources include the program

application processes, machine nodes, synchronization points, data structures, and file

class of resources provides a unique view of the application. For example, a Code hie

provides a source code based view of the application, while a Machine hierarchy provi

view of the application runtime environment.

A resource hierarchy is a collection of related program resources. The root node of

resource hierarchy represents the complete program execution and therefore we label

the name of the entire resource hierarchy. Each descendant of the root node represent

ticular program resource within that view. As we move down from the root node, each lev

the hierarchy represents a finer-grained description of the program. For example, a cod

archy might have one level for nodes that represent modules, below that a level with fun

nodes, and below that a level for loops or basic block nodes.

In the resource hierarchy of Figure 3, the root level (level 0) is the program-level view o

application, which represents the behavior of the whole program. Level one is the mo

Figure 2: Definitions related to the EventMap.

Definition 1. AnEventMap, E, is a forest composed of zero or more unique resource hierarchies

EventMap E = {R0, R1, ... Rn}. ❏

Definition 2. Aresource hierarchy R is a tree of the form

R = (r, T)
where r is a resource and T is the set of all children of r in the resource hierarchy:

T = {(r0,T0), (r1,T1), ... (rm,Tm)}. ❏

Definition 3. Aresource r is a pair

r = (l, X)
wherel is the resource label andX ∈ {e0, e1... ei}, a set of unique event identifiers.❏

27

f a

of the

tains

cular

func-

ro-
level view of the source code, and level two is its function-level view. Each level o

resource hierarchy is a set of resources, and each level above the leaf level is a partition

set of nodes in the next lower level. For example, the module level of Figure 3, which con

testutil.C, main.C, and vect.C, is a partition of the set of all leaf nodes. We specify a parti

level of a hierarchy using a superscript notation:R0
1 refers to level one (the children of the

root node) of resource hierarchy zero. The Code hierarchy in Figure 3 shows the set of

tions partitioned into modules:

R0
0 = {Code}

R0
1 = {testutil.C, main.C, vect.C}

R0
2 = {printstatus, verifyA, verifyB, main, vect::addel, vect::findel, vect::print}.

Figure 4 shows a sample EventMap for a parallel application calledTester. The EventMap is

the set {Code, Machine, Process}. The Code hierarchy contains nodes that represent the p

Figure 3: Each level of a Resource Hierarchy represents a different view of the application.

Whole Program View

Module View

Function View

vect::addel

verifyA

printstatus

mainmain.C

testutil.C

vect.C
vect::findel

vect::print

Code

verifyB

28

U on

ss. The

easily

ocess

ution.

viron-

leaf

d does

quely

sents a

he

e

the

le, the

gram
gram’s modules and functions; the Machine hierarchy contains one node for each CP

which Tester executed; and the Process hierarchy contains one node for each proce

resources and hierarchies shown here follow the pattern of Paradyn data, though we can

incorporate data from other environments. For example, it may be natural to have pr

resources as children of machine resources.

Each resource is a representation of a logical or physical component of a program exec

A single resource might be used to represent a particular aspect of the program or the en

ment in which it executes: a process, a function, a CPU, or a variable. In Figure 4, the

node labeled “verifyA” represents the resource “functionverifyA in module testutil.C.” The

semantic meaning attached to a particular resource is relevant only to the tool user an

not affect the model functionality; however, a program execution component must be uni

represented by a single resource. Each internal node of a resource hierarchy tree repre

set of one or more resources; for example,testutil.C is a single resource that represents t

aggregation of the set {printstatus, verifyA, verifyB}, and we define a measurement of CPU tim

for testutil.C as the sum of CPU time forprintstatus, verifyA, andverifyB.

A resource nameis formed by concatenating the labels along the unique path within

resource hierarchy from the root to the node representing the resource. For examp

resource name that represents function verifyA (shaded) in Figure 4 is </Code/testutil.C/

verifyA>.

3.3 Performance Results

Each performance datum collected during a program execution is stored in the Pro

Space as a tuple in the form [e, m, f, t, r], where:

29

as

cular

ol-

or-

d is

us,

such
• e is a unique Program Event identifier orEID;

• m is the name of themetric, which is a measurable execution characteristic, such

CPU time;

• f is thefocus, a constraint specification that narrows the scope of the data to a parti

part of the application, such as one function;

• t is the time interval, which specifies the time during an execution the data was c

lected; and

• r is theperformance result,which may be a scalar or more complex object. Each perf

mance result is uniquely identified by the EID, metric, focus, and time interval, an

represented PR(e, m, f, t). The collection of performance results may be heterogeneo

and results for even a single program execution may include different types of data

Figure 4: EventMap for Program Tester

vect::addel

verifyA

printstatus

mainmain.C

testutil.C

vect.C
vect::findel

vect::print

Tester:2

Tester:1

Tester:3
Process

Machine

CPU_1

CPU_2

CPU_3

CPU_4

Tester:3

Code

verifyB

30

ance

lude.

ethods

parts

time

n our

f

e of a

y other

lected

tate

lecting

_foo

hierar-

e

rarchy.
as time series and traces. In practice there is rarely a complete set of Perform

Results, so PR may be∅ (null) for some valid combinations of e, m, f, and t.

We want our system to be extensible in the types of performance results that it may inc

For this reason, we allow new types of performance results to be added, with access m

serving as a uniform interface.

3.3.1 The Focus

For a particular performance measurement, we need the ability to specify the particular

of a program to which it applies. For example, we may be interested in measuring CPU

as the total for an entire program run, or as the total for a single function. We constrai

view of the program to a selected part with afocus(see Figure 5). A focus is a selection o

resources from an EventMap that follows certain restrictive rules. Selecting the root nod

resource hierarchy represents the unconstrained view, the whole program. Selecting an

node narrows the view to include only those leaf nodes that are descendents of the se

node. For example, the shaded nodes in Figure 4 represent the constraint: functionsverifyA and

verifyB of processTester:2 running on any CPU. Between hierarchies, a focus defines the s

where the condition selected in each hierarchy is true at the same time. For example, se

machine_1 and function_foo results in narrowing the scope to data pertaining to function

only as it ran on machine_1.

Because our naming of performance results is based on the EventMap’s resource

chies, we call the naming schemeresource normal form. We convert a selected set of resourc

nodes to resource normal form by concatenating the selections from each resource hie

For example, the shaded selection of Figure 4 is represented as:

31

e

vents,

es and

differ-

sking

eatures

rently

uery

s and

partic-

ent-
< /Code/testutil.C/verifyA, /Machine, /Process >.

We call the focus that results from selecting the root node of each resource hierarchy throot

focus.

3.4 Retrieving Information from the Program Space

Once we have populated a Program Space with data from a collection of Program E

we can view and extract that data in a variety of ways. Here we discuss some basic queri

a few specialized operators: structural difference, discrete distance, and performance

ence. Querying and viewing data from more than one execution can take the form of a

the same question of more than one execution and comparing the answers. One of the f

of the Program Space structure is that it also allows us to ask questions that are inhe

multi-execution. We defer a discussion of implementation of the underlying storage and q

facility to Section 3.5.

3.4.1 Choosing Program Events Using the SpaceMap

First we consider questions asked by making selections over the collection of attribute

values in the SpaceMap. Queries over this metadata are made by selecting one or more

ular attribute values from the SpaceMap. The result is in the form of a filter over the Ev

Figure 5: Definition of a Focus.

Definition 4. Afocus F is formed by selecting one resource node from each of the resource

hierarchies in an EventMap:

{r1 ∈ R1
j1, r2 ∈ R2

j2, r3 ∈ R3
j3, ... rn∈ Rn

jn}
wherejx is a level of resource hierarchyRx andn is the total number of resource
hierarchies. The nodes selected may be in different levels of the different
hierarchies.❏

32

ple of

Map

yields

an one

ode-

d by

peci-

nswer

ulti-

gram

f

hat are

each

in a

them

odes

tch is
Map that screens out all but the Program Events with the selected values. In our exam

Figure 1, selecting “Platform=8, InputData=A, CodeVersion=newSolver” yields an Event

representing a single Program Event, Program Event 1, whereas selecting “Platform=8”

an EventMap representing Program Events 1, 3, and 4. Note that there may be more th

selection for a given result, for example, Program Event 1 is also the result of selecting “C

Version=newSolver.”

Questions of the form “How do these results compare to other platforms?” are aske

specifying the different platforms, including the most recent, from the SpaceMap, then s

fying the particular metrics you want to compare.

3.4.2 Combining EventMaps with the Structural Merge Operator

If a selection made from the SpaceMap refers to more than one Program Event, the a

is computed by merging two or more EventMaps to form a single representation for the m

ple Program Events. We combine two or more EventMaps with theStructural Merge Opera-

tor (+) . The result is a single, merged EventMap that represents two or more distinct pro

executions.

To calculate the structural merge of two EventMaps,E1 + E2, we compare the two sets o

resource hierarchies in a top-down manner. First we isolate those resource hierarchies t

members of both program executions by matching up common pairs of root nodes. For

such pair, we do a level by level comparison of the two resource hierarchies, continuing

top down manner following the rule: if two resource hierarchy nodes match, we merge

into one node in the result, then check the children of the two nodes, until either the leaf n

have been examined or we fail to find a match for a node. When a node without a ma

33

to the

two

l two

ration.

resent

nt-

h may

ue to a

atch

rmin-
identified at any level of the hierarchy, the entire subtree rooted at the node is added

result and labeled with the execution’s label. Applying the structural merge operator to

EventMaps yields a single EventMap. This result contains all resources from the origina

EventMaps, so the structural merge operation works as a hierarchical set union ope

Some or all of the resources in the result EventMap are merged resources and rep

resources found in multiple executions.

The Structural Merge Operator,+, takes two EventMaps as operands and yields an Eve

Map. Figure 6 shows the algorithm for the structural merge operator, which forms E = E1 + E2

given two EventMaps E1= {(r 0, T0), (r1, T1), ... (rn, Tn)} and E2= {(r 0, T0), (r1, T1), ... (rm,

Tm)}. Note that it is not required that n = m. We define a merge operator+ for individual

resources in Figure 7. The comparison function used to determine if two resources matc

be defined for each resource hierarchy, and therefore may use attributes that are uniq

particular hierarchy, as well as common attributes. As an example, we show a simple m

function in Figure 8. This match function uses resource string labels as the basis for dete

ing resource difference. We discuss resource matching further in Section 3.4.5.

+ (EventMap E1, E2) returns EventMap

[1] E ← { }

[2] ∀ (ri, Ti) ∈ E1

[3] if ∃ (rj, Tj) ∈ E2, s.t. match (ri, rj) then

[4] E ←E ∪ { r i + rj, Ti + Tj}

[5] E2 ← E2 – (rj, Tj)

[6] else E ← E U {(ri, Ti)}

[7] E ← E ∪ E2

[8] return E

Figure 6: Algorithm to find the Structural Merge of two EventMaps, E1 + E2

34

rces

lightly

o

s

o not
The structural merge operation has the following properties:

• commutativity:E1 + E2 = E2 + E1

• associativity: (E1 + E2) + E3= E1 + (E2 + E3)

• idempotency:E1 + E1 = E1

It can be applied iteratively to build up a single EventMap that contains all of the resou

for any number of distinct Program Events.

Figure 9 shows an application of the structural merge operator to two EventMapsE1 andE2.

The top set of resource hierarchies describes executionE1, and the middle set describesE2.

The bottom of the figure shows the result. Resources common to both executions are

shaded; <Code> and <Code/Module2> are examples of such resources. Resources unique tE1

or E2 are drawn darkly shaded or clear respectively; for example, <Code/Module2/Bar > is

unique toE1 and <Code/Module2/Car > is unique toE2. Note the results for the Semaphore

and Messages hierarchies: although both have children labeled “one” and “two”, we d

+ (resource r0, r1) returns resource

[1] given r0 = (l0, X0), r1 = (l1, X1):

[2] r ← (l0, X0 ∪ X1)

[3] return r

Figure 7: Merging Two Resources, r1 + r2. Only matching pairs of resources are merged.

match(resource r0, r1) returns boolean

[1] if li = lj then

[2] return true

[3] else return false

Figure 8: Algorithm match ((r1 = (li,Xi), r2 = (lj , Xj))

35

essages

ed.

list of

g the
want to merge these nodes; because the root nodes are different the Semaphores and M

hierarchies are not considered equivalent and non-equivalent hierarchies are never merg

3.4.3 The Structural Difference Operator

The Structural Difference Operator compares two or more EventMaps and returns a

resources that do not occur in all of the EventMaps. Given our overall goal of comparin

Figure 9: An Example of the Structural Merge Operator

Machine

Poona

Code

Module1 Module2

Main Foo Bar

Process

Tester

Sync Objects

One Two

Messages

One Two

Process

Tester

Machine

Poona

Code

Module1 Module2

Main Foo Car

Machine

Poona

Code

Module1 Module2

Main Foo Bar Car

Process

Tester Semaphores

One Two

Messages

One Two

EventMapE1

EventMapE2

EventMapE1 + E2

Semaphores

Sync Objects

Sync Objects

36

were

two

ierar-

ance

exe-

e code

mine

per-

pera-

nodes

rator

of the

mples

ary

g task

inputs

gram

s an

ough

ogram
performance of two or more program executions, a natural first question is, how different

the code and environments used in the two tests, and where did they differ? If we perform

test runs using identical code running on identical, dedicated platforms, every resource h

chy of the first execution has an identical counterpart in the second execution; perform

data may be meaningfully compared for every focus that is valid for one of the individual

cutions. The comparison becomes more complex if we consider cases in which either th

or the run time environment (or both) differ between our two test runs. We need to deter

the common set of valid resources. This is accomplished with the Structural Difference O

ator. From the SpaceMap, the user can invoke the Structural Difference Operator. This o

tor takes as input two or more EventMaps and returns an EventMap that contains only

that are not valid for at least one of the input EventMaps. The Structural Difference Ope

is implemented using the Structural Merge Operator (see Section 3.4.2). The result

merge is filtered so that only the differing resource nodes are displayed. We present exa

of the structural difference operator in Chapter 4.

3.4.4 The Performance Difference

The performance differenceoperator answers the question, how did performance v

between these two different Program Events? It automates the otherwise overwhelmin

of detecting all performance changes between two potentially large datasets. It takes as

a merged EventMap, filters out resources that are not valid for all of the included Pro

Events, then returns all foci for which the discrete distance metric (see Figure 10) yield

answer of true. The list is computed hierarchically as shown in Figure 11. We iterate thr

the resource nodes of the EventMap, starting with the focus that represents the entire pr

37

e spe-

for-

. This

at the

ecified

 set of
execution, the root focus. If there is a performance difference noted, we then check mor

cific foci for the same metric. This metric is useful to draw attention immediately to per

mance changes from one version to the next.

With this approach, it is possible for detailed performance differences to go undetected

situation could occur if two or more performance differences cancel each other out, so th

Figure 10: The Discrete Distance Operatoris a binary function that indicates
whether or not two specified performance results differ by more than a specified interval.
Here x and y are two different performance results. The Discrete Distance is undefined if
either performance result is null. We use the discrete distance metric as a building block
for clustering and differencing of performance results.

Figure 11: Algorithm for the Performance Difference Operator perfDiff ((E1 + E2,) − (E1 ⊕ E2),
m). The performance difference operator searches through the performance results for the sp
metricm and the requested executionsE1 andE2, returning a list of all foci for which the results are
different. The input is an EventMap and a collection of performance results, and the output is a

foci.

dd x y(,)

true if x y– δ≥
false if x y– δ<
undefined if x ∅=() y ∅=()∨

=

perfdiff(EventMap , metric) returns set of focus

[1] answer← {}

[2] enqueue (pendingQueue, EventMap->getRootFocus()

[3] while ! (isEmpty (pendingQueue))

[4] currentFocus← dequeue (pendingQueue)

[5] pr1 ← PR(E1, m, currentFocus, t = all)

[6] pr2 ← PR(E2, m, currentFocus, t = all)

[7] If dd(pr1, pr2) = true

[8] answer← answer∪ {currentFocus)

[9] for each f in magnify(currentFocus)

[10] enqueue (pendingQueue, f)

[11] return answer

38

igher

this

ll not

from

this

large

. As

each

iven

ghtly
ntains
up on
roup.
higher-level focus tests false for performance change. For example, CPU time might be h

for one function and lower in another, with a net change of zero for the entire module. In

case, comparison of the two modules will show no performance difference, and we wi

test the individual functions at all. The trade-off here is between the performance gain

stopping the testing earlier, and a possibility for false negative results. We will re-examine

issue after we have more experience with the performance difference operator applied to

scale applications.

We construct more specific foci using an operation we call magnify (see Figure 13)

specified in Definition 4, a focus contains one node from each resource hierarchy. For

resource hierarchy in the original focus, we form a set of new foci by replacing the g

Figure 12: The focus provides a partial ordering of the data.This diagram demonstrates ordering
based on the focus. The original nodes are darkly shaded and the newly added nodes are li

shaded. The focus on the left, the root focus, represents the whole program. The middle group co
foci formed by taking a single step from the root focus, along each of the possible paths. The gro
the right shows the foci formed by taking a single step from one of the four foci in the middle g

Stepping through the set of all possible foci in this way is called magnification.

39

f the

accu-

Pro-

ance

ight

rence

elect

par-

ach

qual

bout

a. To

le. We
resource with the each of its children in the next lower level of the hierarchy. The result o

magnify operation applied to a focus is a set of foci.

To ask questions such as “Are the performance requirements being met?” and “How

rate was my predictive model?” you select the Program Event you are testing plus the

gram Event that represents a simulation or previous run, then apply the perform

difference operator. To ask the question “What is the scaling behavior of my code?” you m

select the different platform sizes from the SpaceMap, and apply the performance diffe

operator for the relevant metric (probably Execution Time, although you might also s

something more specific).

We designed the Performance Difference Display to focus a tool user’s attention to the

ticular parts of the application for which behavior changed from one run to the next. E

node represents a metric-focus pair with differing performance. Metric-focus pairs with e

performance results are omitted. In this way, a potentially large amount of information a

application performance is distilled so the user is not overwhelmed with the full set of dat

illustrate the performance difference operator and display, we present a simple examp

Figure 13: Algorithm for magnify(f). Magnify returns the set of foci constructed by making all
possible one step descents down the resource hierarchy from the given starting focus.

given focus f = {r1∈ R1
j1, r2 ∈ R2

j2, r3 ∈ R3
j3, ... rn∈ Rn

jn}:

[1] answer← {}

[2] for i = 1 to n

[3]

[4] for each j in children(ri)

[5]

[6] return answer

f f n–←

answer answer f j+()∪←

40

n the

lc.C,

. The

ap (in
teps.
show all of the structural and performance data for two Program Events in Figure 14. I

top box, we show the EventMap. The code is contained in two modules, main.C and ca

and two functions, main and calculate. The application ran on a single machine node

Figure 14: Explanation of the Performance Difference Display.We show a complete set of
information for our example application. The top box shows the resources of the merged EventM
this example the two EventMaps are identical). The middle box details the particular refinement s

The bottom box shows the performance data.

Code Machine

main.C main

calc.C calculate

node_01

STEP

MAGNIFICATION

AXIS NEW FOCUS

1 Machine /Code,/Machine/node_01

2 Code /Code/calc.C,/Machine/node_01

3 Code /Code/calc.C/calculate,/Machine/node_01
.

FOCUS CPUTIME IOTIME

oldAlgorithm: /Code, /Machine 5 sec .2 sec

newAlgorithm: /Code, /Machine 4 sec .2 sec

oldAlgorithm: /Code/main.C, /Machine/NeverDown 1 sec .2 sec

newAlgorithm: /Code/main.C, /Machine/NeverDown 1 sec .2 sec

oldAlgorithm: /Code/calc.C, /Machine/NeverDown 4 sec 0 sec

newAlgorithm: /Code/calc.C, /Machine/NeverDown 3 sec 0 sec

oldAlgorithm: /Code/main.C/main, /Machine/NeverDown 1 sec ..2 sec

newAlgorithm: /Code/main.C/main, /Machine/NeverDown 1 sec .2 sec

oldAlgorithm: /Code/calc.C/calculate, /Machine/NeverDown 4 sec 0 sec

newAlgorithm: /Code/calc.C/calculate, /Machine/NeverDown 3 sec 0 sec

CONTENTS OF EVENTMAP

APPLICATION DATA

41

ance

ata for

ult of

ed at

gure.

from

ram

t is the

1 in

repre-

magni-

e of

e con-

show
middle of the figure shows the focus magnification that resulted in each pair of Perform

Results being checked for a difference. The Program Space contains performance d

metrics CPUtime and IOtime, for two program versions. The second version is the res

attempting to optimize the function calculate; the code for function main was not chang

all between versions. performance data for this example is shown in the bottom of the fi

In Figure 15, we sketch the contents of the Performance Difference Display that results

applying the performance difference operator for the metric CPUtime to the two Prog

Events shown. We have annotated the display by numbering the steps. The starting poin

root focus, represented here by the left most node labeled “WholeProgram.” Step

Figure 15 represents a magnification along the Machine hierarchy, to node_01; step 2

sents a magnification along the Code hierarchy to calc.C; and step 3 represents further

fication along the Code hierarchy to function calculate. We label each node with the nam

the resource that results from the magnification step taken to reach it. The Program Spac

tains performance data for metrics CPUtime and IOtime, for two program versions. We

a snapshot of a Performance Difference Display with our prototype in Chapter 4.

Figure 15: Sketch of performance difference display contents for example of Figure 14.We have
numbered each step to match the textual explanation.

WholeProgram node_01 calc.C calculate

1 2 3

CONTENTS OF PERFORMANCE DIFFERENCE DISPLAY

42

eneral

te for

urces

cation

same

we

using

tween

rent

d with

Here

atively.

egory.

at are

use

inter-

rvative

ce is

ized

runs,

reater
3.4.5 Matching and Mapping Resources

In the previous section, we described the structural merge operator, and its use in g

queries on two or more EventMaps. The matching technique we described is appropria

simpler cases, however, it is not sufficient for all cases. In practice, the particular reso

used often change from one run of a program to the next. For example, an 8-node appli

might run on nodes 0-7 of a machine during one run and on nodes 123-130 of the

machine on the next run. Similarly, process ID’s are likely to be different for each run. If

are to relate performance results from a previous run to the current run, for example by

the performance difference operator, we must be able to establish an equivalency be

(map) the differently named resources. Mapping allows us to link resources from diffe

executions with different names, and treat them as equivalent. We have experimente

preliminary forms of mapping, and believe that this is an area that warrants further study.

we discuss our current approach to mapping.

There are different approaches to resource mapping. One approach is to map conserv

One-to-one mappings between resource nodes that match exactly fit into this cat

Another approach is to map more aggressively, allowing mapping between nodes th

slightly different, including one-to-many or many-to-many mappings. Which approach to

is determined by the performance-related task being performed. For example, if we are

ested in learning what has changed structurally between two runs of a program, conse

mapping will yield the most inclusive list of changes. We might determine that performan

differing for all program runs that include a particular machine node, pointing to a local

failure or congestion. In constrast, when comparing the performance of two program

using an aggressive mapping strategy will result in performance comparisons for a g

43

orical

func-

ined.

main

p to a

list

dual

-

es to

ource

lying a

may

us to

cer-

efine

2 if

We can

each

vel to

each

s, one
number of pairs of resources. Mapping different machine nodes with an inexact, categ

definition allows performance per node to be compared; mapping different versions of a

tion will allow the performance change that resulted from the code change to be determ

When we apply the structural merge operator to two resource hierarchies, we invoke amatch

function on each pair of resources to find the nodes that differ. Resources that re

unmatched after this step can be manually mapped. All mappings are from one EventMa

single virtual EventMap. In this way, we avoid the exponential explosion of maintaining a

of mappings for each pair of EventMaps in the Program Space. Mapping of indivi

resources is specified as a set of directives of the form “mapresourceName virtualResource

Name”specified by the user in an input file or through a GUI by selecting pairs of resourc

map. The virtual resource name refers to one name that will be used to refer to all res

nodes with a mapping to the same node, regardless of the original resource name. App

complete set of mappings to an EventMap yields a virtual EventMap, each node of which

map to several differently named nodes from distinct Event Maps. This approach allows

use only one list of mappings for each Program Space.

We allow manual mapping of resource nodes, however, we also want the ability to map

tain kinds of resource nodes automatically. Consider the Machine hierarchy. We might d

a match function (=) based on attributes, say machineNode1 = machineNode

machineNode1.cpu = machineNode2.cpu and machineNode1.os = machineNode2.os.

map the two Machine hierarchies as follows: (1) independently divide the child nodes of

hierarchy into equivalence classes. This can be performed by adding an intermediate le

the hierarchy, one node for each resulting equivalence class. (2) Test selected pairs from

hierarchy against each other for equality, matching up the equivalence classes into pair

44

quiv-

lity of

lasses

map-

etric

ap

rfor-

anner,

/focus;

artic-

s) via

iled

the

(per-

nce

. To

des,”

e I/O

ask
from each hierarchy. (3) If all of the classes pair up (that is, there is an equal number of e

alence classes for each of the two original resource hierarchies), we check the cardina

each equivalence class. If the cardinality is equal for each pair, we consider that pair of c

mappable. (4) For each mappable pair of equivalence classes, generate a list of pair wise

pings.

3.4.6 Making Selections from the EventMap

Performance Results are retrieved by selecting a focus from the EventMap and a m

from the list of available metrics for that focus. Selecting a valid focus from the EventM

acts as a filter over the list of available metrics. The answer will contain one or more pe

mance results. The user performs queries over the performance results in this uniform m

regardless of the particular types of performance results stored for the requested metric

the answer to a query may mix results from different types of performance results. The p

ular EventMap used is retrieved by first selecting one or more particular Program Event(

the SpaceMap.

To ask questions of the form “Did performance of function foo improve when we comp

with optimization?” you would select the runs with optimization levels of interest from

SpaceMap, then select function foo from the resulting EventMap, and the relevant metric

haps CPU time) from the list of available metrics. The answer will include performa

results for function foo, for all of the Program Events with the selected optimization levels

ask “What’s the highest I/O waiting time we’ve seen when we run on more than 16 no

select all runs with values of platform size greater than 16 from the SpaceMap, select th

waiting time metric, then aggregate over the resulting list of I/O waiting time values. To

45

iffer-

evant

rlying

briefly

needs

nting

peri-

Lab-

unning

tures

e men-

sys-

their

ted,

se, and

tradi-
the question “What is the scaling behavior of my code?” you might select the runs with d

ent platform sizes from the SpaceMap, the root focus from the EventMap, and the rel

performance metric, for example, Execution Time.

3.5 Implementation Considerations

As with most real world problems, there is more than one approach to designing unde

database support for the Program Space. Here we discuss the relevant issues. First we

survey the features of two Experiment Management Systems, and compare them to the

for our experimental performance environment. Next we present a design for impleme

the Program Space. In Section 3.5.3 we briefly discuss other possible approaches.

3.5.1 Existing Experiment Management Systems

We looked at two existing approaches to providing database support for scientific ex

mentation: the ZOO project at UW-Madison and the OPM project at Lawrence Berkeley

oratory. Each of the projects researched the particular database needs of scientists r

experiments[8, 38], and there is much similarity in the reported results. Not all of the fea

mentioned by the researchers are implemented in their released tools, however, all wer

tioned as particularly important to a full implementation of an experiment management

tem. Here we list the features related to our performance environment and comment on

applicability.

Schemasas commodity objects. In both ZOO and OPM, schemas can be manipula

shared, and reused by the scientist. They are stored as objects in ZOO’s meta databa

can be accessed through a web browser in OPM. This is a radical departure from the

46

ur per-

mas to

nt sci-

This

dif-

lly, yet

er-

envi-

le of

the

ies and

any

t. For

us is

r that
tional database approach, in which the user is not given direct access to the schema. O

formance tuning environment shares the need for available schemas, to enable the sche

evolve over the course of experimentation.

Databasesharing. Both projects mention the need for databases to be shared by differe

entists and projects. Also a single experiment may involve data from multiple sources.

sharing directly applies to our performance environment.

Queriescanspanmultiple databases. Allowing queries to span databases would enable

ferent application users and developers to each have their own experimental results loca

still have the ability to use results from other laboratories. (See Section 3.5.3.)

Mechanismfor launchingnew experiments. This feature could usefully be added to our p

formance environment, although it is not part of the current design. Experiments in our

ronment are program or simulation runs with monitoring tools in place. A simple examp

the practicality of automating their launch is that a scalability study could be done with

push of a single button.

Mechanismfor convertingdatafrom ASCII files into databaseobjects. In our environment

this means the ability to add new Program Events to the database. Resource hierarch

performance results may all be input from ASCII files.

Levels of integrity enforcementto allow incompleteinformationor humanerror. This is a

must in our performance environment, which should allow for metric/focus pairs without

data at all, as well as gaps in data for different time intervals in a single Program Even

example, the Performance Difference Operator must allow for the condition that a foc

valid for the two Program Events being compared yet no performance results exist fo

focus.

47

that

or ver-

rpo-

wing

d the

r sys-

tical,

atures

pace

d over

used

s and

rmance

DT be

mon

end-

lan-
Versioning. Part of the potential for our extensible resource definition approach is

resources representing source code can be enhanced to include the actual filenames

sions of the files. Integration with functionality of a revision control system could be inco

rated into the match function for such resources, and would be a useful extension.

ObjectorientedfeaturessuchasZOO’s datamodel(MOOSE)andquerylanguage(FOX).

We also found a need for object oriented features, as described in more detail in the follo

section.

In summary, we found much overlap between the needs of a performance study an

needs determined for scientific experimentation. In principal, the storage engine for ou

tem might be implemented using either ZOO or OPM. We determined this to be imprac

however, because neither project has produced a complete version with all of the fe

needed for us to fully implement our tool. To illustrate the relationship of the Program S

and ZOO, we present a design for our experiment management system implemente

ZOO.

A schema for the Program Space is shown in Figure 16. We follow the representation

in the ZOO documentation [76], with the addition of ovals to represent abstract data type

user defined methods. The three main classes are EventMap, SpaceMap, and Perfo

Result. Each new type of performance result stored in the database requires a new A

defined for it, as a child of type PerformanceResult, with method functions for com

lookup features such as getValue (startTime, endTime) and getMaxValue(startTime,

Time). This enables queries to be performed over a heterogeneous collection of data.

Here are examples of queries we have been discussing, written in ZOO’s Fox query

guage.

48
Figure 16: Schema for a Program Space containing Paradyn data.

AttributeValue

EID

EventMap

Hierarchy getRootNode()

Resource

getParent()

getChildren()

name

metric focus startTime endTime

PDHistogram

name value

c

c i

parent children

ii

rid

SpaceMap

match()

i

i

b

Machine Resource

c c

Code Resource

c

i

i

EID

ff

method
return value
has-part
setof
inheritance

integer, character string,
boolean, floating point

f

getValue(start, end)PerformanceResult

adt

c
EID

getValue(start, end)

f

49

show

nt

tradi-

. This

fined

ce [59].

t of

[63].

object

product.
1. Select zero or more EventMaps by choosing attributes from the SpaceMap. Here we

an attribute and value selected asselectedAttribute andselectedValue respectively.

for e in EventMap, sin SpaceMap, av in s.members

selecte.hierarchy

whereav.name =selectedAttributeand av.value =selectedValueand e.eid = s.eid

2. Select zero or more Performance Results from an EventMap.

for e in EventMap, pin PerformanceResult

select p.GetValue(startTime, endTime)

whereselectedFocus = p.focusand selectedMetric = p.metricand e.eid = p.eid

3. Select the greatest CPUtime for the Whole Program recorded for any Program Eve

select max

(for p in PerformanceResult

select p.GetValue(start, end)

where p.focus =rootFocusand p.metric = “CPUtime”)

3.5.2 Implementing the Program Space with an Object Relational DBMS

An object-relational database management system (ORDBMS) is a combination of a

tional relational database management system with newer object-related functionality

additional functionality may include user-defined abstract data types (ADTs), user-de

methods; constructed types such as sets, tuples, arrays, and sequences; and inheritan

All of the major database vendors (IBM, Oracle, Informix) now provide some amoun

object support, in at least partial compliance with the current SQL3 draft standard

Although the particulars of the implementation vary, as long as we have the necessary

features discussed here, we can implement the program space on top of that database

50

am-

torage

their

work

o the

t for an

a is

com-

creat-

S the

Data

result

or an

least

sults

lt may

ver-

n the
At present, however, not every vendor supplies the full range of object functionality, for ex

ple, Oracle does not provide inheritance[63].

3.5.3 Other Implementation Strategies

It is possible to use a relational database management system (RDBMS) as the s

engine underlying an object oriented model. The ZOO project took this approach for

experiment management software, for example. The difficulties are the amount of

required to implement the necessary transformations from object-oriented queries t

underlying database, and the poor performance. There are several examples of a poor fi

RDBMS. First is the dynamic nature of the schemas. The difficulty is that the schem

changing over time; that is, attributes may be added after the initial database design is

plete. As long as the total database size is not large, this can be practically achieved by

ing a new schema and copying all data as needed. However, in a traditional RDBM

schema is not generally manipulated by users, who typically are not familiar with the

Definition Language used. We want users of the system to be able to add performance

types and resource types while using the system.

The EventMap structure and the resources it contains introduce additional difficulties f

RDBMS. We need to define the match function for each type of resource node, or at the

for each hierarchy. This requires an ADT for clean implementation. The Performance Re

require user-defined methods to be extensible, so that a new type of performance resu

be added to the system. This can be done with inheritance.

We would like to leave open the possibility, as a future enhancement, for a distributed

sion of the Program Space that would enable scientists in different laboratories working o

51

rch into

gned

rying

is the

ssed in

under-

lterna-

he

mple,

ons to

called

of Per-

w the

erge

ng up

repre-

the

cluded

a pro-
same application to share their performance data. There has been much recent resea

XML[26], an interface specification for describing data over the web. Because it is desi

for data interchange on the web, it includes features for handling incomplete data and va

data schemas. An XML document is analogous to a relation in a database and a DTD

equivalent to a database schema. As in the scientific experiment database projects discu

Section 3.5.1, this approach provides direct access to the schema. Research currently

way will add the necessary features to make sharing data through the web a realistic a

tive. For example, XML-QL [9] is a proposed query language for XML with many of t

features needed for a shared, distributed data store. In the field of chemistry, for exa

researchers have constructed the Chemical Markup Language as a set of XML definiti

be commonly used within their research community.

3.6 Summary

In this chapter, we presented a representation for a set of related program executions

the Program Space. The complete Program Space contains an EventMap, a collection

formance Results, plus a SpaceMap describing execution-level characteristics that allo

different program runs and versions to be distinguished. We described the structural m

operator, its ordered comparison of two or more program executions, and its use in buildi

an EventMap that represents multiple program runs. Next we described our method for

senting individual Performance Results, and operators for retrieving information from

Program Space: simple queries, discrete distance, and performance difference. We con

with a discussion of implementation issues. In the next chapter we present examples of

52

rfor-
totype implementation of the Program Space performing a variety of tasks common in pe

mance studies.

53

udies

, we

d per-

tive of

rallel

s the

udies

e, but

re not

labil-

r the

ill be;
Chapter 4

Case Studies: Applying the Experiment Management Approach

to Common Performance Activities

Demonstrating the utility of our experiment management approach for performance st

necessitates testing it in practical situations with existing parallel codes. To this end

implemented a prototype experiment management system and used it with structural an

formance data from parallel applications. We designed each small study as representa

common and essential tasks carried out in laboratories involved in writing and using pa

applications. For example, the project from which we gathered data for our first study ha

following characteristics common to many environments in which performance related st

are carried out: The overall project is solving problems in physics, not computer scienc

to do so high end computing technology must be used; many of the scientists involved a

primarily computer scientists; the computation is large enough that performance and sca

ity are key concerns — the more efficiently the simulation can be computed, the highe

quality of the result that can be obtained, and therefore the more useful the simulation w

54

the

mine

om a

onsin

nam-

iffer-

rogram

struc-

muni-

ierar-

entMap

ence

BLT

nder

ity of

gian-

irect

each
and the specific algorithms underlying the code will evolve over time concurrently with

various porting and tuning efforts.

In the first study, we used our techniques for structural and performance data to exa

results from several runs of the same program on two different platforms. The data is fr

research project involving engineers and computer scientists from the University of Wisc

and Syracuse University, that is developing an application to perform radiation hydrody

ics simulations. We examined data from a sequential version of the application on two d

ent platforms. Our second study evaluated performance changes as a shared memory p

evolved through versions during a performance tuning study. Our third study used the

tural difference operator to compare program versions constructed using different com

cation libraries.

Our prototype provides core functionality of the Program Space. It reads in resource h

chies and test data from Paradyn sessions, and provides a SpaceMap, one or more Ev

displays, a facility for retrieving and viewing performance data, and a performance differ

operator. We wrote the code using Tcl/Tk [19] extended with a tree widget [20] and the

library [12].

4.1 Draco

In this study, we examined two versions of a scientific code called Draco, currently u

development by a team of researchers at the University of Rochester and the Univers

Wisconsin. Developed at the Laboratory for Laser Energy, Draco is an adaptive Lagran

Eulerian code to perform radiation hydrodynamics simulations, especially related to d

laser driven inertial confinement fusion. A variety of physics packages are employed in

55

thods

puta-

rallel-

ed to

en in

arch-

yn’s

ately

four

ained

ns.

from

on of

signed

mation

with

wed

vid-

or the

speci-

lding.
time step to simulate the development of the system. The various computational me

implemented in the different physics packages result in some packages being more com

tionaly intensive than others. The simulation code is being performance tuned and pa

ized. The focus of our Draco study is a sequential code version currently being improv

enable finer-grained solutions to the physics problem being simulated to be computed.

Here we describe using our prototype tool with a sequential version of the code, writt

Fortran 90. The application was ported from SGI Irix to SPARC Solaris by Paradyn rese

ers to begin examining application performance and to allow further study of Parad

dynamic instrumentation with such a large and complex application. There are approxim

50,000 lines of source code. The 289 functions (not counting libraries) are divided into

modules: 1d, 2d, 3d, and main. The resource hierarchies for the SPARC platform cont

10,152 nodes in total, including resource nodes representing libraries and library functio

In the remainder of this section, we describe using the prototype to examine the data

three runs of the Draco application: (1) an execution of the SGI version, (2) an executi

the SPARC version, and (3) a repeated execution of (2). These different runs were as

EID’s, 1, 2, and 4 respectively.

We used the Paradyn Export feature to save performance data and resource infor

from several runs of the code. Export writes each internal Paradyn histogram into a file

header information (metric, focus, time interval size, start time, number of values) follo

by a list of time/data value pairs. It also writes an index file, that provides a list of the indi

ual data files, and a resource definition file, that lists the names of all of the resources f

Paradyn session. Our first step was to load the application data into our prototype. We

fied an application name, DRACO, that refers to the entire Program Space we are bui

56

ctory

the

same

val-

, plat-

rating

algo-

t step

wing
Next we initialized each of three Program Events with a string name, the name of the dire

that contains its data files, and a list of application attributes for the SpaceMap.

Figure 17 shows two views of the resulting SpaceMap. The view on the left lists

attributes used to describe individual Program Events. The view on the right shows the

SpaceMap with the attribute headings expanded to show a list of all of the currently valid

ues for these attributes. We recorded four attributes: concurrency (sequential or parallel)

formSize (the number of machine nodes used in each particular program run), OS (ope

system used) and num_Dimensions (referring to the underlying physics simulation

rithm). EID is a unique identifier assigned by the system to each Program Event. The firs

in navigating the experimental data is selecting attributes from the SpaceMap, then vie

the resulting EventMap.

Figure 17: SpaceMap for the DRACO application.

57

nder

n in

o the

s of

Events

Event
We chose the two Program Events from the SPARC platform by selecting “solaris” u

the OS attribute and pressing the “SHOW EventMap” button. The result is show

Figure 18. In this display we show the result of applying the Structural Merge Operator t

two Program Events. Each Program Event is assigned a unique identifier 2i (i ≥ 0). We tag

each resource in the structural display with a numeric label showing the sum of the EID

the Program Events that contain that resource. In this case, we have merged Program

with EIDs 2 and 4, so a numeric label 2 or 4 indicate a resource unique to one Program

Figure 18: A Merged EventMap for three different Draco runs.

58

can be

n after

e code

er, we

ould

chies.

has

differ-

ey are

tMap.

at the

ode

ifiers:
and a numeric label 6 indicates a resource common to both. Children of resource nodes

shown or hidden by clicking on the parent node. The snapshot we display here was take

expanding the Code module node “d_1d.so.”

Our expection is that nothing has changed between these two versions, since no sourc

revisions occurred, and both times the program was run on the same machine. Howev

want a quick way to verify this. Using the merged EventMap is impractical, because it w

require us to visually check the numeric labels for all ten thousand nodes of the hierar

Instead we display the Structural Difference (Figure 19). This shows us only what

changed between the two Program Events; in this case, only the process identifiers are

ent. Note that the nodes “ROOT” and “Process” appear here only as placeholders. Th

displayed to show the location of the process-related resources within the overall Even

We can distinguish such placeholders by their numeric labels: a label of 6 indicates th

resource is common to Program Events 2 and 4.

Figure 20 shows the EventMap for all three of the DRACO Program Events, with the C

hierarchy expanded. The different program runs are distinguished by their unique ident

Figure 19: Result of the Structural Difference Operator applied to two Draco Program Events.

59

the

, and

only

prac-

ent to

erent
1 for the program run on the SGI platform, and 2 and 4 for the two program runs on

SPARC platform. Note that the first three modules from the top of the list, 1d.so, 2d.so

3d.so, only occurred in the IRIX-based runs, and the modules d_1d.so and d_3d.so

occurred in the SPARC-based runs. This is an example of common software engineering

tices affecting our ability to match equivalent resources. The module d_1d.so is equival

the module 1d.so from a semantic perspective, however, on one platform a slightly diff

Figure 20: Merged EventMap for the three Draco Program Events (before mapping).

60

are

the

t. We
naming convention was used. Also, the functions listed in 2d.so in the IRIX version

included in DEFAULT_MODULE in the SPARC version. We used mapping to transform

resources so that the semantically similar modules would be considered equivalen

needed only three simple mapping directives to accomplish our goal:

• map /Code/d_1d.so /Code/1d.so

Figure 21: EventMap for the three DRACO Program Events (after mapping).

61

ne its

rfor-

ical

ower-

rfor-

ported

ions

and

was

perfor-

I Pow-

after it

tudy.

lem

ution

elieve

data
• map /Code/d_3d.so /Code/3d.so

• map /Code/2d.so /Code/DEFAULT_MODULE.

The result of this mapping is shown in Figure 21.

4.2 Performance Tuning a Shared Memory Application

The goal of this study was to test out our performance difference operator, to exami

potential utility in a performance study. We used data from a previously completed pe

mance tuning study of a protein-folding application, called Fold4, developed in our Chem

Engineering Department. The eventual target platform for the application was the SGI P

Challenge. The first, sequential, version of the application was written in Fortran 77. A pe

mance tuning study, reported in detail elsewhere [79], was conducted. The engineers

the application from the SGI PowerChallenge to the Wisconsin Cluster of Workstat

(COW), a cluster of SunSPARCstation 20s, each with two 66-MHz Hypersparc processors

a Myricom Myrinet interface, running Solaris release 5.4. On the COW, the application

run on the Blizzard distributed shared memory system, and Paradyn was used to gather

mance data using Blizzard. Once tuned, the application was then ported back to the SG

erChallenge. We analyzed the program versions and performance data from this study

was completed.

We ran three versions of Fold4, taken from different steps in the performance tuning s

Version 1, the starting point of the tuning study, resulted from porting to the COW. A prob

was identified with a serial portion of this code version that consumed 40% of the exec

time on 8 nodes. The source code was modified to change to data partitioning to try to r

the bottleneck, resulting in Version 2. Version 2 exhibited a problem with false sharing of

62

ion 3.

gement

erfor-

s and

dis-

g

(GM-

ed by

ime.

s and

esses

e nor-

or

lica-

uns;

ctures

ular-

t.
blocks. Data was padded and aligned to improve the cache behavior, resulting in Vers

We present selected results here to demonstrate the benefit of the experiment mana

approach in navigating the large space of resources and data involved in a complete p

mance tuning study.

To consider the changes from Version 1 to Version 2, we merged these two EventMap

applied the Structural Difference Operator (Figure 22). The resulting EventMap display

tinguishes foci valid for both EventMaps. TheMemory hierarchy shows the data partitionin

change that occurred, in the form of eighteen new data structures storing particle data

>part_x). This restructuring was implemented to alleviate a performance bottleneck caus

frequent data movement between nodes.

Next we applied the performance difference operator with metric memoryBlockingT

The Performance Difference Operator compares individual pairs of performance result

reports any that differ by more than a specified threshold (see Section 3.4.4). It progr

through the available performance data according to the partial order defined by resourc

mal form. Each magnification path is followed until no further magnification is possible

until the measured difference in the data is within a specified delta.

In Figure 23, we present a Performance Difference Display for the protein folding app

tion study. This display shows that memory blocking behavior differed overall in the two r

further, it differed in each process, and those differences were localized to five data stru

(GM, GM->part0, GM->part1, GM->part2, GM->part3). (Note that the symbol “->” is part of the

data structure name itself, and does not imply thatGM is a parent node ofpart0, for example, in

our resource hierarchy.) The ability to verify the performance changes at this level of gran

ity automates what was a common and time consuming task in the actual tuning projec

63

e ver-

rson-

prob-

sions

milar

ment.
In the actual performance study, zeroing in on the performance changes between th

sions was a time-consuming task: the actual study took approximately three to four pe

weeks. Here we have demonstrated that our technique is useful for actual, not just toy,

lems, and that it can be used to shorten the time required to draw meaningful conclu

about an application’s evolving behavior. This validates the use of our technique for si

porting/tuning efforts, which are a common facet of high performance software develop

Figure 22: Result of Applying Structural Difference Operator to Fold4 Versions 1 and 2.

64

rent

e of

at is,

The

quation

s his-

etween
ge
the four

a
ot was

nched
4.3 Comparing Alternate Implementations: Porting a PVM Application to MPI

In this study we examine two versions of a parallel application, developed with two diffe

communication libraries, PVM and MPI. Our goal was to provide feedback that would b

use to a tool user, directing their attention to the structural changes in the application. Th

what has been changed in the application in porting it to a new communication library?

application, ns, is a parallel message-passing FFT code that solves the Navier-Stokes e

in three dimensions. We obtained this code from scientists at IBM Research at Haifa. It

Figure 23: Results of the Performance Difference Operator for metric MemoryBlockingTime.
The nodes shown represent resource combinations for which there is a performance difference detected b
the Program Events. Starting at the left, the nodeWholeProgram means that there is some performance chan
between the two runs. The process nodes indicate that performance changed in some way for each of
processes. The next level details individual shared data structures:GM is a shared index structure, andGM-
>part0, GM->part1, GM->part2, andGM->part3 are the shared data structures listed in the index. The dat

structures listed are those common to both runs for which memoryBlockingTime changed. This snapsh
taken after selecting two nodes,process1 andprocess2, to see a detailed display of their children. A

visualization of the performance data for any node, showing the plots of the values for each run, can be lau
by selecting the node on this display.

65

ach to

tran,

We

t we

.

and

ppli-

cation,

ay not

ge of

nce

e run

see

hows

been

on to

for the

 data.
tory and use illustrate a typical candidate for an experiment-management based appro

performance study — the first version of the application was written in sequential For

then it was transformed into C, parallelized using MPI, and finally rewritten using PVM.

used two versions of the application, the MPI and PVM versions, and examined wha

could learn of the differences between the versions using our newly developed methods

We used our tool to compare the structure of two versions of the application, before

after a port from the PVM to the MPI message passing libraries. A scientist porting an a

cation wants directed feedback about the resulting changes in performance to the appli

and hopefully some idea of the cause of any performance degradation. They may or m

be the original authors of the code, and therefore they may have only minimal knowled

the application design and code structure.

In Figure 24, we show the EventMap that resulted from applying the Structural Differe

Operator to EventMaps representing a 4-node run of nspvm (PVM version) and a 4-nod

of nsmpif (MPI version), both on the IBM SP-2. This display provides a quick way to

what differed in both the code and the environment between the two runs. Figure 24 s

two different snapshots of the resulting EventMap. In this example, the PVM version has

assigned EID “1” and the MPI version has been assigned EID “2,” so resources comm

both are labeled with a “3.” The display on the left shows a portion of theCode hierarchy

expanded. In theCode hierarchy, three modules (dfft.c, ns3d.c, andp3d.c) appear in both runs.

At the leaf level, we can see four procedures (strip, andstrip1, strip2, strip3) appeared only in

execution 1. TheMessage hierarchy on the right shows the changes in message tags: tags0_1,

0_3, 0_5, and0_2 represent MPI message tags, and the rest represent the message tags

PVM version. By selecting a focus from the EventMap, we can display the performance

66

er-

erfor-

m, (2)

perfor-

anage-

ore)
the
 that
ear in
and 2.
p.]
In this section we have shown the utility of the EventMap interface for highlighting diff

ences in code versions necessitated by porting to a new communication library.

4.4 Summary

In this chapter we have presented examples of using our prototype to (1) examine p

mance data gathered before and after a scientific application was ported to a new platfor

compare implementations based on alternate communication libraries, and (3) evaluate

mance as a program evolves through versions. In each case, the use of an experiment m

Figure 24: Resource Hierarchies for EventMap: nspvm+ nsmpif. The EventMap Display allows the
developer to navigate resource hierarchies and quickly see what differed structurally between two (or m

program runs. The display is organized like the resource hierarchies from Figure 4 in Chapter 3, with
addition of an integer Event Identifier (EID). Each run is labeled with a value 1, 2, 4, 8, etc. Resources

appeared in only one run, are labeled with the EID of that run (1 or 2 in this example). Resources that app
more than one run are labeled with the sum of the EIDs; the resources labeled with 3 appeared both runs 1

[Note: in this early prototype version, the term “Program Event Group” was used to refer to the EventMa

67

rallel
ment system allowed tasks typically involved in performance tuning and developing pa

applications to be completed simply and quickly.

68

r more

mated

grams

par-

eeks

ating,

novel

tions to

etitive

ined

pro-
Chapter 5

Using Historical Data in Performance Diagnosis

5.1 Introduction

This chapter describes how historical performance data, i.e., data gathered in one o

previous executions of an application, can be used to increase the effectiveness of auto

performance diagnosis. Accurate performance diagnosis of parallel and distributed pro

is a difficult and time-consuming task. In a recent survey of scientists actively engaged in

allel performance tuning[33], 50% reported an average time per tuning task of several w

or longer. Recent research [28, 32, 70, 77] has examined possible approaches for autom

and thereby simplifying, the process of diagnosing a single program run. We present a

approach to automated diagnosis that uses application data gathered in previous execu

guide the search for performance bottlenecks. This method leverages off of the rep

nature of the performance tuning process — it is rare for a parallel application to be exam

with a performance tool only once. Adding historical knowledge about an application

vides a means for the tool to perform a more effective diagnosis.

69

erfor-

eneck

ance

lica-

ing an

-based

a wide

y using

of an

8],

se to

nline

dying

that

t, so it

cond

pos-

tural

and a

e Per-

cases
Our starting point was an existing diagnostic research tool, the Paradyn Parallel P

mance Tool [54]. Paradyn’s Performance Consultant performs online, automated bottl

detection in a single execution of a parallel or serial program. We modified the Perform

Consultant, incorporating several different types of historical knowledge about an app

tion’s performance into the tool’s search for performance problems.

We chose the Performance Consultant as our foundation for several reasons. First, us

online tool presents all of the same challenges as other types of tools, such as trace

post-morem analysis and application steering, so our approach might be generalized to

array of uses. Second, there are some challenges unique to an online approach, so b

one we assure that our work might be applied to other online tools. The development

API for dynamic instrumentation [29] and IBM’s Dynamic Probe Class Library (DPCL) [5

currently in beta release, that provides a set of library functions for tool developers to u

incorporate dynamic instrumentation into their tools, suggest that more tools using an o

approach will be available in the near future.

The general search strategy used in the Performance Consultant works well for stu

new and unfamiliar applications. It provides systematic investigation of an application

does not depend on any assumptions about the application or the runtime environmen

yields useful information for a wide range of programs. In practice, we noticed that the se

time we sat down with the same application, it would miss data for interesting events and

sibly stop before completion due to inherent instrumentation cost limits. There is a na

tension between a generally useful, single button approach to performance diagnosis

more application-specific, knowledge-dependent approach. Our goal is not to replace th

formance Consultant’s single button model, rather, to augment the search strategy in

70

ge to

r per-

y by

rical

total

e to

ch to

mea-

per-

well-

ation

urces

set of

rical

n, then

arch

n-
where prior knowledge of the program being studied is available. We use this knowled

incorporate several different types of historical performance data into the tool’s search fo

formance problems.

The goals for this set of studies were:

• Shorten the time required to identify important bottlenecks. We evaluate this strateg

measuring and comparing the total time to find bottlenecks with and without histo

information.

• Decrease the amount of unhelpful instrumentation. There is a practical limit to the

amount of instrumentation in place at one time, to minimize inaccuracy of results du

perturbation. Decreasing unhelpful instrumentation in some cases will allow the sear

continue where it might otherwise reach a limit and halt. We evaluate this strategy by

suring the total amount of instrumentation and the time to find bottlenecks.

• Determine the precise location of all significant bottlenecks. Results most useful for

formance tuning are obtained when testing identifies a reasonably small number of

defined potential problem areas. Practical limits on the total amount of instrument

can result in important bottlenecks not being fully explored because the limited reso

are being used to test less useful bottlenecks. We measure this by identifying a

important bottlenecks for a particular execution, then evaluating the effect of histo

information on finding the bottlenecks in that set.

We save performance and structural data from successive executions of an applicatio

extract knowledge useful for diagnosis from this collection of data, in the form of se

directives. There are three types of directives:pruning directivesthat tell the tool to ignore

some resources entirely;priorities that tell the tool which aspects of the application and ru

71

h

erfor-

testing

d to

ed it.

ol in

h dis-

small

ably)

f

int we

) [32]

gram

to col-

gram.

aradyn
time environment to look at first; andthresholdsthat tell the tool specific values against whic

to measure the application’s actual performance. We use the directives to guide online p

mance diagnosis with an enhanced version of Paradyn. We evaluated our technique by

an MPI application on the IBM SP/2, with reductions of 31% to 98% in the time neede

locate performance bottlenecks.

Next, we provide a brief description of the Performance Consultant and how we chang

We describe the three mechanisms for including historical data in a diagnostic to

Section 5.3. Then we present our experiments and results in Section 5.4. We finish wit

cussions and conclusions in Section 5.5.

5.2 Paradyn’s Performance Consultant

Paradyn is an application profiler that usesdynamic instrumentationto insert and delete

measurement instrumentation as a program runs. This approach results in a relatively

amount of data, in contrast to most tracing methods that may result in (possibly unus

large data files. In Paradyn, a program is represented byresource hierarchies, and specific

parts of a program are identified using afocus.This is a simpler, single execution version o

our representational scheme as described in Chapter 3; in fact, it was the starting po

used in developing our multi-execution model. Paradyn’s Performance Consultant (PC

capitalizes on dynamic instrumentation to automate bottleneck detection during a pro

execution. The PC starts searching for bottlenecks by issuing instrumentation requests

lect data for a set of pre-defined performance hypotheses for the root focus or whole pro

Each hypothesis is based on a continuously measured value computed by one or more P

72

where

, syn-

holds.
metrics, and a fixed threshold. The full collection of hypotheses is organized as a tree,

hypotheses lower in the tree identify more specific problems than those higher up.

For example, the PC starts its search by measuring total time spent doing computation

chronization, and I/O waiting, and compares these values to predefined (user set) thres

Figure 25: A Performance Consultant search in progress.The three items belowTopLevelHypothesis
have been added as a result of refining the hypothesis. NodesExcessiveSyncWaitingTime and

ExcessiveIOBlockingTime have tested false, as indicated by node color (pink), and nodeCPUbound (blue) has
tested true and has been expanded by refinement. The nodesbubba.c, channel.c, anneal.c, outchan.c, and

graph.c all tested false, whereas the nodesgoat and partition.c tested true and were refined.

73

fined as

ultant

es of

ed as

chies.

specific

the

pair

n as

le in

ber of

quests

iable

nually

when

itiated
Instances where the measured value for the hypothesis exceeds the threshold are de

bottlenecks.

Each node in a PC search represents instrumentation and data collection for a (hypothe-

sis:focus) pair. If a node tests true, meaning a bottleneck is found, the Performance Cons

tries to determine more specific information about the bottleneck. It considers two typ

expansion: a more specific hypothesis, and a more specific focus. A child focus is defin

any focus obtained by moving down along a single edge in one of the resource hierar

Determining the children of a focus by this method is referred to asrefinement. If a pair (h : f)

tests false, testing stops and the node is not refined. The PC refines all true nodes to as

a focus as possible.

Each (hypothesis : focus) pair is represented as a node of a directed acyclic graph called

Search History Graph (SHG). The root node of the SHG represents the

(TopLevelHypothesis : WholeProgram), and its child nodes represent the refinements chose

described above. Paradyn displays the SHG in list box form; we show an examp

Figure 25.

Depending on the number of resources needed to represent an application, the num

hypothesis/focus pairs to be explored might be quite large. To prevent the PC data re

from overwhelming the system capacity or perturbing the application to a point where rel

results cannot be determined, the cost of instrumentation enabled by the PC is conti

monitored. Search expansion, which generates new instrumentation requests, is halted

the cost reaches a critical threshold, and restarted once instrumentation deletion (in

when nodes test false) causes the cost to return to an acceptable level.

74

tool:

erfor-

y in

about

y the

prac-

clud-

Prunes

instru-

ning

nt. For

dence

prune

yed –

ossible

also

torical
5.3 Types of Search Directives

We have developed three mechanisms for including historical data in a diagnostic

pruning directivesthat tell the tool to ignore some resources entirely;priorities that tell the

tool which aspects of the application and runtime environment to look at first; andthresholds

that tell the tool specific values against which to measure the applications’s actual p

mance.

Pruning directivesinstruct the diagnostic tool to ignore a subtree of a resource hierarch

its evaluation of a specific hypothesis. They are a mechanism for conveying information

insignificant parts of an application. The total number of hypothesis/focus pairs tested b

Performance Consultant may become large if the total number of resources is large. In

tice, this is frequently true. The top-down approach taken by the PC has the effect of ex

ing part of the potentially huge search space, since false nodes are never refined.

further shrink the size of the search space. For example, we can avoid the overhead of

menting small, infrequently executed functions by pruning them from the search. Pru

directives can also be used to customize the search strategy for a particular environme

example, the static process model of MPI version 1 [24] leads to a one-to-one correspon

between process and machine node forn-process programs run onn machine nodes. It is not

necessary to investigate relative performance by both process and machine, so we can

out the machine hierarchy. Pruning does not dictate the overall search strategy emplo

what to examine first or next – rather it reduces the size of the total search space. One p

side effect of pruning is incorrectly eliminating something important. For this reason we

investigated other methods with better robustness. We investigated pruning based on his

75

chine

e also

This

first,

not

rtain

true

wise,

sting

lusion

t top

earch

n the

cus.

ser for

useful

to the

port-

ides
data, such as functions with short execution time and redundant hierarchies (e.g. ma

hierarchy if processes and machines map one-to-one) or sections of hierarchies. W

investigated pruning based on general rules, such as pruning the/SyncObject hierarchy from all

but synchronization-related hypotheses.

Priorities assign a relative level of importance to specified focus-hypothesis pairs.

allows resources more likely to be responsible for behaviors of interest to be studied

allowing data to be collected for a longer time interval. Unlike prunes, priorities do

exclude any foci from consideration; they instruct the diagnostic tool to consider ce

hypothesis-focus pairs first. Each hypothesis-focus pair is given priority: High if it tested

in at least one previous execution; Low if it tested false in all previous executions; other

Medium. High priority pairs are instrumented at search start and are persistent (i.e., te

continues throughout the entire program run, regardless of whether a true or false conc

is reached). Starting up high priority pairs immediately, rather than waiting for the defaul

down search order to refine down to them, results in more control over the overall s

order. By comparison, setting priority to medium or low only ensures an ordering betwee

node and its siblings.

Thresholdsare the values used to determine if a hypothesis is true or false for a given fo

In the standard version of Paradyn, there is a threshold value that can be set by the u

each hypothesis. The goal is to keep the number of bottlenecks reported in a practically

range. Reporting a large number of different bottlenecks yields inadequate guidance

tuning effort, i.e., what to look at first, and also drives up the cost of instrumentation. Re

ing only one or two bottlenecks, or failing to refine the bottlenecks to a detailed level, prov

76

esti-

efini-

nsult-

n data

nted

name

f the

red to

dic-

cur-

cus.

cified

h will
less information than might reasonably be obtained through simple visualization. We inv

gated automatically setting the thresholds based on historical data.

We added new functionality to the Performance Consultant that allows hypothesis d

tions to be custom defined, instead of built-in as they are in the standard Performance Co

ant. We also added infrastructure to input search directives, and to write Paradyn sessio

to files. Since Paradyn’s front end is implemented using Tcl/Tk commands, we impleme

these new features as Tcl commands, as detailed below.

• shg setPriority hypothesisName focus [high|medium|low]

Specifies a priority level (see Section 5.3) for the specified hypothesis-focus pair.

• whyAxis addHypo hypothesisName parent metric1 metric2 threshold compari-

sonOperator expandPolicy

Adds a new hypothesis with the specified name to Paradyn’s why axis. Parent is the

of the parent node on the whyAxis. The two metrics are used to calculate the value o

hypothesis using performance data for a specific focus. The resulting value is compa

a threshold via the comparison operator (>, < , or =). If specified, the expand policy

tates whether the search will continue by testing the same focus with the child of the

rent hypothesis, or the same hypothesis with the set of refinements to the current fo

• whyAxis addPrune resourceName hypothesisName

Specifies a part of the search space to ignore (see Section 5.3).

• save data [global|phase|all] directoryName

Writes out the contents of all Paradyn time histograms to files created in the spe

directory. The options shown dictate whether global data, phase-specific data, or bot

be written.

77

.

file in

o the

nd pri-

locate

d the

mea-

ber of

prior-

ion, to

enta-

that

n the

h his-

run to
• save resources all dirName

Writes the where axis contents, a list of resources, to a file in the specified directory

• save shg [global|phase] dirName

Writes the data contained in the Performance Consultant’s search history graph to a

the specified directory.

5.4 Experiments and Results

We performed a set of experiments to evaluate our introduction of prior knowledge int

Performance Consultant’s search. We investigated the effectiveness of adding pruning a

ority directives to the Performance Consultant, by measuring and comparing the time to

the application’s performance bottlenecks with the different methods. We also studie

advantages of using application-specific thresholds formulated using historical data, by

suring and comparing the number of bottlenecks successfully diagnosed and the num

locations instrumented to gather the needed data. Finally, we studied the use of pruning,

itization, and generated thresholds in diagnosing different versions of the same applicat

simulate the common practice of performance tuning successive versions of an implem

tion. We describe these experiments in more detail in the remainder of this chapter.

5.4.1 Using Pruning and Priority Directives

We ran our enhanced version of the Performance Consultant on an MPI application

solves the 2-D Poisson problem[24], running on four nodes of an IBM SP/2. First we ra

PC on the application with no modifications, and saved the resource hierarchies, searc

tory graph, and performance results. This run forms our base case and was allowed to

78

three

prior-

holds

ported

ta, and

start-

time

sion

unning

ime in

, from

ll the

to be

ation is

)

)

)

)

completion to identify the complete (100%) set of possible bottlenecks. Then we tested

variations of directed searching: first we generated only pruning directives, second only

ities, and third a combined version with both prunes and priorities. Identical search thres

were used in all runs. In each experiment, we recorded the time each bottleneck was re

by the tool. The times we recorded are the timestamps assigned by Paradyn to the da

reflect execution (elapsed) time. Since Paradyn performs dynamic instrumentation, the

ing timestamp is determined by the instant of the instrumentation request, plus the

required to actually insert the instrumentation into the application code. Each conclu

about a performance hypothesis is reached only after data has been collected from the r

application for a specified minimum time interval.

The results are reported in Table 1 and Figure 26. In Table 1, each row presents the t

seconds for the tool to locate the percentage of total bottlenecks specified in column 1

25% to 100% of the total. We were most interested in measuring the time to discover a

bottlenecks, since the more detailed level bottlenecks are particularly important and tend

found later in the search. Because Paradyn reports results to the tool user as the applic

%
B’necks
Found

No
Directives

Prunes Only Priorities Only
Priorities & All

Prunes

All General Historic

25% 115.2 80.0 (-30.6%) 102.4 108.8 80.0 (-30.6%) 51.2 (-55.6%

50% 182.4 83.2 (-54.4%) 121.6 204.8 124.8 (-31.6%) 57.6 (-68.4%

75% 1011.2 140.8 (-86.1%) 169.6 281.6 211.2 (-79.1%) 86.4 (-91.4%

100% 2611.2 169.4 (-93.5%) 236.8 470.4 560.0 (-78.6%) 147.2 (-94.4%

Table 1: Time (in seconds) to Find all True Bottlenecks with Search Directives

79

most

ithout

ur new

es of

age of

f four

direc-

e ran

Con-

,

running, we were also interested in seeing how quickly the tool would discover some or

of the bottlenecks. Column 2 of the table reports the time needed to find bottlenecks w

any prior knowledge, which serves as the base case against which we are measuring o

techniques. The remaining columns list results for experiments of adding different typ

search directives, as we describe in more detail below. In Figure 26 we graph percent

true bottlenecks found versus time in seconds, using the full set of data points for each o

cases: no directives, prunes only, priorities only, and prunes and priorities combined.

The first experiment investigated the performance advantages obtained using pruning

tives. We used data from previous runs to generate a list of pruning directives. Then w

Paradyn, providing the list of pruning directives as input to the modified Performance

Figure 26: Percentage of True Bottlenecks found over time using different types of search
directives.Each line shows the time to find some percentage of the complete set of true bottlenecks

from 0 to 100. Prunes included both general and historic prunes. Data from this study is also
summarized in Table 1.

80

oniza-

storic

ed on

ed the

umn

time

rove-

rmed

verall

sing

ve the

pecify

toric

236.8

s with

tives

“No

using

s out-

a, we

duce

tes are
sultant. General prunes, such as pruning the /SyncObject hierarchy from all but synchr

tion-related hypotheses, are not specific to a particular application or environment. Hi

prunes, such as pruning a specific function with low execution time, are formulated bas

data gathered in one or more previous executions of the same application. We evaluat

effects of each of the two types of pruning; the results are listed in the “Prunes Only” col

of Table 1. The use of general and historic pruning directives resulted in improvements in

to locate 100% of the bottlenecks of 91% and 82% respectively. We see a substantial imp

ment with either type of pruning, and note that in this case general prunes alone perfo

better than historic prunes alone. The ability to specify general prunes varies with the o

type of application. For example, since the application in this study was implemented u

MPI version 1, which has a static process model, we could add a general prune to remo

process hierarchy, and that yielded good results. However, we would not be able to s

this general prune for other types of applications. The combination of general and his

yields the best results: comparing the subcolumns of “Prunes Only,” we see that it took

seconds to find 100% of the bottlenecks with general prunes, compared to 169.4 second

both type of prunes, an improvement of 28%. Combining the two types of pruning direc

resulted in a reduction of 93.5% in time to locate all true bottlenecks compared to the

Directives” case.

In the second experiment, we studied the effects of ordering the search for bottlenecks

priorities. We used historical data to generate priorities for each hypothesis/focus pair a

lined in Section 5.3. We expected that, compared to using the PC with no historical dat

would reduce the time required to find the major (true) bottlenecks. Priorities do not re

the number of potential bottlenecks tested, they change the order in which the candida

81

te all

ained

lity of

direc-

as to

run-

levant

airs.

ever

se for

conds

es to

. Our

of an

me,

tion

-

tested. As shown in column 4 of Table 1, we obtained a reduction of 79% in time to loca

true bottlenecks. The improvement is more modest than the reduction of 93.5% we obt

using pruning directives. However, reordering the search does not introduce the possibi

missing bottlenecks, which is an important advantage to the method over using pruning

tives.

In the final experiment, we tested a combination of prunes and priorities. Our goal w

improve on the time reduction obtained using only priorities, yet avoid the possibility of p

ing important tests from the search. We included general pruning of redundant and irre

hierarchies, but did not include historic prunes for previously false hypothesis/focus p

This combined approach may result in some retesting of false nodes, however, it will n

miss new behaviors due to pruning. We obtained a reduction of 94.4% from the base ca

finding 100% of the true bottlenecks, which is a reduction of 22 seconds from the 169 se

it took using pruning without priorities.

5.4.2 Using Thresholds Determined from Historical Data

We studied the behavior of the Performance Consultant while varying threshold valu

determine the potential benefit of automatically setting thresholds based on historic data

application was the 2-D decomposition code from the previous section run on four nodes

IBM SP/2. This sample application is strongly dominated by synchronization waiting ti

which accounts for approximately 75% of the total execution time. 45% of the total execu

time for all four processors is spent waiting in functionexchng2, and 20% in functionmain. This

waiting time is split between three message tags,3/0, 3/1, and3/-1 (27%, 19%, and 20% respec

82

fi-

areas

ing

re not

set of

necks

se the

notice-

iency

esis/

g the

esult.

sing

ld at

ncy

26 for

d for

ance
tively). Individual processes3 and4 are dominated by wait time (81% and 86%) and signi

cant waiting also occurred in processes 1 and 2 (46% and 47%).

We investigated the quality of the PC’s diagnosis by checking for the number of these

reported as bottlenecks, either individually (e.g., functionmain) or in combination (e.g., mes-

sage tag3/0 for function main). Full results are shown in Table 2. When a threshold sett

greater than 10% was used, bottlenecks we previously determined to be significant we

reported by the PC. When the threshold was set to 12% the tool reported close to the full

bottlenecks; the default Paradyn setting of 20%, in contrast, resulted in 7 of the 26 bottle

being missed. The third column shows how much instrumentation was used to diagno

program run. Setting the threshold to 12% (shaded) yields good results and also uses

ably less instrumentation than a setting of 10% or 5%. The final column shows an effic

metric determined by dividing the number of bottlenecks found by the number of hypoth

pairs tested. Efficiency decreases with thresholds below 12%, an indication that lowerin

threshold below 12% increases the amount of instrumentation but does not improve the r

In earlier studies, we found similar results for an ocean circulation modeling code u

PVM, running on SUN SPARCstations. We found an optimal synchronization thresho

20%, from a starting point of 30% (which yielded an incomplete diagnosis). Efficie

decreased below 20%, for example the number of metric-focus pairs instrumented was 3

20% and jumped to 373 for 10%. The useful threshold in this case differs from that foun

the MPI application, showing the advantage of application-specific historical perform

data.

83

n has

cle of

nt ver-

sson

pre-

the

appli-

ators;

onal

ers run

r than

tained

t for
s.
5.4.3 Using Historical Data with Different Code Versions

We studied the use of historical performance data in the situation where the applicatio

been revised over time. While tuning an application, a developer repeats through a cy

profile-analyze-change. We performed a series of performance diagnoses using differe

sions of an MPI application on the IBM SP/2. The application implements an iterative Poi

function decomposition. We used several of the different versions of the implementation

sented by Groppet al[6]. In each step of the study, we used results from previous runs of

Performance Consultant to direct subsequent PC runs. There were four versions of the

cation: Version A is a 1-dimensional version that uses blocking send and receive oper

Version B is a non-blocking 1-dimensional version; Version C performs a 2-dimensi

decomposition; and Version D runs the same code as Version C across 8 nodes (all oth

on 4 nodes). We changed all versions to compute a fixed number of iterations, rathe

stopping as soon as a solution is reached. The complete set of results for the study is con

in Table 3, and the results are presented graphically in Figure 27.

Synchronization
Bottleneck Threshold

Setting (% of total
execution time)

Number of Bottlenecks
Reported by the

Performance
Consultant

Total Number of
Hypothesis/Focus Pairs

Tested

Efficiency
(Bottlenecks Found Per

Pair Tested)

30% 9 30 0.3

20% 19 66 0.29

14% 22 76 0.29

12% 25 85 0.29

10% 26 107 0.24

5% 26 105 0.25

Table 2: Bottlenecks Found with Varying Threshold Values.Number of bottlenecks reported are
rounded, averaged values calculated from three repeated tests. Row 4 (shaded) is a crossover poin

efficiency: increasing the number of pairs tested beyond 85 does not yield any significant gain in result

84

tives,

ext,

irec-

is

A,

ed no

ultant

e

We started by running the Performance Consultant on Version A without search direc

which we denoteAnone, resulting in a time to locate true bottlenecks of 2272 seconds. N

we repeated the diagnosis of version A, this time including general prune and priority d

tives generated from the previous execution. This run,AA, showed a decrease in the diagnos

time by approximately 92%.

Next we examinedBA, Version B using search directives extracted from runs of Version

and found a 98% improvement in diagnosis time over the original base case that us

directives. We continued for Versions C and D, each time running the Performance Cons

with search directives extracted from each individual prior run.

Figure 27: Time to complete diagnosis using search directives from different application versions.
Each group of bars represents the program version being diagnosed: A, B, C, or D. The colors of th

bars indicate the source of the search directives used. See also Table 3.

85

h and

nt runs.

these

d dis-

ives of

r

ctives,

pplied

ad it

so that

chine

een the

rsions.

to
n
nt.

.

After each run of the Performance Consultant, we use the resulting search history grap

the program’s resource hierarchies to generate search directives to be used in subseque

We added new functionality to the Performance Consultant to map focus names found in

directives onto names valid in the current environment (see Section for a more detaile

cussion of this mapping). For these tests mapping was implemented as a set of direct

the form “mapresourceName1 resourceName2” specified by the user in an input file. Afte

starting Paradyn, we applied the specified mappings to the list of extracted search dire

then read the directives into the Performance Consultant. For increased efficiency, we a

specified pruning directives, if any, to the resulting list of search directives before we re

into the Performance Consultant.

For the tests described in this section, we mapped each pair of machine resources

search directives generated in one run could be meaningfully used to refer to ma

resources discovered in a subsequent run. We also mapped functions and modules betw

different code versions, since the names had been changed for the different code ve

Source of Search Directives

None A B C D

A
pp

lic
at

io
n

Ve
rs

io
n

A 2272 183 (-92%)

B 4454 96 (-98%) 135 (-97%)

C 1021 186 (-82%) 173 (-83%) 256 (-75%)

D 3411 554 (-84%) 810 (-76%) 438 (-87%) 429 (-87%)

Table 3: Time (in seconds) to complete diagnosis with search directives from different application
versions.Some times reported are median values for several runs. Standard Deviations ranged from 3
17 seconds. Each row contains the data for a particular application version, A through D. Each colum
contains the data for a particular source of the search directives used with the Performance Consulta
For example, the cell found at row “C” and column “B” contains the time to diagnose C using directives
from a previous run of B. Time relative to the base version (column “None”) is shown in parentheses

86

tor for

ution

ely.

le con-

e

d

this

cur-

ames

e total

ed

o
ed
Figure 28 shows resource hierarchies combined using the Structural Difference Opera

two versions of the application, Versions A and B. Each resource is tagged with exec

identifier 1, 2, or 3 if the resource is found in Version A, Version B, or both, respectiv

Resources unique to one execution are candidates for mapping. For example, the modu

taining function main is named “oned.f” in Version A, and “onednb.f” in Version B. W

mapped these two resources,/Code/oned.f andCode/onednb.f, so that search directives extracte

from runs of A could be used in diagnosing runs of B. The full set of mappings we used in

example is shown to the right of the resource hierarchies. Our mapping functionality is

rently restricted to one-to-one mappings, so for example when we mapped machine n

between the 4 and 8 node runs, the result was a set of search directives including 4 of th

Mappings Used

map /Code/exchng1.f /Code/nbexchng.f
map /Code/exchng1.f/exchng1 /Code/nbexchng.f/nbexchng1
map /Code/oned.f /Code/onednb.f
map /Code/sweep.f /Code/nbsweep.f
map /Code/sweep.f/sweep1d /Code/nbsweep.f/nbsweep

Figure 28: Mappings for Versions A and B.On the left we show the execution map for Versions A and
B of the Poisson decomposition application, with the Code hierarchy expanded. Each resource is tagg
with an execution identifier: resources unique to version A are labeled with “1,” those unique to version B
are labeled with “2,” and those common to both are labeled with “3.” We map unique nodes which refer t
code that was modified between versions, including a change of name. The mapping directives we us
are shown on the right.

87

ed to

e.

reatly

uced

osed.

d. The

equent

urces.

for

deter-

cts of

to

n

of 8 machine nodes. This is seen in the bottom row of Table 3 as longer times requir

reach a diagnosis due to a less complete set of search directives for the 8 node machin

In every case we tested, adding historical knowledge to the Performance Consultant g

improved its ability to quickly diagnose performance bottlenecks: diagnosis time was red

a minimum of 75% in all executions using historical knowledge.

In Table 3, each row represents the version of the application currently being diagn

Each column represents the source from which we extracted the search directives use

first column contains the time to reach a diagnosis using no search directives, and subs

columns contain the time to reach a diagnosis using search directives from different so

We used dedicated machine time and therefore saw relatively low variability in run time

repeated executions of the same version.

After completing the test runs, we analyzed the Performance Consultant behavior to

mine how it was affected by the search directives we added. First we examined the effe

using search directives from the base run of A,Anone, to diagnose a second run of A,AA. 81

hypothesis/focus pairs tested true inAA, resulting in 81 search directives that set priority

Priority
Setting

A only B only C only A, B only A, C only B, C only A, B, C TOTAL

High 16 13 3 10 10 9 46 107

Low 32 72 24 28 20 13 92 281

Total 48 85 27 38 30 22 138 388

Table 4: Similarity of Extracted Priorities Across Code Versions.We show here the number of priority
directives extracted from the base runsAnone, Bnone, andCnone. The first row includes only directives that

assign a high priority, the second includes only directives that assign a low priority, and the bottom colum
shows the combined total. Each column represents the source(s) of the priority directives:Anone, Bnone,

Cnone, or some combination of these. For example, of the total 107 different high priority directives, 16

were unique to version A and 46 were common to versions A, B, and C.

88

ue in

to low

es

ffec-

cases.

search

ts of

n two

ree,

ticed

t

y the

nd the
high. In AB, a total of 103 hypothesis/focus pairs tested true. 78 were pairs that tested tr

AA (and were included in the 81 search directives); of the remaining 25, 3 had been set

priority, 6 were intermediate level nodes not tested inAA, and the remaining 16 were more

detailed/refined answers not tested inAA due to cost limits. In this case, using search directiv

resulted in a more detailed diagnosis than could be performed without the directives.

Although we had anticipated search directives from different versions would not be as e

tive as search directives from the same version, we saw only small differences in most

In fact, we were surprised to see that runCC performed more poorly than eitherCA or CB. We

analyzed some of the data more closely to account for this. We examined the sets of

directives extracted from runsAnone, Bnone, andCnoneto see how they differed. As shown in

Table 4, of the 388 total priority directives, 138 (36%) were common across all three se

directives, 160 (41%) were unique to a single set, and the remaining 90 (23%) occurred i

out of three sets. Of the 107 total high priority directives, 46 (43%) were common to all th

32 (30%) were unique to one, and the remaining 29 (27%) were common to two. We no

that most of the differences involved more detailed focuses, for example, in runCnonethe Per-

formance Consultant found the bottleneck for functionexchng across all nodes, however i

failed to refine this to a particular message tag, as it did in runAnone, and found only half as

many particular node/message tag combinations as it did in runAnone. The tool also found

fewer true bottlenecks in runCnone: 67 as compared to 81 found in runAnoneand 68 found in

runBnone.

We also examined the diagnoses obtained in runsCA, CB, andCC. The bottlenecks found did

not vary significantly between these runs. Of 115 total bottlenecks diagnosed as true b

Performance Consultant in any of these runs, 113 were common across all three, a

89

ok to

ses.

non-

osi-

and

e was

. We

ions:

ue in

ither

Ver-

s of

The

iffer-

other.

data

orates

l that
remaining 3 were common to two of the three. So despite the differences in the time it to

reach the diagnosis, the Performance Consultant yielded similar answers in all three ca

For this example, despite modifications to the communications primitives (blocking or

blocking), and modifications to the algorithm (1-dimensional or 2-dimensional decomp

tion), the bottleneck locations remained the same. Although total synchronization time

total execution time varied between versions, the set of resources responsible for the tim

similar.

We also investigated using results from multiple previous runs to guide the current run

looked at two different approaches to combining search directives from different vers

sets to a high/low priority only those hypothesis/focus pairs that tested true/false inboth

Versions A and B. sets to a high priority those hypothesis/focus pairs that tested tr

either A or B, and sets to low priority those hypothesis/focus pairs which tested false in e

version and did not test true in A or B. We used the resulting set of directives to diagnose

sion C. In this particular example, the lists of priorities that result from the two method

combination have 59 common directives, with 38 additional directives unique to .

resulting diagnosis times were 176 seconds for and 179 seconds for . This d

ence is too small for us to conclude the superiority of one combination method over the

Which performs better is related to the similarity of the sets of directives generated using

from runs A and B, not the similarity in code or platform of the versions.

5.5 Discussion and Conclusions

We have described a new approach to automated performance diagnosis that incorp

knowledge from previous runs of the same application. The result is a performance too

A B∩

A B∪

A B∪

A B∪ A B∩

90

useful

rating

sented

gram

show

ssfully
learns from each diagnostic program run, adapting its search strategy to obtain more

diagnoses more quickly. We show performance gains of up to 98% obtained by incorpo

historical knowledge into the Performance Consultant’s search strategy. The results pre

demonstrate the utility of our approach for repeated performance diagnosis of similar pro

runs, a common scenario when tuning parallel applications. The improvements achieved

that our new approach to gathering and storing historical application data can be succe

applied to the problem of automating performance diagnosis.

91

spite

for a

ore,

in the

ol that

ions.

ram-

chine

a new

at the

ution.

or par-

with
Chapter 6

Summary and Directions for Future Research

6.1 Dissertation Summary

Developing efficient parallel programs is a challenging and time consuming task. De

advances over the past decade in compiler and tool technology, tuning a parallel code

particular platform generally takes weeks or months of the time of specialists. Furtherm

most major laboratories aggressively replace their machines with newer models to ga

advantage of processor speed increases. This situation creates an opportunity for a to

would simplify the process of parallel performance tuning large-scale scientific applicat

Improvements in the ability of a tool to provide meaningful, focused feedback to a prog

mer tuning a code may result in a better implementation, and that leads to savings in ma

time, more detailed simulation results, or both. In this dissertation, we have presented

approach for parallel performance tools that directly addresses the key observations th

tuning process itself is inherently repetitive, and involves more than one program exec

Our thesis is that the scientific experiment management paradigm is a useful approach f

allel performance tools. Incorporation of data from multiple program executions together

92

mon

orm,

.

imen-

ram

ethods

pace

rove-

ppli-

is dis-

me of

this

s the

at-
the ability to meaningfully and practically navigate the data is a useful approach in com

tasks related to parallel performance: porting applications, tuning for a particular platf

comparing versions of a code under development, and investigating scalability behavior

The major contributions of this thesis are:

• the Program Space, a flexible and extensible representation for a complete multi-d

sional space of program runs;

• a set of mechanisms for quantitatively and automatically comparing two or more prog

runs, in terms of both structure and performance;

• a demonstration of the use of the Program Space and our program comparison m

with large scale parallel applications under development and in use; and

• results of a study of the incorporation of historical data contained in the Program S

into automated performance diagnosis, in which we demonstrated performance imp

ments of up to 98% in the time needed for the tool to completely diagnose a parallel a

cation.

6.2 Directions for Future Research

Many interesting research ideas emerged during the course of the work described in th

sertation. Here we discuss interesting potential avenues of exploration and describe so

our ongoing work.

Work outside of the scope of this dissertation and already in progress is extending

research in several directions. A prototype currently under development incorporate

DEVise visualization tool [48] to allow a rich variety of visualizations to be used for navig

93

es for

l is to

cified

execu-

new

richer

rmed

gath-

d can

ure for

odels

ude

ation

ance

. The

inter-

t and

tional

esses

ibuted
ing performance data, and includes the results of user interface research into techniqu

displaying the contents of the Program Space.

We are continuing to research additional approaches to resource mapping. The goa

automate the mapping to the furthest extent possible, while continuing to allow user-spe

mappings. We have demonstrated resource mapping performed at the start of each new

tion, and further study is warranted to extend this approach to cover cases in which

resources are discovered later in an application run. Future work might explore using

resource descriptions to enable more semantically meaningful mappings to be perfo

automatically.

The prototype implementation can be usefully extended to include performance data

ered with a variety of monitoring and predictive tools. The techniques we have develope

be used to compare an actual execution with a predicted or desired performance meas

the application. Incorporation of data from performance predictions or performance m

into the Program Space would add significantly to the utility of our tool. Uses for this incl

performance tuning efforts, automated scalability studies, and performance model valid

studies.

In addition to its application to cross-execution studies, comparison-based perform

analysis can be used to compare distinct time intervals of a single program execution

ability to name, lookup, examine, and compare performance results from different time

vals within one program execution has many direct applications. Both the environmen

the code may vary during the course of a single program run. In the range of computa

models now available, especially the more dynamic environments of the near future, proc

may be created, destroyed, migrated [11]; communication patterns and use of distr

94

eering

r the

pro-

may

e sci-

nique

g us

alues.

more

More

rried
shared memory may be optimized [62]; data values or code may be changed by a st

adjustment [25,46]; or loop behavior may change as matrix distribution changes ove

course of the computation [14].

We plan to investigate the incorporation of an experiment launching mechanism into a

totype implementation, to allow completely automated performance diagnosis that

involve more than one program execution. Experiment launching is a feature found in th

entific experiment management systems that we examined; we believe that this tech

could be usefully incorporated into the parallel performance tuning environment, allowin

to incorporate approaches such as design of experiments into our tool.

One of the goals of our approach is comparison, and a metric that describeshow muchper-

formance has changed would be useful. We briefly examined approaches to aperformance

distancemetric: a Euclidean distance, and a weighted average of performance result v

The goal is a quantitative measure of how much performance differs between two or

executions as a whole, that can be used to weigh or rank performance bottlenecks.

detailed study with actual examples of different types of parallel applications must be ca

out to determine which approaches will be useful here.

95

lly
hnical
State

sage-
,

ing

crip-

Sys-
lu-

9.

he

for

to-
n

References

[1] S. Abiteboul. Querying semi-structured data. In F. Afrati and P. Kolaitis, editors,Proceed-
ings of The International Conference on Database Theory, Delphi, Greece, 1997.

[2] M. Abrams, A. Batongbacal, R. Ribler, and D. Vazirani. Chitra94: A tool to dynamica
characterize ensembles of traces for input data modeling and output analysis. Tec
Report Computer Science Department TR 94-21, Virginia Polytechnic Institute and
University, June 1994.

[3] R. J. Block, S. Sarukkai, and P. Mehra. Automated performance prediction of mes
passing programs.Proceedings of Supercomputing ’95. IEEE Computer Society Press
1995.

[4] G.E.P. Box, W.G. Hunter, and J.S. Hunter.Statistics for Experimenters. John Wiley and
Sons, New York, 1978.

[5] M. Brune, J. Gehring, A. Keller, B. Monien, F. Ramme, and A. Reinefeld. Specify
resources and services in metacomputing environments.Parallel Computing, 24:1751–
1776, 1998.

[6] M. Brune, J. Gehring, A. Keller, and A. Reinefeld. RSD – Resource and Service Des
tion. J. Schaeffer, editor,High Performance Computing Systems and Applications, HPCS
’98: The 12th Annual International Symposium on High Performance Computing
tems and Applications, pages 193–206. Paderborn Center for Parallel Computing, K
wer Academic Publishers, 1998.

[7] CENSA. The definition of an electronic notebook system. http://www.censa.org, 199

[8] I.A. Chen and V.M. Markowitz. An overview of the Object Protocol Model (OPM) and t
OPM Data Management Tools.Information Systems, 20(5):393–418, 1995.

[9] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language
XML. Technical report, AT&T Labs, 1998.

[10] H.G. Dietz, W.E. Cohen, and B.K. Grant. Would you run it here... or there? (AHS: Au
matic heterogeneous supercomputing).Proceedings of the International Conference o
Parallel Processing, pages 217–221, 1993.

96

work

atic
er-

art,

amic
t

ng.
ttp://

nical
, May

ote-
html,

n in
p
on-

sing

roces-

ation
R-95-
[11] J. Dongarra, G.A. Geist, R. Manchek, and V.S. Sunderam. Integrated PVM frame
supports heterogeneous network computing.Computers in Physics, 7:166–74, 1993.

[12] G. Howlett, The BLT Toolkit. In M. Harrison et al.,Tcl/Tk Tools. O’Reilly, 1997.

[13] T. Fahringer, M. Gerndt, G. Riley, and J.L. Traff. Knowledge specification for autom
performance analysis. Technical report, ESPRIT IV Working Group on Automatic P
formance Analysis: Resources and Tools (APART), http://www.fz-juelich.de/ap
November 1999.

[14] S.J. Fink, S.R. Kohn, and S.B. Baden. Flexible communication mechanisms for dyn
structured applications.Proceedings of IRREGULAR ’96, Santa Barbara, CA, Augus
1996.

[15] Lawrence Livermore National Laboratory Center for Applied Scientific Computi
Datafoundry: Data warehousing and integration for scientific data management. h
www.llnl.gov/CASC/datafoundry/, 1999.

[16] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.Interna-
tional Journal of Supercomputer Applications, 11(2):115-128, 1997.

[17] J. Gehring. Dynamic program description as a basis for runtime optimization. Tech
Report TR-002-97, Paderborn Center for Parallel Computing, Paderborn, Germany
1995.

[18] A. Geist, E. Mendoza, J. Myers, N. Nachtigal, and S. Sachs. DOE 2000 Electronic N
book Project March 1999 Status Report. http://www.epm.ornl.gov/enote/status.
August 1999.

[19] M. Gerndt and A. Krumme. A rule-based approach for automatic bottleneck detectio
programs on shared virtual memory systems.Proceedings of the International Worksho
on High-Level Programming Models and Supportive Environments (HIPS ’96) in c
junction with IPPS ’96, pages 10–16, Hawaii, 1996. IEEE Computer Society Press.

[20] M. Gerndt, B. Mohr, F. Wolf, and M. Pantano. Performance analysis on Cray T3E.Pro-
ceedings of the Seventh Euromicro Workshop on Parallel and Distributed Proces.
IEEE, 1988.

[21] A.J. Goldberg and J.L. Hennessy. Performance debugging shared memory multip
sor programs with MTOOL.Proceedings of Supercomputing ’91, pages 481–490, Albu-
querque, NM, November 1991.

[22] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggreg
operator generalizing group-by, cross-tab, and sub-totals. Technical Report MSR-T
22, Microsoft Research, November 1995.

97

de

n-line

iag-
g

ub-

97.

put-

ge
ing

the
m-

ral-
m

[23] A. S. Grimshaw, W.A. Wulf, and the Legion Team. The Legion vision of a worldwi
virtual computer.Communications of the ACM, 40(1):39–45, January 1997.

[24] W. Gropp, E. Lusk, and A. Skjellum.Using MPI: Portable Parallel Programming with
the Message-Passing Interface, chapter 4. The MIT Press, 1994.

[25] W. Gu, G. Eisenhauer, E. Kraemer, J. Stasko, J. Vetter, and K. Schwan. Falcon: O
monitoring and steering of large-scale parallel programs.Proceedings of the Symposium
on the Frontiers of Massively Parallel Computation, McLean, Virginia, February 1995.

[26] D. Hay. XML: What is it, anyway?Intelligent Enterprise, 2(11), August 1999. http://
www.iemagazine.com/990308/online1.shtml.

[27] M.T. Heath and J.A. Etheridge. Visualizing the performance of parallel programs.IEEE
Software, 8(5):29–39, September 1991.

[28] B. R. Helm, A.D. Malony, and S.F. Fickas. Capturing and automating performance d
nosis: the Poirot approach.Proceedings of the 1995 International Parallel Processin
Symposium, pages 606–613, April 1995.

[29] J.K. Hollingsworth. An application program interface for runtime code patching. Unp
lished technical report, 1998.

[30] J.K. Hollingsworth and B. Buck.DyninstAPI Programmer’s Guide. Computer Science
Department, University of Maryland, College Park, MD, release 1.0 edition, July 19

[31] J.K. Hollingsworth and P.J. Keleher. Prediction and adaptation in Active Harmony.Pro-
ceedings of the 7th International Symposium on High Performance Distributed Com
ing, pages 180–188, Chicago, IL, 1998.

[32] J.K. Hollingsworth and B.P. Miller. Dynamic control of performance monitoring on lar
scale parallel systems.Proceedings of the International Conference on Supercomput,
Tokyo, July 1993.

[33] A. Hondroudakis and R. Procter. The tuner’s workbench: A tool to support tuning in
large. P. Fritzson, editor,Proceedings of the ZEUS-95 Workshop on Parallel Progra
ming and Computation, pages 212–221, Linkoping, May 1995. IOS Press.

[34] A. Hondroudakis and R. Procter. An empirically derived framework for classifying pa
lel program performance tuning problems.Proceedings of the SIGMETRICS Symposiu
on Parallel and Distributed Tools, pages 112–121. ACM Press, August 1998.

[35] S. Horwitz and T. Reps. Efficient comparison of program slices.Acta Informatica,
28:713–732, 1991.

98

of a
’90

ien-

an-

eri-

er-
, Uni-

nce
eed,

el

ent.
est

using
tors,

8–

l for
[36] S. Horwitz. Identifying the semantic and textual differences between two versions
program. ACM SIGPLAN Notices volume 25: Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 234–245,
White Plains, New York, 1990.

[37] Y. Ioannidis and M. Livny. Conceptual schemas: Multi-faceted tools for desktop sc
tific experiment management.International Journal of Intelligent and Cooperative
Information Systems, 1(3):451–474, December 1992.

[38] Y. Ioannidis, M. Livny, S. Gupta, and N. Ponnekanti. ZOO: A desktop experiment m
agement environment.Proceedings of the 22nd International VLDB Conference, pages
274–285, Bombay, India, September 1996.

[39] Y. Ioannidis, M. Livny, E. Haber, R. Miller, O. Tsatalos, and J. Wiener. Desktop exp
ment management.IEEE Data Engineering Bulletin, 16(1):19–23, March 1993.

[40] R. Bruce Irvin and Barton P. Miller. Multi-application support in a parallel program p
formance tool. Technical Report CS-TR-93-1135, Computer Sciences Department
versity of Wisconsin - Madison, February 1993.

[41] M. Itzkowitz, J. Yu, A. McNaughton, P. Orelup, and C. Hanna. Visualizing performa
on parallel supercomputers. In M.L. Simmons, A.H. Hayes, J.S. Brown, and D.A. R
editors,Debugging and Performance Tuning for Parallel Computing Systems, pages
181–197. IEEE Computer Society Press, 1996.

[42] K. Karavanic, J. Myllymaki, M. Livny, and B. Miller. Integrated visualization of parall
program performance data.Parallel Computing, 23:181–198, 1997.

[43] T. Keller and D. Jones. Metadata: The foundation of effective experiment managem
Technical report, Environmental Molecular Sciences Laboratory, Pacific Northw
National Laboratory, 1996.

[44] D.J. Kerbyson, E. Papaefstathiou, and G.R. Nudd. Application execution steering
on-the-fly performance prediction. In P. Sloot, M. Bubak, and B. Hertzberger, edi
Proceedings of the High Performance Computing and Networking International
Conference and Exhibition, Lecture Notes in Computer Science #1401, pages 71
727. Springer-Verlag, 1998.

[45] J. Kohn and W. Williams. ATExpert.Journal of Parallel and Distributed Computing,
18:205–222, 1993.

[46] K. Kunchithapadam and B.P. Miller. Integrating a Debugger and a Performance Too
Steering. In M.L Simmons, A.H. Hayes, J.S. Brown, and D.A. Reed, editors,Debug-
ging and Performance Tools for Parallel Computing Systems, pages 53–64. IEEE
Computer Society Press, 1996.

99

lly-
rge

er-
sche

s.

tion

nosis
ni-

-
tool.

ion

88-

devel-
er-

June
[47] L. Lamport. Time, clocks and the ordering of events in a distributed system.Communica-
tions of the ACM, 21(7), July 1978.

[48] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic, S. Lawande, J. My
maki, and K. Wenger. Devise: Integrated querying and visual exploration of la
datasets.Proceedings of ACM SIGMOD, May 1997.

[49] T. Ludwig, R. Wismuller, V. Sunderam, and A. Bode. OMIS – on-line monitoring int
face specification (version 1.0). Technical report, Institute Fur Informatik der Techni
Universitat Munchen, February 1996.

[50] G. Lyon, R. Snelick, and R. Kacker. Synthetic-perturbation tuning of MIMD program
The Journal of Supercomputing, 8:5–28, 1994.

[51] A.D. Malony, D.H. Hammerslag, and D.J. Jablonowski. Traceview: A trace visualiza
tool. IEEE Software, 8(5):19–28, September 1991.

[52] A. Mathur and M. Abrams. Toward a machine assisted software performance diag
methodology. Technical Report TR 93-12, Virginia Polytechnic Institute and State U
versity Department of Computer Science, 1993.

[53] C. L. Mendes. Performance prediction by trace transformation.Proceedings of the Fifth
Brazilian Symposium on Computer Architecture, Florianopolis, September 1993.

[54] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic, K.Kun
chithapadam, and T. Newhall. The Paradyn parallel performance measurement
IEEE Computer, 28(11):37–46, November 1995.

[55] W. Nagel, A. Arnold, M. Weber, H. Hoppe, and K. Solchenbach. Vampir: Visualizat
and analysis of MPI resources.Supercomputer 63, 12(1):69–80, 1996.

[56] D. Nelson. The laboratory notebook technical manual. Technical Report LA-UR
1256, Los Alamos National Laboratory, Los Alamos, NM, 1990.

[57] K.J. Ottenstein and L.M. Ottenstein. The program dependence graph in a software
opment environment.Proceedings of the ACM SIGSOFT/SIGPLAN Software Engine
ing Symposium on Practical Software Development Environments, volume 19 ofACM
SIGPLAN Notices, pages 177–184, Pittsburgh, PA, May 1984.

[58] D.M. Pase.Dynamic Probe Class Library (DPCL): Tutorial and Reference Guide. IBM
Corporation, RS/6000 Development, Poughkeepsie, New York, version 0.1 edition,
1998.

[59] R.Ramakrishnan.Database Management Systems. WCB/McGraw-Hill, 1998.

100

ent
o-
,

av-
ment.

ared
uter

ms-

-

ries
itute

ib-
er-

nical
and

mark
-CS-

par-
[60] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource managem
for high throughput computing.Proceedings of the Seventh IEEE International Symp
sium on High Performance Distributed Computing (HPDC), pages 140–146, Chicago
IL, July 1998.

[61] D.A. Reed, R.A. Aydt, R.J. Noe, P.C. Roth, K.A. Shields, B.W. Schwartz, and L.F. T
era. Scalable performance analysis: The Pablo performance analysis environ
IEEE CS Press, editor,Proceedings of the Scalable Parallel Libraries Conference,
pages 135–142, Los Alamitos CA, 1993.

[62] S.K. Reinhardt, J.R. Larus, and D.A. Wood. Tempest and Typhoon: User-level sh
memory. In Proceedings of the 21st Annual International Symposium on Comp
Architecture, April 1994.

[63] M. Rennhackkamp. Extending relational DBMSs. DBMS Magazine, http://www.db
mag.com, October 1997.

[64] T. Reps. Algebraic properties of program integration.Science of Computer Program
ming, 17:139–215, 1991.

[65] R. Ribler, A. Mathur, and M. Abrams. Visualizing and modeling categorical time se
data. Technical report, Department of Computer Science, Virginia Polytechnic Inst
and State University, August 1995.

[66] R.L. Ribler, J.S. Vetter, H. Simitci, and D.A. Reed. Autopilot: Adaptive control of distr
uted applications.Proceedings of the High-Performance Distributed Computing Conf
ence, July 1998.

[67] G.D. Riley and J.R. Gurd. Requirements for automatic perfomrance analysis. Tech
report, ESPRIT IV Working Group on Automatic Performance Analysis: Resources
Tools (APART), http://www.fz-juelich.de/apart, November 1999.

[68] R. H. Saavedra and A.J. Smith. Analysis of benchmark characteristics and bench
performance prediction. Technical Report Computer Science Technical Report USC
92-524, University of Southern California, 1992.

[69] S. Shende, A.D. Malony, J. Cuny, and K. Lindlan. Portable profiling and tracing for
allel, scientific applications using C++.Proceedings of SPDT98, pages 134–145,
Welches, OR, 1998.

[70] A.B. Sinha and L.V. Kale. Towards automatic performance analysis.Proceedings of the
1996 International Conference on Parallel Processing, pages III–53–60, 1996.

101

reen-

ment
ing

ring

ent
hung-

ing

deling
[71] R. Snelick, J. Jaja, R. Kacker, and G. Lyon. Synthetic-perturbation techniques for sc
ing shared memory programs.Software - Practice and Experience, 24(8):679–701,
August 1994.

[72] R. Sosic and D. Abramson. Guard: A relative debugger.Software Practice and Experi-
ence, 27(2):185-206, February 1997.

[73] A. Waheed and D.T. Rover. Performance visualization of parallel programs.Visualiza-
tion ’93, San Jose, CA, October 1993.

[74] M. Weiser. Program slicing.IEEE Transactions on Software Engineering, SE-10(4):352–
357, July 1984.

[75] R.C. Whaley and J. Dongarra. Automatically tuned linear algebra software.Proceedings
of SC98, Orlando FL, Nov. 1998. ACM/IEEE.

[76] J. Wiener and Y. Ioannidis. A moose and a fox can aid scientists with data manage
problems. Proceedings of the 4th International Workshop on Database Programm
Languages, pages 376–398, New York, NY, August 1993.

[77] W. Williams, T. Hoel, and D. Pase. The MPP Apprentice performance tool: Delive
the performance of the Cray T3D. In K.M. Decker and R.M. Rehmann, editors,Pro-
gramming Environments for Massively Parallel Distributed Systems. Birkhauser,
1994.

[78] F. Wolf and B. Mohr. Earl: A programmable and extensible toolkit for analyzing ev
traces of message passing programs. Technical Report FZJ-ZAM-IB-9803, Forsc
szentrum Juelich GmbH, April 1998.

[79] Z. Xu, J. Larus, and B. Miller. Shared-memory performance profiling.Proceedings of
the 6th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programm,
Las Vegas, Nevada, June 1997.

[80] J. Yan, S. Sarukhai, and P. Mehra. Performance measurement, visualization and mo
of parallel and distributed programs using the AIMS toolkit.Software – Practice and
Experience, 25(4):429–461, April 1995.

[81] W. Yang. Identifying syntactic differences between two programs.Software – Practice
and Experience, 21(7):739–755, July 1991.

	Experiment Management Support for Parallel Performance Tuning
	by
	Karen L. Karavanic

	A dissertation submitted in partial fulfillment
	of the requirements for the degree of
	Doctor of Philosophy
	(Computer Sciences)
	at the University of Wisconsin—Madison
	1999
	© Copyright by Karen L. Karavanic 1999
	All Rights Reserved
	Experiment Management Support for Parallel Performance Tuning
	Karen L. Karavanic

	Under the supervision of Professor Barton P. Miller
	at the University of Wisconsin—Madison
	1
	Introduction 1
	2
	Related Work 8
	3
	The Program Space 20
	4
	Case Studies: Applying the Experiment Management Approach to Common Performance Activities 53
	5
	Using Historical Data in Performance Diagnosis 68
	6
	Summary and Directions for Future Research 91
	1.1 Motivation
	1.2 Contributions
	1.3 Roadmap
	2.1 Parallel Performance Tuning
	2.2 Automating Parallel Performance Diagnosis
	2.3 Scientific Experiment Management
	2.4 Comparing Program Versions and Runs
	2.5 Summary
	3.1 The SpaceMap

	1
	8
	A
	original
	2
	16
	A
	original
	3
	8
	A
	newSolver
	4
	8
	B
	original
	Figure�1: The Complete Collection of Data forms the Program Space. In this illustration each clus...
	3.2 The EventMap
	Definition 1. An EventMap, E, is a forest composed of zero or more unique resource hierarchies:
	EventMap E = {R0, R1, ... Rn}. o
	Definition 2. A resource hierarchy R is a tree of the form
	R = (r, T)
	where r is a resource and T is the set of all children of r in the resource hierarchy:
	T = {(r0,T0), (r1,T1), ... (rm,Tm)}. o
	Definition 3. A resource r is a pair
	r = (l, X) where l is the resource label and X Œ {e0, e1... ei}, a set of unique event identifier...
	Figure�2: Definitions related to the EventMap.
	Figure�3: Each level of a Resource Hierarchy represents a different view of the application.
	Figure�4: EventMap for Program Tester

	3.3 Performance Results
	3.3.1 The Focus
	Definition 4. A focus F is formed by selecting one resource node from each of the resource
	hierarchies in an EventMap:
	{r1 Œ R1j1, r2 Œ R2j2, r3 Œ R3j3, ... rn Œ Rnjn}
	where jx is a level of resource hierarchy Rx and n is the total number of resource
	hierarchies. The nodes selected may be in different levels of the different
	hierarchies.o
	Figure�5: Definition of a Focus.

	3.4 Retrieving Information from the Program Space
	3.4.1 Choosing Program Events Using the SpaceMap
	3.4.2 Combining EventMaps with the Structural Merge Operator
	[1] E ¨ { }
	[2] " (ri, Ti) Œ E1
	[3] if $ (rj, Tj) Œ E2, s.t. match (ri, rj) then
	[4] E ¨E » { ri + rj, Ti + Tj}
	[5] E2 ¨ E2 – (rj, Tj)
	[6] else E ¨ E U {(ri, Ti)}
	[7] E ¨ E » E2
	[8] return E
	Figure�6: Algorithm to find the Structural Merge of two EventMaps, E1 + E2
	[2] r ¨ (l0, X0 » X1)
	[3] return r

	Figure�7: Merging Two Resources, r1 + r2. Only matching pairs of resources are merged.
	[2] return true
	[3] else return false

	Figure�8: Algorithm match ((r1 = (li,Xi), r2 = (lj, Xj))
	Figure�9: An Example of the Structural Merge Operator

	3.4.3 The Structural Difference Operator
	3.4.4 The Performance Difference
	Figure�10: The Discrete Distance Operator is a binary function that indicates whether or not two ...
	[2] enqueue (pendingQueue, EventMap->getRootFocus()
	[3] while ! (isEmpty (pendingQueue))
	[4] currentFocus ¨ dequeue (pendingQueue)
	[5] pr1 ¨ PR(E1, m, currentFocus, t = all)
	[6] pr2 ¨ PR(E2, m, currentFocus, t = all)
	[7] If dd(pr1, pr2) = true
	[8] answer ¨ answer » {currentFocus)
	[9] for each f in magnify(currentFocus)
	[10] enqueue (pendingQueue, f)
	[11] return answer

	Figure�11: Algorithm for the Performance Difference Operator perfDiff ((E1 + E2,) - (E1 Å E2), m)...
	Figure�12: The focus provides a partial ordering of the data. This diagram demonstrates ordering ...
	[2] for i = 1 to n
	[3]
	[4] for each j in children(ri)
	[5]
	[6] return answer

	Figure�13: Algorithm for magnify(f). Magnify returns the set of foci constructed by making all po...

	1
	Machine
	/Code,/Machine/node_01
	2
	Code
	/Code/calc.C,/Machine/node_01
	3
	Code
	/Code/calc.C/calculate,/Machine/node_01
	Figure�14: Explanation of the Performance Difference Display. We show a complete set of informati...
	Figure�15: Sketch of performance difference display contents for example of Figure 14. We have nu...
	3.4.5 Matching and Mapping Resources
	3.4.6 Making Selections from the EventMap
	3.5 Implementation Considerations
	3.5.1 Existing Experiment Management Systems
	Figure�16: Schema for a Program Space containing Paradyn data.

	3.5.2 Implementing the Program Space with an Object Relational DBMS
	3.5.3 Other Implementation Strategies

	3.6 Summary

	4.1 Draco
	Figure�17: SpaceMap for the DRACO application.
	Figure�18: A Merged EventMap for three different Draco runs.
	Figure�19: Result of the Structural Difference Operator applied to two Draco Program Events.
	Figure�20: Merged EventMap for the three Draco Program Events (before mapping).
	Figure�21: EventMap for the three DRACO Program Events (after mapping).

	4.2 Performance Tuning a Shared Memory Application
	Figure�22: Result of Applying Structural Difference Operator to Fold4 Versions 1 and 2.
	Figure�23: Results of the Performance Difference Operator for metric MemoryBlockingTime. The node...

	4.3 Comparing Alternate Implementations: Porting a PVM Application to MPI
	Figure�24: Resource Hierarchies for EventMap: nspvm + nsmpif. The EventMap Display allows the dev...

	4.4 Summary
	5.1 Introduction
	5.2 Paradyn’s Performance Consultant
	Figure�25: A Performance Consultant search in progress. The three items below TopLevelHypothesis ...

	5.3 Types of Search Directives
	5.4 Experiments and Results
	5.4.1 Using Pruning and Priority Directives
	Table 1: Time (in seconds) to Find all True Bottlenecks with Search Directives
	Figure�26: Percentage of True Bottlenecks found over time using different types of search directi...

	5.4.2 Using Thresholds Determined from Historical Data
	Table 2: Bottlenecks Found with Varying Threshold Values. Number of bottlenecks reported are roun...

	5.4.3 Using Historical Data with Different Code Versions
	Figure�27: Time to complete diagnosis using search directives from different application versions...
	Table 3: Time (in seconds) to complete diagnosis with search directives from different applicatio...
	Figure�28: Mappings for Versions A and B. On the left we show the execution map for Versions A an...

	Table 4: Similarity of Extracted Priorities Across Code Versions. We show here the number of prio...

	5.5 Discussion and Conclusions
	6.1 Dissertation Summary
	6.2 Directions for Future Research

