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Importing and executing untrusted foreign code has become an everyday occurrence: Web
servers download plug-ins and applets; databases load type-specific extensions; and operating
systems load customized policies and performance measurement code. Certification of the safety
of the untrusted code is crucial in these domains.

I have developed new methods to determine statically whether it is safe for untrusted
machine code to be loaded into a trusted host system. My safety-checking technique operates
directly on the untrusted machine-code program, requiring only that the initial inputs to the
untrusted program be annotated with typestate information and linear constraints. This
approach opens up the possibility of being able to certify code produced by any compiler from any
source language. It eliminates the dependence of safety on the correctness of the compiler because
the final product of the compiler is checked. It leads to the decoupling of the safety policy from the
language in which the untrusted code is written, and consequently, makes it possible for safety
checking to be performed with respect to an extensible set of safety properties that are specified
on the host side.

I have implemented a prototype safety checker for SPARC machine-language programs, and
applied the safety checker to examples (ranging from code that contains just a few branches, to
code that contains nested loops, and to code that contains function and method calls). The safety
checker was able to mechanically synthesize the loop invariants and check these examples in
times ranging from less than a second to dozens of seconds.
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Chapter 1

Introduction

Two prevailing trends in software development call for techniques to protect one software
component from another. The first trend is dynamic extensibility, where a trusted host is extended
by importing and executing untrusted foreign code. For example, web browsers download plug-ins
[65,83]; databases load type-specific extensions for storing and querying unconventional data
[40,82]; operating systems load customized policies, general functionality [7,26,55,66,70,75,80,85],
and performance-measurement code [85]. Operating systems can download part of an application
into the kernel so that the application can perform better. There are even proposals for loading
application-specific policies into Internet routers [90]. Certification of the safety of untrusted code
is crucial in these domains. The second trend is component-based software development, where
software components produced by multiple vendors are used to construct a complete application
[18] (e.g., COM [51]). The component-based software-development model improves both software
reusability and productivity. However, because the software components can come from different
sources, proper protection among software components is essential.

In this thesis, we show how to determine statically whether it is safe for untrusted machine
code to be loaded into a trusted host system. In contrast to work that enforces safety by restricting
the things that can be expressed in a source language (e.g., safe languages, certifying compilers
[20,63], and typed assembly languages [58,59,60]), we believe that safe code can be written in any
source language and produced by any compiler, as long as nothing “unsafe” is expressed in the
machine code. This philosophical difference has several implications. First, it gives the code pro-
ducer more freedom in choosing an implementation language. Instead of building a certifying
compiler for each language, we can certify code produced by a general-purpose off-the-shelf com-
piler. Second, it leads to the decoupling of the safety policy from the language in which the
untrusted code is written. This makes it possible for safety checking to be performed with respect
to an extensible set of safety properties that are specified on the host side.

The most important, high-level characteristics of our safety-checking technique are (i) it oper-



2

ates directly on binary code; (ii) it provides the ability to extend the host at a very fine-grained
level, in that we allow the untrusted foreign code to manipulate the internal data structures of
the host directly; and (iii) it enforces a default collection of safety conditions to prevent type viola-
tions, array out-of-bounds violations, address-alignment violations, uses of uninitialized vari-
ables, null-pointer dereferences, and stack-manipulation violations, in addition to providing the
ability for the safety criterion to be extended according to an access policy specified by the host.
The host-specified access policy lists the host data that can be accessed and the host functions
(methods) that can be called by the untrusted code. This provides a means for the host to grant
the “least privilege” that the untrusted code needs to accomplish its task.

Our approach is based on annotating the global data in the trusted host. The type information
(more precisely, typestate information) in the untrusted code is inferred. Our analysis starts with
information about the initial memory state at the entry of the untrusted code. It abstractly inter-
prets the untrusted code to produce a safe approximation of the memory state at each program
point. It then annotates each instruction with the safety conditions each instruction must obey
and checks these conditions.

The memory states at the entry, and other program points of the untrusted code, are described
in terms of typestates and linear constraints (i.e., linear equalities and inequalities that are com-
bined with [, 0, =, and the quantifiers Cand [0). Our analysis uses typestates (as opposed to types)
because the condition under which it is safe to perform an operation is a function of not just the
types of the operation’s operands, but also their states. For example, it is safe to write to a location
that stores an uninitialized value, but it is unsafe to read from it. Typestates differ from types by
providing information at a finer granularity. Moreover, typestate checking [78,79] differs from tra-
ditional type checking in that traditional type checking is a flow-insensitive analysis, whereas
typestate checking is a flow-sensitive analysis. Typestates can be related to security automata [4].
In a security automaton, all states are accepting states; the automaton detects a security-policy
violation whenever it reads a symbol for which the automaton’s current state has no transition
defined. It is possible to design a typestate system that captures the possible states of a security
automaton (together with a “security-violation” state). Typestate checking provides a method,
therefore, for statically assessing whether a security violation might be possible.

Figure 1.1 illustrates the inputs to and the phases of the safety-checking analysis. The inputs
to the safety-checking analysis include a host-typestate specification and an invocation specifica-
tion, in addition to the untrusted code and the host-specified access policy. The host typestate
specification describes the type and the state of the host data before the invocation of the
untrusted code, as well as safety pre- and post-conditions for calling host functions (methods). The
invocation specification provides the binding information from host resources to registers and
memory locations that represent initial inputs to the untrusted code. The combination of host-
typestate specification, invocation specification and the access policy provides the information
about the initial memory state at the time the untrusted code is to be invoked.
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Figure 1.1 The Inputs to and Phases of Our Safety-Checking Analysis.
The dotted vertical line separates the untrusted and trusted worlds.

The safety-checking analysis consists of five phases: preparation, typestate-propagation,
annotation, local verification and global verification. The first two phases find the state(s) on
which each instruction operates. The last three phases find the safety conditions each instruction
must obey and check the conditions.

The preparation phase combines the information that is provided by the host-typestate speci-
fication, the invocation specification, and the access policy to produce an initial annotation (in the
form of an abstract store for the program’s entry point). This phase also produces an interproce-
dural control-flow graph for the untrusted code. The typestate-propagation phase takes the con-
trol-flow graph and the initial annotation as inputs. It abstractly interprets the untrusted code to
produce a safe approximation of the memory contents (i.e., a typestate for each abstract location)
at each program point. The annotation phase takes as input the typestate information discovered
from the typestate-propagation phase, and traverses the control-flow graph to annotate each
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instruction with local and global safety conditions and assertions: the local safety preconditions
are conditions that can be checked using typestate information alone; the assertions are restate-
ments (as logical formulas) of facts that are implicit in the typestate information. The local-verifi-
cation phase checks the local safety conditions. The global-verification phase verifies the global
safety conditions. The global safety conditions perform array bounds checks, null-pointer derefer-
ence checks, and address-alignment checks. They are represented as linear constraints. We take
advantage of the synergy of an efficient range analysis and an expensive but powerful technique
that can be applied on demand for array bounds checks. The range analysis determines safe esti-
mates of the range of values each register can take on at each program point. This information
can be used for determining whether accesses on arrays are within bounds. For conditions that
cannot be proven just by using the results of the range analysis, we use program-verification tech-
niques. We use the induction-iteration method [84] to synthesize loop invariants if the untrusted
code contains loops.

In the above description, the safety-checking analysis both synthesizes and verifies a safety
proof. It should be noted that this is just one way to structure the safety-checker. In principle, we
could separate the safety-checker into a proof generator and a proof verifier. The proof generator
generates Proof-Carrying Code (PCC) [64], whereas the proof checker validates the safety proof.
In this way, our technique provides a way to lift the current limitations of certifying compilers [20,
63], which produce PCC automatically, but only for programs written in certain safe source lan-
guages.

We have implemented a prototype safety checker for SPARC machine-language programs. We
applied the safety checker to several examples (ranging from code that contains just a few
branches, to code that contains nested loops, and to code with function and method calls). The
safety checker was able to either prove that an example met the necessary safety conditions, or
identify the places where the safety conditions were violated, in times ranging from less than a
second to tens of seconds on an UltraSPARC machine.

In the remainder of this dissertation, we will call the party that generates the untrusted for-
eign code the code producer (which can be either human or a code-generation tool), and the party
who is responsible for the trusted host the code consumer.

1.1 Contributions
The major contributions of this thesis are as follows:

1. Our technique opens up the possibility of being able to certify object code produced by off-the-
shelf compilers (independent of both the source language and the compiler). We require only
that the inputs to the untrusted code be annotated with typestate information and linear con-
straints.

2. The technique is extensible: in addition to a default collection of safety conditions that are



always checked, additional safety conditions to be checked can be specified by the host.

3. We extend the notion of typestate in several ways: (i) we use typestates to describe the state
information of abstract locations in an abstract storage model; (ii) we extend typestates to
include access permissions (which are used to specify the extent to which untrusted code is
allowed to access host resources); (iii) in addition to using typestates to distinguish initialized
values from uninitialized ones, we also use typestates to track pointers.

4. We propose a typestate-checking system that allows us to perform safety-checking on
untrusted machine code that implements inheritance polymorphism via physical subtyping
[76]. This work introduces a new method for coping with subtyping in the presence of mutable
pointers.

5. We introduce a mechanism for summarizing the effects of function calls via safety pre- and
post-conditions. These summaries allow our analysis to stop at trusted boundaries. They form
a first step toward checking untrusted code in a modular fashion, which will make the safety-
checking technique more scalable.

6. We present a technique to infer information about the sizes and types of stack-allocated
arrays.

7. We describe a symbolic range analysis that is suitable for propagating information about
array bounds. Range analysis can speed up safety checking because it is generally much less
expensive than the program-verification techniques that we use to bounds checks.

8. We describe a prototype implementation of the safety-checking technique, and experimental
studies to evaluate it.

The work described in thesis focuses on enforcing fine-grained memory protection, which
allows us to use a decidable logic for expressing safety conditions and simple heuristics for syn-
thesizing loop invariants. We wish to stress that, although we use techniques originally developed
for verification of correctness, we are not trying to prove either total or partial correctness [24,39].
Safety checking is less ambitious than verification of correctness.

1.2 Organization of Dissertation

The dissertation is organized into eight chapters. We begin with a discussion of related work
in Chapter 2. In Chapter 3, we describe the safety properties we enforce, and the notion of an
access policy. We present an overview of our safety checking analysis by means of a simple exam-

ple.

Chapters 4 to 6 describe the five phases of our safety-checking analysis starting from the sec-
ond phase. In Chapter 4, we describe the second phase of the safety-checking analysis. We
describe an abstract storage model used in the analysis (in particular, a typestate system). We
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present the typestate-checking analysis that recovers typestate information at each program
point in the untrusted code. The typestate-checking system allows us to check the safety of
untrusted machine code that implements inheritance polymorphism via physical subtyping.
Moreover, we describe several techniques that make the safety-checking analysis more precise
and efficient.

In Chapter 5, we present the details of the annotation and local-verification phases of our
analysis. In Chapter 6, we describe the global-verification phase. We present the induction-itera-
tion method for synthesizing loop invariants and our enhancements to it, and also describe a sym-
bolic range analysis for array bounds checking.

In Chapter 7, we present our experience with the safety-checking technique gained from
using a prototype implementation for untrusted code written in SPARC machine languages on a
few case studies.

Finally, in Chapter 8, we present our conclusions and suggest some directions for future
research.



Chapter 2

Related Work

In this chapter we discuss the research efforts that are most closely related to this disserta-
tion. In Section 2.1, we survey techniques to enforce safe program execution. We examine tech-
niques that can be used to statically check for array out-of-bounds violations in Section 2.2. We
discuss techniques for synthesizing loop invariants in Section 2.3.

2.1 Safety Checking

Techniques to enforce code safety fall into three categories: dynamic, static, and hybrid. Static
techniques are potentially more efficient at run-time than dynamic and hybrid techniques
because static technigues incur no run-time overhead, but they can be less precise because they
will have to reject code that cannot be determined to be safe statically. A dynamic technique
incurs run-time cost and may require corrective actions in the case that a safety violation is
detected at run-time. Hybrid techniques tend to be more efficient than dynamic techniques, and
like dynamic techniques, they may require corrective actions in the presence of a safety violation.
We survey the related work and compare our work with static techniques that are closest to ours.

2.1.1 Dynamic Techniques

Two safety issues must be addressed when a dynamic technique is used to enforce code safety.
First, safety violations must be detected. Second, corrective action must be taken after a violation
is detected at run-time. This corrective action can be as simple as terminating the offending code,
or can be much more complex if the offending code accesses shared data structures in the trusted
host.

One extreme of dynamic techniques is safety through interpretation, where a virtual machine
(VM) interprets the untrusted code and checks the safety of each instruction at run-time. The
BSD network packet filter utility [49, 55], commonly referred to as BPF, is such an example. It
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defines a language that is interpreted by the operating system’s network driver. The interpreter
checks, at run-time, that all references to memory are within the bounds of the packet data or a
statically allocated scratch memory. Interpretation incurs high run-time cost. For example, BPF is
about 10 times slower than versions written in the statically checked proof-carrying code [64].
Moreover, languages that are designed to be interpreted are usually small, and with limited con-
trol and data structures, makes them unsuitable for general-purpose use.

A simple way to enforce the safety of untrusted code is to isolate it in a hardware-enforced
address space, similar to the way operating system kernels protect themselves from user-level
applications [8]. In this approach, the hardware and the operating system kernel prevent code in
one address space from corrupting code and data in another address space. To prevent the
untrusted code from leaving the host software in an inconsistent state (e.g., terminating without
releasing resources it has acquired), the untrusted code must interact with the host software
through a restricted interface. Apart from the apparent limitation of requiring special hardware
support, a major disadvantage of this approach is its high run-time cost. A cross-address-space
call requires (at least) a trap into the operating system kernel, copying of arguments from the
caller to the callee, saving and restoring registers, switching hardware address spaces, and dis-
patch back to user level [93].

Software Fault Isolation (SFI) [93] uses pure software techniques to achieve much of the same
functionality as hardware-enforced address spaces, but at a much lower cost. A form of SFI, sand-
boxing, ensures that the high bits of a memory address match those of the sandbox region
assigned to the foreign code. VINO [75] and Exokernel [26] are two systems that use sandboxing
to ensure that extensions downloaded into the OS are safe. Both SFI and hardware-enforced
address spaces provide protection by isolating the untrusted code in its own protection domain,
and restricting the interface through which it can interact with the host software. Since SFI mod-
ifies the binary code directly, it is independent of the source language. Like hardware-enforced
address spaces, the protection provided by SFI is coarse-grained, and is not appropriate for a sys-
tem with fine-grained sharing. SFI incurs low run-time overhead on processors with a large num-
ber of registers, because less register spilling is needed to free up registers for sandboxing.
However, if the untrusted code interacts frequently with code in the host environment (or other
untrusted components residing in different protection domains) and the read operations must be
checked also, the overhead of run-time checking can amount to 20% as opposed to only a few per-
cent when only write operations are checked [93]. Checking read operations is necessary because
reads to certain memory-mapped devices could be destructive. Finally, SFI can be difficult to
implement correctly; for example, it is hard to prevent code from modifying itself, and to protect
the contents of the stack.

Leroy and Rouaix [46] have proposed a theoretical model for systematically placing type-
based run-time checks into interface routines of the host code to provide fine-grained memory pro-
tection. Their technique checks the host and requires that the source of the host API be available.
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Safety requirements are specified by enumerating a set of predetermined sensitive locations and
invariants on these locations.

Our technique is related to Leroy and Rouaix’s technique in that our technique is also type-
based. However, we rely on static analysis rather than run-time checking. In addition, our tech-
nique works on untrusted binary code whereas their technique instruments the host API at the
source level. Our model of a safety policy (see Chapter 4) is more general than theirs. Finally, they
perform type checking whereas we perform typestate checking (see Chapter 4). Typestates pro-
vide finer grained information than types, and typestate checking is a flow-sensitive analysis,
whereas traditional type checking is a flow-insensitive analysis. Hence, our technique is poten-
tially more precise.

2.1.2 Static Techniques

Static techniques to ensure code safety have two advantages. First, the code is potentially
more efficient because no run-time checks are involved. Second, no corrective action is needed
since the code can never misbehave. Static techniques to enforce code safety range from those that
provide accountability, to techniques that use formal methods to verify that a binary conforms to
its specification in logic (correctness checking), to techniques that verify that a binary conforms to
certain safety properties (e.g., type safety), to techniques that emphasize finding potential bugs
rather than enforcing full safety.

Techniques that check the correctness of a program are hard to automate. Techniques that
check that a program has specific safety properties are more manageable than correctness check-
ing, but can still be very expensive. Techniques that focus on finding potential bugs can, for better
analysis efficiency, rely on analyses that are neither sound nor complete.

The simplest static technique for enforcing safety is through personal authority. For example,
Microsoft's ActiveX [2] uses digital signatures to record information about the origin of the code.
SVR4 kernels allow users with super-user privilege to install kernel modules (such as device driv-
ers) into the kernel. This approach provides accountability rather than safety.

Several research projects have used formal methods to verify that binary code conforms to its
specification (as a logical formula), and that it has certain memory safety properties [11, 19]. Clut-
terbuck and Carre [19] describe a technique to prove that programs written in a subset of Intel
8080 machine language conform to their specifications. Their technique uses the SPADE software
tools, which work on programs defined in SPADE's FDL, the SPADE program modelling language.
Their safety-checking analysis uses flow-analysis and program-verification techniques. The flow
analyses check for such problems as unreachable code, code from which the exit cannot be
reached, multiple-entry loops, use of undefined variables, unused definitions, and redundant
tests. SPADE'’s program verifier checks that a program conforms to its specification in logical for-
mulae.
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Boyer and Yu [11] have described a different approach to prove that a machine-code program
is memory safe and consistent with its mathematical specification. Their technique models the
semantics of a subset of MC68020 instruction set architecture (ISA) in meticulous detail by giving
the machine code an explicit formal operational semantics. This operational semantics is given in
the logic of their automated reasoning system. Analogous to supplying loop invariants with Floyd-
style verification conditions, their approach requires manual construction of lemmas.

A major limitation of using general theorem-proving techniques is that proving the validity of
an arbitrary predicate (in first-order logic) is undecidable. In addition, proving that a program
containing loops satisfies a given pre- and post-condition using Floyd-style verification conditions
involves synthesizing loop invariants, which, in general, cannot be done mechanically.

Instead of proving that a program conforms to its specification (i.e., is correct), which is hard
to accomplish mechanically in general, several projects focus on verifying that a piece of
untrusted code has specific safety properties. Examples of these projects include Proof-Carrying
Code (PCC) [64], the Certifying Compiler [20, 63], Typed-Assembly Language (TAL) [58,59,60],
and our work.

PCC is based on the observation that it is generally faster and easier to validate a proof than
to generate one. With PCC, a code producer provides code, along with a proof that the code has
certain safety properties. Necula and Lee have used PCC to statically check the safety of network
packet filters, and to provide safe native extensions to ML. A major advantage of PCC is that
safety only depends on the correctness of a proof checker that is relatively small, and no trusted
third party is needed. PCC is “tamper proof” in that any change that either makes the code unsafe
or the proof invalid will be identified by the proof checker. PCC also has the ability to associate
proofs to the end-product, i.e., the machine code. However, manual generation of proofs can be
tedious and error-prone. For each type of safety property considered, a proof system is needed.
Furthermore, adding proofs to the code can considerably increase the size of the code (3 to 7 times
the original size).

To avoid manual construction of PCC, Necula and Lee [63] introduce the notion of a certifying
compiler, which compiles a high-level programming language program into PCC. Their prototype
compiler, TouchStone, compiles a safe subset of C into assembly code that carries proofs about
type safety. They show that loop invariants for type safety (without considering array bounds
checks) can be generated automatically by the compiler. Their work shows that the relevant oper-
ational content of simple type systems may be encoded using extensions to first-order predicate
logic.

Instead of relying on a logic system to encode types, Morrisett et al [58,59,60] introduced the
notion of typed assembly language (TAL). In their approach, type information from a high-level
program is incorporated into the representation of the program in a platform-independent typed
intermediate form, and carried through a series of transformations down to the level of the target
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code. The compiler can use the type information to perform sophisticated optimizations. Certain
internal errors of a compiler can be detected by invoking a type-checker after each code transfor-
mation. A compiler that uses typed assembly language certifies type safety by ensuring that a
well-typed source program always maps to a well-typed assembly program.

Checking full safety can be time consuming because the analyses, at a minimum, have to be
sound. A static debugger uses static analysis to find unsafe operations rather than to guarantee
full safety. It is willing to make use of analyses that are neither sound nor complete in the interest
of efficiency.

Flanagan et al [30] describe an interactive static debugger for Scheme that can be used to
identify program operations that may cause run-time errors, such as dereferencing a null pointer,
or calling a non-function. The program analysis computes value-set descriptions for each term in
the program, and constructs a value flow graph connecting the set descriptions. Evans [27]
describes extensions to the LCLint checking tool (a tool for statically checking C programs, and a
tool that can perform stronger checking than any standard version of lint) [28] to detect dynamic
memory errors, such as dereferencing null pointers, failure to allocate or deallocate memory, uses
of undefined or deallocated storage, and dangerous or unexpected aliasing. His technique uses
interface annotations to avoid expensive interprocedural analysis and to reduce the amount of
error messages. In his analysis, loops are treated as though they were conditional statements.

Detlefs et al [23] describe a static checker for common programming errors, such as array
index out-of-bounds, null-pointer dereferencing, and synchronization errors (in multi-threaded
programs). Their analysis makes use of linear constraints, automatically synthesizes loop-invari-
ants to perform bounds checking, and is parameterized by a policy specification. Their safety-
checking analysis works on source-language programs and also makes use of analyses that are
neither sound nor complete. In their policy specifications, user-supplied MODIFIES lists (specify-
ing which variables of a procedure can be modified) offer a certain degree of access control.

2.1.3 Our Work vs. Related Static Techniques

The static techniques that are closest to ours are the certifying compiler and typed-assembly
language.

The most prominent difference between our approach and the certifying compiler (or the TAL)
approach is a philosophical one. The certifying compiler approach enforces safety by preventing
“bad” things from being expressible in a source language. For example, both the safe subset of C of
the Touchstone compiler and the Popcorn language for TALx86 [60] do not allow pointer arith-
metic, pointer casting, or explicit deallocation of memory. In contrast, we believe that safe code
can be written in any language and produced by any compiler, as long as nothing “bad” is said in
the code.
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This philosophical difference has several implications. It gives the code producer the freedom
to choose any language (including even “unsafe” languages such as C or assembly), and the free-
dom to produce the code with an off-the-shelf compiler or manually. It eliminates the dependence
of safety on the correctness of a compiler. As with PCC, our technique checks the safety of the final
product of the compiler. It leads to the decoupling of the safety policy from the source language,
which in turn, makes it possible for safety checking to be performed with respect to an extensible
set of safety properties that are specified on the host side.

Our approach does introduce an additional variable into the process that is only partially
within the programmer’s control — namely, the code-generation idioms that a particular compiler
uses could be ones that defeat the techniques used in our system. This is because the implementa-
tion of our analyses may rely on (or not aware of) some idioms the compiler uses.

The second important difference between our approach and the certifying compiler (or TAL)
approach is that the safety properties we enforce are based on the notion of typestate, which pro-
vides more extensive information than types.

In addition to these high-level differences, there are a few technical differences. Our safety
checker can be viewed as a certifier that generates proofs by first recovering type information that
(may have) existed in the source-language program (an embodiment of a suggestion made by Nec-
ula and Lee [63, p. 342]). The approach used in our safety checker differs from that used in the
Touchstone compiler in the following respects: First, Touchstone replaces the standard method for
generating verification conditions (VCs), in which formulae are pushed backwards through the
program, with a forward pass over the program that combines VC generation with symbolic exe-
cution. In contrast, our system uses a forward phase of typestate checking (which is a kind of sym-
bolic execution) followed by a fairly standard backward phase of VC generation. (See Chapter 4
for a description of typestate checking, and Chapter 6 for a description of VC generation.) The VC-
generation phase is a backwards pass over the program for the usual reason; the advantage of
propagating information backwards is that it avoids the existential quantifiers that arise when
formulae are pushed in the forward direction to generate strongest post-conditions; in a forward
VC-generation phase, quantifiers accumulate—forcing one to work with larger and larger formu-
lae. Second, our safety-checking analysis mechanically synthesizes loop invariants for bounds
checking and alignment checking, whereas Touchstone generates code that contains explicit
bounds checks and then removes those checks that it can prove to be redundant.

Comparing with TAL, our type system and that of TAL model different language features: For
instance, TAL models several language features that we do not address, such as exceptions and
existential types. On the other hand, our system models size and alignment constraints, which
TAL does not. Furthermore, the TAL type system does not support general pointers into the
stack, and because stack and heap pointers are distinguished by TAL, one cannot declare a func-
tion that receives a tuple argument that can accept both a heap-allocated tuple at one call site and
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a stack-allocated one at another call site [59]. TALx86 introduces special macros for array sub-
scripting and updating to prevent an optimizer from rescheduling them. (These macros expand
into code sequences that perform array-bounds checks.) We impose no such restrictions on the idi-
oms that a compiler can employ to implement array subscripting. TAL achieves flow-sensitivity in
a different way than our system does; with TAL, different blocks of code are labeled as different
functions, and types are assigned to the registers associated with each function. Our system
achieves flow-sensitivity by having a different typestate at each instruction. Despite the differ-
ences, it is interesting to note that if our safety checker were to be given programs written in
typed assembly language rather than in an untyped machine language, less work would be
required to recover type information and to perform overload resolution (although we would still
have to propagate state and access information). This also applies to Java bytecode [47], where
type information is contained in the bytecode instructions themselves.

Finally, neither Touchstone nor the Popcorn compiler of TALx86 track aliasing information.
We have introduced an abstract storage model and extended typestate checking to also track
pointers. As a result, the analysis we provide is more precise than that used in Popcorn and
Touchstone.

Our work is also related to the work of Detlefs et al [23] in that both their technique and ours
make use of linear constraints, automatically synthesize loop-invariants to perform bounds check-
ing, and are parameterized by policy specifications. However, their safety-checking analysis works
on source-language programs and makes use of analyses that are neither sound nor complete.
Their policy specifications are less general than our access policies, which are given in terms of
regions, categories, and access permissions (see Chapter 4).

2.1.4 Hybrid Techniques

A technique that combines both static and dynamic checking requires fewer run-time checks
than dynamic techniques, but still needs corrective actions because faults can still occur at run-
time. Examples that use hybrid techniques for safety checking include safe languages, such as
Java [34], Mesa [50], and Modula 3 [37].

A safe language has well defined semantics so that all valid programs written in the language
are guaranteed to have certain safety properties. It employs both static and run-time measures to
avoid operations that are potentially harmful. Systems that use safe languages for system exten-
sions include Pilot [70], which runs programs written in Mesa, HotJava Web Browser, which can
be extended with applets written in Java, and the SPIN extensible OS [7], which can be extended
with modules written in Modula 3.

In a safe language, the safety property is build into the language. A safe language usually
relies on strong typing to enforce fine-grained memory protection and data abstraction. Tech-
niques based on types and programming-language semantics (including PCC, certifying compil-
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ers, and safe languages), offer much finer-grained access control and flexibility than those based
on physical means, such as SFI and hardware-enforced address spaces. Types correspond more
naturally to the computer resources that we want to protect.

Safe languages prohibit certain “bad things” from happening by restricting the expressiveness
of the language, which, as a consequence, also restricts the applicability of the technique to such
languages as C or assembly code. Moreover, even for general-purpose type-safe languages, such as
Java, there are occasions when some functionality has to be implemented in “low-level” languages
such as C or assembly code [41].

2.2 Array Bounds Checking

A basic requirement of safe program execution is that all array accesses should be within
their bounds. Array bounds checks are also essential for enforcing program security. For example,
buffer-overrun vulnerabilities, which allow a malicious user to overrun the stack contents to cir-
cumvent the computer’s security checks, have long plagued security architects. Wagner et al [91]
report that buffer overruns account for up to 50% of today’s vulnerabilities (based on data from
CERT advisories over the last decade).

Techniques for performing array bounds checks include techniques for optimizing array
bounds checks [35,45,48], symbolic analyses that compute the bounds of index for array refer-
ences [10,21,38,72,86,91], and program-verification techniques [84]. In the next few sections, we
describe work in each of these three areas.

2.2.1 Techniques for Optimizing Array Bounds Checks

Markstein et al [48] have developed an analysis technique that first moves array bounds
checks out of a loop, and then eliminates the checks if the analysis can determine that there are
no array out-of-bounds violations. Their analysis places the array bounds checks outside of the
loop, modifies the loop-control condition so that it guarantees that no array out-of-bounds viola-
tions will occur, and places a test at the loop exit to ensure that the loop will perform the same
number of iterations as in the original program.

Gupta [35] also described a technique for optimizing array bound checks. Gupta’s optimiza-
tions reduce the program execution time and the object code size through elimination of redun-
dant checks, propagation of checks out of loops, and combination of multiple checks into a single
check. His analysis is performed on a reduced control-flow graph that consists of only the minimal
amount of data flow information for range-check optimizations.

Kolte and Wolfe [45] present a compiler-optimization algorithm to reduce the run-time over-
head of array bounds checks. Their algorithm is based on partial redundancy elimination and
incorporates previously developed algorithms (including those that were described by Gupta [35])
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for array bounds checking optimizations.

The above techniques can be used to perform array bounds checking by first introducing code
to perform the checks, and then checking whether such code can be optimized away.

2.2.2 Techniques for Propagating Information about Array Bounds

The algorithms that rely either on dataflow analysis or on abstract interpretation to propa-
gate information about array bounds vary both in sophistication of the assertions and the rules
used for propagating and combining the assertions. For example, the assertions used by Ver-
brugge et al [86] are intervals of scalars, whereas Cousot and Halbwachs [21] use convex polyhe-
dra, which can track correlations between variables. Wagner et al [91] use flow-insensitive
analysis for better analysis efficiency, whereas Verbrugge et al [86] use flow- and context-sensitive
analysis.

Harrison [38] uses compile-time analysis to reduce the overhead due to range checks. Com-
pile-time techniques for range propagation and range analysis are employed yielding bounds on
the ranges of variables at various points in a program. Harrison’s technique propagates both
ranges that are scalar intervals, and ranges with simple symbolic bounds. The range information
is used to eliminate redundant range checks on array subscripts.

Verbrugge et al [86] described a range-analysis technique called Generalized Constant Propa-
gation (GCP). GCP uses a scalar interval domain. It employs a flow- and context-sensitive analy-
sis. It attempts to balance convergence and precision of the analysis by “stepping up” ranges
(decreasing the lower bound or increasing the upper bound) for variables that have failed to con-
verge after some fixed number of iterations. GCP uses points-to information discovered in an ear-
lier analysis phase.

Rugina and Rinard [72] also use symbolic bounds analysis. Their analysis gains context sensi-
tivity by representing the symbolic bounds for each variable as functions (polynomials with ratio-
nal coefficients) of the initial values of formal parameters. Their analysis proceeds as follows: For
each basic block, it generates the bounds for each variable at the entry; it then abstractly inter-
prets the statements in the block to compute the bounds for each variable at each program point
inside and at the exit of the basic block. Based on these bounds, they build a symbolic constraint
system, and solve the constraints by reducing it to a linear program over the coefficient variables
from the symbolic-bound polynomials. They solve the symbolic constraint system with the goal of
minimizing the upper bounds and maximizing the lower bounds.

Bodik at al [10] describe a method to eliminate array bounds checks for Java programs. Their
method uses a restricted form of linear constraints called difference constraints that can be solved
using an efficient graph-traversal algorithm on demand. Their goal is to apply their analysis to
array bounds checks selectively based on profile information, and fall back on run-time checks for
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cold code blocks.

Wagner et al [91] have formulated the buffer-overrun-detection problem as an integer con-
straint problem that can be solved in linear time in practice. Their analysis is flow- and context-
insensitive with a goal of finding as many errors as possible. Cousot and Halbwachs [21] described
a method that is based on abstract interpretation using convex hulls of polyhedra. Their tech-
nique is precise in that it does not simply try to verify assertions, but instead tries to discover
assertions that can be deduced from the semantics of the program.

We also propose a range analysis for array bounds checking (see Section 6.7). Our range anal-
ysis is closest to GCP, but differs from GCP in the following respects: We use a domain of symbolic
ranges. We perform a widening operation right away for quicker convergence, but sharpen our
analysis by selecting suitable spots in loops for performing the widening operation, and also by
incorporating correlations among register values. Both GCP and our technique use points-to
information discovered in an earlier analysis phase. Our current implementation of range analy-
sis is context-insensitive, whereas GCP is context-sensitive.

2.2.3 Program-Verification Techniques

Suzuki and Ishihata [84] and German [32] used Floyd-style program verification techniques
to verify the absence of array out-of-bound violations in programs. Floyd-style program verifica-
tion relies on the system’s ability to synthesize loop invariants automatically. Suzuki and Ishihata
introduced a method called induction iteration for synthesizing loop invariants, whereas Ger-
man’s method relies some simple heuristics. Both Suzuki and Ishihata, and German’s methods
were developed for structured source-level programs.

2.3 Synthesis of Loop Invariants

A major problem in building an automatic verifier that does not require any programmer-sup-
plied annotations is that the system must synthesize loop invariants. There are several ways to
synthesize loop invariants automatically: using heuristics, difference equations, abstract inter-
pretation, running the program in a test-oriented fashion [13], and the induction-iteration
method [84].

Katz and Manna [43] and Wegbreit [92] both describe the use of heuristics to synthesize loop
invariants. In this approach, back-substitutions are performed, starting with the postcondition, to
produce trial loop predicates. Trial loop predicates that are not loop invariants are modified
according to various heuristics to generate better trial predicates. Many of the heuristics are
domain specific. They have shown examples in the domain of integers and integer arrays.

Synthesizing loop invariants using difference equations [25] proceeds in two steps: (i) finding
an explicit expression for each variable after t iterations of the loop, and (ii) eliminating t to obtain
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invariants.

The abstract interpretation method [92] works forward from the precondition. Since the pre-
condition is known to hold, it can be treated as data and submitted as input to an appropriate
evaluator. In this evaluator, all operators are treated as operations on predicates in some abstract
interpretation, taking predicates as arguments and delivering a predicate as their result. When
the evaluator encounters a conditional, it either chooses one of the alternatives (if the current
state logically implies either the decision predicate or its negation), or otherwise control splits
into parallel branches. Junction nodes are handled by a sequence of two operations: first the pred-
icates on the input arcs are merged; then the result of this merge is joined with the previous pred-
icate on the output edge to form a new predicate on the output edge.

Loop invariants can also be synthesized by running the program in a test-oriented fashion
[89], which consists of three steps: the first step selects several values of input variables; the sec-
ond step runs the program for each of these inputs and collects the values of the output variables
at each program point; the third step tries to establish relations among the variables.

The induction-iteration method of Suzuki and Ishihata uses weakest liberal preconditions for
synthesizing loop-invariant. For each postcondition of a loop that needs to be verified, it induc-
tively synthesizes a loop invariant that (i) is true on entry to the loop and (ii) implies the postcon-
dition.

We have extended the induction-iteration method for machine-language programs, for nested
loops, and for interprocedural verification. A description of the induction-iteration method and
our extensions to it can be found in Chapter 6.

We adopt the induction-iteration method because it is mechanical, and because the assertions
we need to prove are less general than those required to prove that a program conforms to its
specification.
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Chapter 3

Overview

Our goal is to check statically whether it is safe for a piece of untrusted foreign machine code
to be loaded into a trusted host system. We start with ordinary machine code and mechanically
synthesize (and verify) a safety proof. The chief advantage of this approach is that it opens up the
possibility of being able to certify code produced by a general-purpose off-the-shelf compiler from
programs written in languages such as C and C++. Furthermore, in our work we do not limit the
safety policy to just a fixed set of memory-access conditions that must be avoided; instead, we per-
form safety checking with respect to a safety policy that is supplied on the host side.

When our proof-synthesis techniques are employed on the host side, our approach can be
viewed as an alternative to the Proof-Carrying Code (PCC) approach [64]; PCC requires a code
producer to create not just the machine code but also a proof that the code is safe, and then has
the host perform a proof-validation step. When our proof-synthesis techniques are employed by
the code producer (on the foreign side of the untrusted/trusted boundary), our approach can be
viewed as an ally of PCC that helps to lift current limitations of certifying compilers [20,63],
which produce PCC automatically, but only for programs written in certain safe source languages.

To mechanically synthesize and verify a safety proof for a piece of untrusted code, our analysis
starts with a description of the initial inputs to the untrusted code and an access policy. It
abstractly interprets the untrusted code to produce a safe approximation of the memory state at
each program point. These memory states are described in an abstract storage model. Given the
information discovered at each program point, our analysis annotates each instruction with the
safety conditions the instruction must obey, and then verifies these conditions.

In the reminder of this chapter, we describe the safety properties we enforce and the notion of
an access policy. We describe an abstract storage model, and the inputs to our safety-checking
analysis. We present an overview of our safety- checking analysis by means of a simple example.
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3.1 Safety Properties and Policy

When untrusted code is to be imported into a host system, we need to specify acceptable
behaviors for the untrusted code. These behavior specifications take the form of safety conditions
that include a collection of default safety conditions and host-specified access policies.

The default safety conditions enforce fine-grained memory protection and data abstraction
based on strong typing. The default safety conditions check for type violations, array out-of-
bounds violations, address-alignment violations, uses of uninitialized values, null-pointer derefer-
ences, and stack-manipulation violations. They ensure that the untrusted code will not forge
pointers, and that all operations in the untrusted code will operate on only values of proper types
and with a proper level of initialization.

An access policy provides additional flexibility by allowing the host to specify the host data
that can be accessed and the host functions (methods) that can be called by the untrusted code. It
provides a means for the host to specify the “least privilege” that the untrusted code needs to
accomplish its task. This can minimize the potential damages the untrusted code may do to the
trusted host.

In our model, we view any addresses passed to a piece of untrusted code as doors into the host
data region. An access policy controls the memory locations (resources) that are accessible by
specifying the pointer types that can be followed. For the memory locations reachable, the access
policy specifies the ways they can be accessed in terms of the types of the memory locations and
their contents.

An access policy is specified by a classification of the memory locations into regions, and a list
of triples of the form [Region : Category : Access Permitted]. A Region can be as large as an entire
address space or as small as a single variable. The Category field is a set of types or aggregate
fields. The Access field can be any subset of r, w, f, X, and o, meaning readable, writable, followable,
executable, and operable, respectively.

In our model, r and w are properties of a location, whereas f, X, and o are properties of the
value stored in a location. The access permission f is introduced for pointer-typed values to indi-
cate whether the pointer can be dereferenced. The access permission x applies to values of type
“pointer to function” (i.e., values that hold the address of a function) to indicate whether the func-
tion pointed to can be called by the untrusted code. The access permission o includes the rights to

” o«

“examine”, “copy”, and perform other operations not covered by x and f.

To get a feel for what a safety policy looks like, suppose that a user is asked to write an exten-
sion (as a piece of untrusted code) that finds the lightweight process on which a thread is running,
and suppose that information about threads is stored in the host address space in a linked list
defined by the structure thread
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struct thread {
int tid;
int lwpid;

struct thread * next;

h

The following policy allows the extension to read and examine the tid and Iwpid fields, and
to follow only the next field (H stands for “Host Region”, which is the region in which the list of
threads is stored):

[H : thread.tid, thread.lwpid : ro]
[H : thread.next : rfo]

The above model can be used to specify a variety of different safety policies. For example, we
can specify something roughly equivalent to sandboxing [93]. The original sandboxing model par-
titions the address space into protection domains, and modifies a piece of untrusted code so that it
accesses only its own domain. In our model, sandboxing boils down to allowing untrusted code to
access memory only via valid addresses in the untrusted data region, but otherwise to examine,
and operate on data items of any type. Because an address of a location in the host region cannot
be dereferenced, side-effects are confined to the untrusted region. Our approach differs from sand-
boxing in that it is purely static, and it does not make any changes to the untrusted code.

While sandboxing works well in situations where it is appropriate to limit memory accesses to
only the untrusted data region, forbidding access to all data in the host region is often too draco-
nian a measure. For instance, access to the host data region is necessary for applications as sim-
ple as performance instrumentation (e.g., to read statistics maintained by the host environment).
In our model, more aggressive policies are defined by allowing simple reads and writes to loca-
tions in the host data region, but forbidding pointers to be followed or modified. We can go even
further by specifying policies that permit untrusted code to follow certain types of valid pointers
in the host data region in order to traverse linked data structures. We can even specify more
aggressive policies that permit untrusted code to change the shape of a host data structure, by
allowing the untrusted code to modify pointers.

The safety properties and policies are introduced to ensure that the integrity of the host envi-
ronment will not be violated and that host resources will not be accessed improperly. A safety pol-
icy can also include safety postconditions for ensuring that certain invariants defined on the host
data are restored by the time control is returned to the host.

3.2 An Abstract Storage Model

We introduce an abstract storage model for describing the memory states at each program
point. The abstract storage model provides the abstract domain for our safety-checking analysis.
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This model includes the notion of an abstract store and linear constraints.

An abstract store is a total map from abstract locations to typestates. An abstract location
summarizes one or more physical locations (e.g., heap- and stack- allocated objects) so that the
analysis has a finite domain to work over. An abstract location has a name, a size, an alignment,
and optional attributes r and w to indicate if the abstract location is readable and writable accord-
ing to the access policy. A typestate describes the type, state, and access permissions of the value
stored in an abstract location. The typestates form a meet semi-lattice. (Typestates are described
in Section 4.1.)

The linear constraints are linear equalities and linear inequalities combined with logical
operators and quantifiers. They are used to represent safety requirements such as array bounds
checks, address alignment checks, and null-pointer checks.

3.3 The Inputs to the Safety-Checking Analysis

The inputs to our safety-checking analysis include the untrusted code, the host-specified
access policy (described in Section 3.1), a host-typestate specification, and an invocation specifica-
tion. All inputs except for the untrusted code are provided by the host. A host-typestate specifica-
tion provides information regarding how functions (methods) in the host can be called. Together
with the access permission x given in the access policy, they specify what host functions can be
called and how they can be called.

A host-typestate specification includes a data aspect and a control aspect. The data aspect
describes the type and the state of host data before the invocation of the untrusted code. The con-
trol aspect provides safety preconditions and postconditions for calling host functions and meth-
ods.

The safety preconditions and postconditions are given in the form of placeholder abstract loca-
tions. The typestate and size of a placeholder abstract location in a safety precondition represent
obligations that the corresponding actual parameter must provide. The placeholder abstract loca-
tions in the postconditions specify the typestates of the corresponding locations after the execu-
tion of the function. Verifying the safety of a call into a host function (method) involves a binding
process that matches the actual parameters with the placeholder abstract locations in the safety
preconditions, and an update process that computes the memory state after the invocation of the
call based on the safety postconditions. A detailed description of how to summarize calls to
trusted functions is given in Section 4.4.

An invocation specification provides the binding information between the resources in the
host and the registers and memory locations that represent the parameters of the untrusted code.
The host-typestate specification, the invocation specification, and the access policy, together, pro-
vide information about the initial memory state at the entry of the untrusted code.
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3.4 The Phases of the Safety-Checking Analysis

Starting from the initial memory state, our analysis will abstractly interpret the untrusted
code to find a safe approximation of memory state at each program point. The approximations of
memory states are described using the abstract storage model. Once our analysis finds the mem-
ory state at each program point (i.e., a description of the state(s) on which each instruction oper-
ates), we use the default safety conditions and the access policy to attach a safety predicate to
each instruction, and check whether each instruction obeys the corresponding safety predicate.

UNTRUSTED CODE
1: mov %00,%02 Il %02=%00
2: clr %00 /Il %00=0
3: cmp %00,%01 I
4: bge 12 I if (%00= %01) goto 12
5: clr %93 Il %g3=0
6: sll %g3, 2,%9g2 Il %g2=4 x %g3
7. 1d [%02+%Q92],%g2 Il %g2=[%02+%g?2]
8: inc %g3 Il %g3= %Qg3+ 1
9: cmp %g3,%01 I
10:bl 6 I if (%g3< %01 goto 6
11:add %00,%g2,%00 Il %00= %00+ %g?2
12:retl
13:nop

Figure 3.1 A Simple Example: Summing the Elements of an Integer Array.

The safety-checking analysis consists of five phases: preparation, typestate-propagation,
annotation, local verification, and global verification. We illustrate these phases informally by
means of a simple example. Figure 3.1 shows a piece of untrusted code (in SPARC assembly lan-
guage) that sums the elements of an integer array. This example will be used a running example
throughout the entire thesis.

Figure 3.2 shows the host-typestate specification, the access policy, and the invocation specifi-
cation. In Figure 3.2, the host-typestate specification states that ap is the base address of an inte-
ger array of size n, where n = 1. We have used a single abstract location e to summarize all
elements of the array ap. The safety policy states that ap and € are in the V region, that all inte-
gers in the V region are readable and operable, and that all base addresses to an integer array of
size n in the V region are readable, operable, and followable. The invocation specification states
that ap and the size of ap will be passed through the registers %00and %01, respectively. The
code uses three additional registers, %02 %g2 and %93

(Note that given the annotation that n is a positive integer before the invocation of the
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{n=1}

ap is an integer array of siz
n, where rzl. e is an
abstract location that sum
marizes all elements ap.

[V :int [n] : rfo]

|ap ande are in the V region
All integers in the V regior
- are readable and operablg
All base addresses to anin
ger array of sizen in the V
region are readable, operg

HOST TYPESTATE AcCCESSs PoLicy INVOCATION
e: <int, initialized, ro> V ={e, ap} %00 ~ ap
ap: <int [n], {e}, rfo> [V :int:ro] %01 — n

ap and the size odp will be
passed through the registe
%600 and %01, respectively
le-

ble, and followable.

[S

Figure 3.2 Host-typestate
policy.

untrusted code, the test at lines 3 and 4 in Figure 3.1 is redundant. However, our technique is
based on annotating the initial inputs to the untrusted code, and it makes no assumption about

how much optimization has been

3.4.1 Preparation

The preparation phase takes the host-typestate specification, the access policy, and the invo-
cation specification, and translates them into initial annotations that consist of linear constraints
and the typestates of the inputs. The initial annotation gives the initial abstract store at the entry
of the untrusted code. The preparation phase also constructs an interprocedural control graph for

the untrusted code.

specification, invocation sp

done to the untrusted code.)

ecification, and access

INITIAL TYPESTATE INITIAL CONSTRAINTS
e:<int , initialized, ro>
%o0<int [n], {e}, rwfo> n=1 [0 n=%ol
%o0l<int , initialized, rwo>
Figure 3.3 Initial Annotations.

For convenience, we have listed the access permissions r and w of an abstract
location together with the f, x, o permissions of the value that is stored in the

location.

For the example in Figure 3.1, the initial annotations are shown in Figure 3.3. The fact that
the address of ap is passed via register %00is described in the second line in column 1, where the
register %00stores the base address of the integer array and points to e. The fact that the size of

ap is passed via the register %01is captured by the linear constraint “n=%01".



24

Note that %00and %01both have the r and w access permissions. These refer to the regis-
ters themselves (i.e., the untrusted code is permitted to read and change the value of both regis-
ters). However, array ap cannot be overwritten because the access permission for €, which acts as
a surrogate for all elements of ap, does not have the w permission.

Also note that in machine code, a register can be used to store values of different types at dif-
ferent program points. In our model, a register or a memory location on the untrusted code’s stack
is always writable.

3.4.2 Typestate Propagation

The typestate-propagation phase takes the interprocedural control flow graph of the untrusted
code and the initial annotations as inputs. It abstractly interprets the untrusted code to annotate
each instruction with an abstract representation of the memory contents using the abstract stor-
age model. The abstract representation of memory characterizes the memory state before the exe-
cution of that instruction.

For our example, this phase discovers that the instruction at line 7 is an array access, with
%02 holding the base address of the array and %g2 representing the index. The instruction at
line 7 loads an integer from e and stores it in the register %g2 Figure 3.4 summarizes the mem-
ory state (the typestates of the abstract locations) before the execution of the load instruction at
line 7. In Chapter 4, we will elaborate the typestate-checking system for the Phase 2 of our
analysis.

ABSTRACT STORE
e:<int , initialized, ro>
%ol<int , initialized, rwo>
%o02<int [n], {e}, rwfo>
%g2<int , initialized, rwo>
%g3<int , initialized, rwo>
Figure 3.4 The Memory State at line 7.

3.4.3 Annotation

The annotation phase takes as input the typestate information discovered in Phase 2, and
traverses the untrusted code to annotate each instruction with safety preconditions and with
assertions. The safety preconditions are divided into local safety preconditions and global safety
preconditions. The local safety preconditions are conditions that can be checked using typestate
information alone. The global safety preconditions will need to be verified via further analysis.
The global safety preconditions include array bounds checks, address alignment checks, and null
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pointer dereference checks.
The assertions are facts that can be derived from the results of typestate propagation. For our

example, the assertions, local safety preconditions, and global safety preconditions for the instruc-
tion at line 7 are summarized in Figure 3.5.

ASSERTIONS LOCAL SAFETY PRECONDITIONS GLOBAL SAFETY PRECONDITIONS
%02is the address of an e is readable; Array bounds checks:
integer array: e is initialized; %g2 0 1%Qg2< 4n
%02mod 4 =0 %g2is writable; [%%g2mod 4 =0
%02% NULL %02is followable and operable

Alignment and
null-pointer checks:
(%02+%g2 mod 4 =0

[1%02 % null

Figure 3.5 Assertions and Safety Preconditions for Line 7.

Because %02 stores the base address of an integer array, it must be word aligned and non-
null. Since the instruction loads the contents from e and stores it into the register %92 the local
safety preconditions state that the location e must be readable and initialized, %0g2must be writ-
able, and %02 must be followable and operable. The global safety conditions verify that the array
index %QZ2is within the array bounds and that the address calculated by “%02+%Q2’ is properly
aligned and non-null.

3.4.4 Local Verification

The local-verification phase checks the local safety preconditions. It performs a linear scan
over the instructions in the untrusted code. In our example, it finds that the local safety precondi-
tions are all true at line 7. We will describe the annotation phase and the local-verification phase
of our analysis in more detail in Chapter 5.

3.4.5 Global Verification

The global-verification attempts to verify the global safety preconditions using program-verifi-
cation techniques. In the presence of loops, we use the induction-iteration method [84] to synthe-
size loop invariants.

To make the global-verification phase more efficient, this phase also incorporates a symbolic
range analysis that propagates range information of registers. This allows the analysis to avoid
using expensive program-verification techniques wherever the range analysis is sufficient to ver-
ify that an array access is within the bounds.
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For our example, symbolic range analysis will find that at line 7 the lower bound of %g2is
zero and the upper bound is 4n-4. This analysis verifies that there are no array out-of-bounds vio-
lations at line 7.

Without using the range analysis, we would have to use the induction-iteration method to
synthesize a loop invariant for the loop in lines 6-11. In this case, to prove that at line 7 index
%gZ2is less than the array upper bound, i.e., %g2< 4n, we need to prove %g3is less than n at
line 6. (Note that the size of an integer is 4 bytes, and %gZ2at line 7 is computed from %g3at line
6 by the sll instruction.) The induction-iteration method can automatically synthesize the loop
invariant “n > %930 n > %01". This invariant implies that “%g3< n” holds at line 6, which in
turn implies that “%g2< 4n” holds at line 7.

In Chapter 6, we will describe the global-verification phase of our analysis in more detail.
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Chapter 4

Typestate Checking

We describe the second phase of our safety-checking analysis. This phase abstractly interprets
the untrusted code to produce a safe approximation of the memory state at each program point.
The safe approximation of memory state is described using an abstract storage model. This model
represents a memory state as a total map from abstract locations to typestates. An abstract loca-
tion summarizes one or more physical locations, and a typestate describes the properties of the
values stored in an abstract location.

This chapter is organized into two parts. In the first part, we describe the basic typestate sys-
tem that includes an abstract storage model, an abstract operational semantics for SPARC
machine-language instructions, and a typestate-checking algorithm that propagates typestate
information. The typestate system incorporates a subtyping relationship among structures and
pointers. This allows our analysis to check the safety of untrusted machine code that implements
inheritance polymorphism via physical subtyping.

In the second part, we describe several techniques that strengthen our basic typestate-check-
ing analysis. These techniques include a way to summarize function calls, and a method to detect
stack-allocated arrays. Summarizing function calls allow our analysis to stop at the trusted
boundaries.

4.1 Typestate System

The safety-checking analysis is based on an abstract storage model. The abstract storage
model includes the notion of an abstract store and linear constraints. (We will describe linear con-
straints in more detail in Section 6.2.)

An abstract store is given by a total map from abstract locations to typestates. By design, the
domain of abstract stores is a finite domain. (In contrast, the concrete stores form an infinite
domain: in general, the number of concrete activation records is unbounded in the presence of
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recursion, as are the number of concrete objects allocated in a loop and the size of concrete linked
data-structures.) Thus, an abstract location summarizes a set of physical locations. An abstract
location has a name, size, offset, alignment, and optional attributes r and w to indicate whether
the location is readable and writable by the untrusted code.

We use absLoc to denote the set of all abstract locations, and the symbols | and m to denote
individual abstract locations. We use Size(l), Align(l), to denote the size and alignment, of abstract
location I. We call an abstraction location that summarizes more than one physical location a
summary location. A register is always readable and writable, and has an alignment of zero.

A typestate records properties of the values stored in an abstract location. A typestate is
defined by a triple <type, state, access>. We define a meet operation [Ilon typestates so that
typestates form a meet semi-lattice. The meet of two typestates is defined as the meet of their
respective components. We describe type, state, and access component of our typestate system in
the next few sections.

4.1.1 Type

In a machine-language program, a register or memory location can be used to store values of
different types at different program points. The typestate-checking algorithm used in the
typestate-propagation phase is a flow-sensitive analysis that determines an appropriate typestate
for each abstract location at each program point by finding the greatest fixed point of a set of
typestate-propagation equations. The typestate system incorporates a notion of subtyping among
structures and pointers. With this approach, each use of a register or memory location at a given
occurrence of an instruction is resolved to a polymorphic type (i.e., a supertype of the acceptable
values).

4.1.1.1 Type Expressions.

The type component of our type system is based on the physical type system of Siff et al [76].
Figure 4.1 shows the language of type expressions used in the typestate system. Compared with
the type system of Siff et al, our typestate system additionally includes (i) bit-level representa-
tions of integer types, (ii) top and bottom types that are parameterized with a size parameter, (iii)
pointer into the middle of an array, and (iv) alignment and size constraints on types (which is not
shown in Figure 4.1).

The type int(g:s:v) represents a signed integer that has g+s+v bits, of which the highest g bits
are ignored, the middle s bits represent the sign or are the result of a sign extension, and the low-
est v bits represent the value. For example, a 32-bit signed integer is represented as int(0:1:31),
and an 8-bit signed integer (e.g., a C/C++ char) with a 24-bit sign extension is represented as
int(0:25:7). The type uint(g:s:v) represents an unsigned integer, whose middle s bits are zeros.



29

t:: ground Ground types

| t[n] Pointer to the base of an array of type t of size n
| t(n] Pointer into the middle of an array of type t of size n
| tptr Pointer to t

| s{mq, ..., m} Struct

| u{mq, ..., m} union

| (..ot -t Function

| T(n) Top type of n bits

| O(n) Bottom type of n bits (Type “any” of n bits)

m: (1, 1) Member labeled | of type t at offset i

ground:int (g:sv) |uint  (g:swv) |

Figure 4.1 A Simple Language of Type Expressions.

t stands for type, and m stands for a structure or union member. Although the language in
which we have chosen to express the type system looks a bit like C, we do not assume that
the untrusted code was necessarily written in C or C++.

A bit-level representation of integers allow us to express the effect of instructions that load (or
store) partial words. For example, the following code fragment (in SPARC machine language) cop-
ies a character pointed to by register %01to the location that is pointed to by register %0Q

Idub [%01],%g2
stb %g2,[%00]

If %01 points to a signed character and a C-like type system is used, typestate checking will
lose precision when checking the above code fragment. There is a loss of precision because the
instruction “ldub [%01], %g2 ” loads register %g2with a byte from memory and zero-fills the
highest 24 bits, and thus a naive type system (such as that is described in [94]) treats the value in
%g?2as an unsigned integer. In contrast, with the bit-level integer types of Figure 4.1, we can
assign the type int (24:1:7) to %g2after the execution of the load instruction. This preserves the
fact that the lowest 8 bits of %g2store a signed character (i.e., an int (0:1:7)).

The type t(n] denotes a pointer that points somewhere into the middle of an array of type t of
size n. Introducing pointers into the middle of an array allow our analysis to handle array point-
ers with better precision. For example, consider a program that reads from the elements of an
array by advancing a pointer that initially points to the base address of the array at each iteration
of a loop. The static type of the pointer inside of the loop will be a pointer into the middle of the
array. This preserves the fact the pointer points to some element of the array. In contrast, a naive
type system would conclude that the pointer is a pointer to the element type of the array. With the
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naive type system, we would have to forbid pointer arithmetic that advances the pointer to point
to another element of the array.

.. 1
[ReﬂeXW'ty]W [TOP]Wt [Bottom t <: O(sizeoft))
[Ground] g+s+v_:9 S +V 9 S,,g," \,/S Y [First Member] m =050t t

int (g:isv) < int (g':s:V) s{my, ..., m} <t

uint (g:isv) < uint (g:s:Vv)
uint (gisv) <iint (g':s:Vv)

[Structures] k' <k, m< ml me < mk [Members] m=(, t, |) m'=(", t,i"), 1=, =it <t
s(My,..., m) <:s (MY, ..., mje) m<:m
[Pointer] t<t [Array] ———
tptr <t ptr ti] < t(]
t (i) <:t[0]

Figure 4.2 Inference Rules that Define the Subtyping Relation.

4.1.1.2 A Subtyping Relation.

We now introduce a notion of subtyping on type expressions, adopted from the physical-sub-
typing system of Chandra and Reps [14], which takes into account the layout of aggregate fields in
memory. Figure 4.2 lists the rules that define when a type t is a physical subtype of t' (denoted by t
<: t'). Note that the subtype ordering is conventional. However, during typestate checking the
ordering is flipped: t;< t, in the type lattice iff t, < t;.

In Figure 4.2, the rules [Top], [Bottom], [Ground], [Pointer], and [Array] are our additions to
the physical-subtyping system given in [14]. An integer type t is a subtype of type t' if the range
represented by t is a subrange of the range represented by t', and t has at least as many sign-
extension bits as t'. Rule [First Member] states that a structure is a subtype of a type t if the type
of the first member of the structure is a subtype of t. The consequence of this rule is that it is valid
for a program to pass a structure in a place where a supertype of its first member is expected. The
rules [Structures] and [Members] state that a structure s is a subtype of s’ if s’ is a prefix of s, and
each member of s’ is a supertype of the corresponding member of s. Rule [Members] gives the con-
straints on the corresponding members of two structures. Rule [Pointer] states if t is a subtype of
t', then t ptr is a subtype of t' ptr . Rule [Array] states that a pointer to the base of an array is a
subtype of a pointer into the middle of an array, and that all array types whose element type is tis
a physical subtype of t [0]. (Rule [Array] is a little crude. It states that the meet of two array types
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of different sizes will return an array of size zero. This could cause the typestate-checking analy-
sis to lose precision when checking certain programs. We will outline a solution to this problem in
Section 7.3.2.)

When we make use of this notion of subtyping in the safety-checking analysis (see
Section 4.3), an assignment is legal only if the type of the right-hand-side expression is a physical
subtype of the type of the receiving location, and the receiving location has enough space. The
Rule [Array] is valid because t(i] describes a larger set of states than t[i]. (The global-verification
phase of the analysis will check that all array references are within bounds.)

struct Point { struct ColorPoint { void f(Point* p) {
int(0:1:31) x; int(0:1:31) x; p->x++;
int(0:1:31) y; int(0:1:31) y; p->y--;
b uint(24:0:8) color; }
¥

Figure 4.3 Subtyping Among Pointer Types.

Allowing subtyping among integer types, structures, and pointers allows the typestate-check-
ing analysis to handle code that implements inheritance polymorphism via physical subtyping.
For example, for a function that accepts a 32-bit integer, it is legal to invoke the function with an
actual parameter that is a signed character (i.e., int (0:1:7)), provided that the value of the actual
parameter is stored into a register or into memory via an instruction that handles sign extension
properly. In this case, the actual parameter is a physical subtype of the formal parameter.
Figure 4.3 shows another example that involves subtyping among structures and pointers.
According to the subtyping inference rules for structures and pointers, type ColorPoint* is a
subtype of Point* . Function f is polymorphic because it is legal to pass an actual parameter that
is of type ColorPoint*  to function f .

4.1.1.3 Typestate Checking with Subtyping.

Readers who are familiar with the problems encountered with subtyping in the presence of
mutable pointers may be suspicious of rule [Pointer]. In fact, rule [Pointer] is unsound for tradi-
tional flow-insensitive type systems in the absence of alias information. This is because a flow-
insensitive analysis that does not account for aliasing is unable to determine whether there are
any indirect modifications to a shared data structure, and some indirect modifications can have
disastrous effects. Figure 4.4 provides a concrete example. The statement at line 8 changes
clrPtr  to point to an object of the type Point indirectly via the variablet, so that clrPtr  can no
longer fulfill the obligation to supply the color field at line 9. Figure 4.5 shows the contents of
the store after each statement of function f2 .

A static technique to handle this problem must be able to detect whether such disastrous indi-
rect modifications could happen. There are several approaches to this problem found in the litera-
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typedef Point *PointPtr;
typedef ColorPoint *ColorPointPtr;

ColorPoint clr;

Point bw;

void f2(void) {
PointPtr bwPtr = &bw;
ColorPointPtr clrPtr = &clr;
ColorPointPtr *r = &clrPtr;
PointPtr *t =r;
*t = bwPtr;
clrPtr->color = 1;

BoeoNoahhwdRE

0: }
Figure 4.4 Rule [ Pointer] is unsound for flow-insensitive type checking

in the absence of aliasing information.
(Assume the same type declarations as shown in Figure 4.3.)

After 4: - --sseieiaiaiai o [BWPE > bW
After5: - - - - - - - WP |-5w ]

After 6: . . [T}—>[CIFPTr__}>[clr ] BWPTr }->pw

After 7: ... > PWPT }->bwi
After 8: e clr [BWPTr =Hw ]

Figure 4.5 The contents of the store after each statement of function
f2 of Figure 4.4.

ture. For example, the linear type system given in [88] avoids aliases altogether (and hence any
indirect modifications) by “consuming” a pointer as soon as it is used once. Smith et al [81] use
singleton types to track pointers, and alias constraints to model the shape of the store. (Their goal
is to tracks non-aliasing to facilitate memory reuse and safe deallocation of objects.)

Another approach involves introducing the notions of immutable fields and objects [1]. The
idea is that if t is a subtype of type t', type t ptr is a subtype of t' ptr only if any field of t that is
a subtype of the corresponding field of t' is immutable. Moreover, if a field of t is a pointer, then
any object that the field points to must also be immutable. This rule applies transitively. For this
approach to work correctly, a mechanism is needed to enforce these immutability restrictions.

Our work represents yet a fourth technique. Our system performs typestate checking, which
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is a flow-sensitive analysis that tracks aliasing relationships among abstract locations. (These
state descriptors resemble the storage-shape graphs of Chase et al [15], and are similar to the dia-
grams shown in Figure 4.5. We describe the state component of our typestate system in
Section 4.1.2.) By inspecting the storage-shape graphs at program points that access heap-allo-
cated storage, we can (safely) detect whether an illegal field access can occur. For instance, from
the shape graph that arises after statement 8 in Figure 4.4, one can determine that the access to
color in statement 9 represents a possible memory-access error. Programs with such accesses are
rejected by our safety checker.

Scalars Pointers Aggregates
{m} {nuli} <[igg], [i]>
[ [ \ / TN
{m, nully /<[itﬂ’ [Ut2]>\ /<[Ut1]’ [it2]>\
[t ] [Upo] ‘ <[lial, Us> <[ud, [ul> <Us [it]>
[up] AN / AN /
<[unl, Us> <O, [u]>
|]S

Figure 4.6 A Portion of the State Lattice.

4.1.2 State

The state component of a typestate captures the notion of an object of a given type being in an
appropriate state for some operations, but not for others. The state lattice contains a bottom ele-
ment, denoted by (s that represents an undefined value of any type. Figure 4.6 illustrates
selected elements of the state lattice. For a scalar type t, its state can be [uy] or [i], which denote
uninitialized and initialized values, respectively. For a pointer type p, its state can be [up], which
is the state of an uninitialized pointer, or P, a non-empty set of abstract locations referenced,
where one of the elements of P can be null. For sets P, and P,, we define P; < P, iff P, 0 P;. For an
aggregate type G, its state is given by the states of its fields. Since we also use the state descrip-
tors to track abstract locations that represent pieces of stack- and heap-allocated storage, they
resemble the storage-shape graphs of Chase et al [15].
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4.1.3 Access Permissions

An access permission is either a subset of {f, x, 0}, or a tuple of access permissions. If an
abstract location stores an aggregate, its access permission will be a tuple of access permissions,
with the elements of the tuple denoting the access permissions of the respective aggregate fields.
The meet of two access-permission sets is their intersection. The meet of two tuples of access per-
missions is given by the meet of their respective elements.

The reader may be puzzled why an access policy is defined in terms of five kinds of access per-
missions (r, w, f, X, and 0), whereas typestates have only three kinds (f, x, and 0). The reason is that
f, x, and o are properties of a value, whereas r and w are properties of a location. Typestates cap-
ture properties of values. Access policies specify the r and w permissions of abstract locations, as
well as f, x, and o permissions of their values.

In our model, a constant always has access permission o.

4.2 An Abstract Operational Semantics for SPARC Instructions

An abstract store is given by a total map M: absLoc - typestate. We define the abstract oper-
ational semantics of a SPARC machine instruction as a transition function R: M - M. We use T(l),
S(I), and A(l) to denote the type, state, and access component of the typestate of abstract location
I, respectively.

Because machine-code operations are overloaded, the typestate lattice also includes a top ele-
ment T. This allows the typestate-propagation algorithm to perform overload resolution on-the-fly
(see Section 4.2.1).

4.2.1 Overload Resolution

We determine an appropriate typestate for each abstract location at each program point by
finding the greatest fixed point of a set of typestate-propagation equations (see Section 4.2.2).
Overload resolution of instructions such as add and Id falls out as a by-product of this process:
The type components of the typestates obtained for the arguments of overloaded instructions let
us identify whether a register holds a scalar, a pointer, or the base address of an array (and hence
whether an instruction such as “add %00,%g2,%00” represents the addition of two scalars, a
pointer indirection, or an array-index calculation). To achieve this, we define the abstract opera-
tional semantics of SPARC machine instructions to be strict in T. Consequently, during typestate
checking, propagation of information through the instructions of a loop is delayed until a non-T
value arrives at the loop entrance.

One artifact of this method is that each occurrence of an overloaded instruction is resolved to
just a single usage kind (e.g., scalar addition, pointer indirection, or array-index calculation). We
call this the single-usage restriction. We believe that this restriction does not represent a signifi-
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cant limitation in practice because we are performing typestate checking (which is flow sensitive).
For example, typestate checking allows an instruction such as “add %00,%g2,%00 " to be resolved
as a pointer indirection at one occurrence of the instruction, but as an array-index calculation at a
different occurrence.

In the remainder of this section, we assume that we have non-T values at our disposal.

1 ‘ 2
strg, [r +n]
OPERATION addrg, Opnd ry sha
. . Store to an aggregate field
Scalar add ?{:Sy:?([ﬁx caleulation | o {sB|sOSry),
ASSUMPTION B O lookUpN(T(s), n, 4)}
1. if F={1},
if | is not a summary location,
T LT(rg =t(n] TOTrS:
1.T(rg) =T(rgy LIT(Opnd. T(rg=t(n]. S
2. forl #r g, T(1) = T(). 2. forl 216 T()=T0). |, i?tlh;rfsf (=19 ().
TYPE-PROPAGATION for | OF, T'(1)=T(rg ().
RULE 3. forl OF T'(I) =T().
1. if F={1},
if | is not a summary location,
ey LS(rg =Sr) S(1)=S(ry:;
1.5(rg) =Sr9 [HOpng.  |1.S(rg) =S(ry. NN
2. forl #rg, S(I) = ). 2. forl #ry, S(I) = ). , i?tlfllzelr;N:ll-seS H=S(ry DIS(')
STATE- for | OF, S(1)=S(ry [I5().
PROPAGATION RULE 3.forl OF, S(I) =9).
1L ifF={l},
if | is not a summary location,
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2. forl #r g A(l) = Al). 2. forl 21 A() =AQ). |, i?ThFeer"l'seA(') Al n AlrY-
ACCESS- forl O F Al =A0) n A(ry).
PROPAGATION RULE 3. forl OF, A(l) = A(l).

Figure 4.7 Pr