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On-line Automated Performance Diagnosis on
Thousands of Processes

Abstract
Performance analysis tools are critical for the effective use of

large parallel computing resources, but existing tools have failed to
address three problems that limit their scalability: (1) management
and processing of the volume of performance data generated when
monitoring a large number of application processes,
(2) communication between a large number of tool components,
and (3) presentation of performance data and analysis results for
applications with a large number of processes. In this paper, we
present a novel approach for finding performance problems in
applications with a large number of processes that leverages our
multicast and data aggregation infrastructure to address these three
performance tool scalability barriers. 

First, we show how to design a scalable, distributed performance
diagnosis facility. We demonstrate this design with an on-line,
automated strategy for finding performance bottlenecks. Our
strategy uses distributed, independent bottleneck search agents
located in the tool agent processes that monitor running application
processes. Second, we present a technique for constructing compact
displays of the results of our bottleneck detection strategy. This
technique, called the Sub-Graph Folding Algorithm, presents
bottleneck search results using dynamic graphs that record the
refinement of a bottleneck search. The complexity of the results
graph is controlled by combining sub-graphs showing similar local
application behavior into a composite sub-graph.

Using an approach that combines these two synergistic parts, we
performed bottleneck searches on programs with up to 1024
processes with no sign of tool resource saturation. With 1024
application processes, our visualization technique reduced a search
results graph containing over 30,000 nodes to a single composite
44-node graph sub-graph showing the same qualitative
performance information as the original graph.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Measurement techniques, Performance attributes.

General Terms Performance, Measurement.

Keywords Scalability, performance diagnosis, tools, automation, 
Paradyn.

1 Introduction
Computational science has become a primary approach for

addressing open questions in areas like biology, nuclear physics,
and climate studies. The desire to address such problems at high
fidelity has driven the increasing deployment of high-end parallel
systems and clusters with thousands or even hundreds of thousands
of processors. However, achieving the computational potential of
these large-scale systems has proven difficult. Applications that
achieve more than a small percentage of a system’s peak perfor-
mance are the exception, not the rule. 

Tuning the performance of a parallel program to make better
use of a large-scale system requires a thorough understanding of
the program’s behavior. Tools for identifying and diagnosing per-
formance problems are critical for understanding program behav-
ior on large-scale systems, but such tools must be scalable to be
effective. We have identified three barriers that keep performance
tools from scaling: 
• management of large-volume performance data flows generated

when monitoring a large number of processes;
• efficient control of a large number of tool agent processes; and
• presentation of performance diagnosis results for a large num-

ber of processes.
In previous work [27], we partially addressed these scalability

barriers with infrastructure called MRNet that uses an overlay net-
work of processes to provide multicast and data aggregation ser-
vices for tools. Because it provides a scalable mechanism for
obtaining global application performance data (data describing the
behavior of all application processes) such as average CPU utiliza-
tion across all processes, this infrastructure allowed us to partially
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address the first scalability barrier. The infrastructure’s multicast
functionality enables us to address the second scalability barrier by
providing a scalable mechanism for communication between a
large number of tool components. Nevertheless, because a tool
must consider local application behavior (the behavior of individ-
ual application processes) in addition to global behavior, and
because the data describing local behavior is not aggregated before
it is analyzed, our MRNet approach alone is insufficient to address
the three scalability barriers.

To address all three scalability barriers, we propose a novel per-
formance diagnosis approach for finding performance problems in
applications with a large number of processes. Our approach has
two synergistic parts. The first part is a scalable and distributed
performance diagnosis facility. We demonstrate this design in the
form of an on-line, automated strategy for finding performance
bottlenecks. The strategy uses search, a well-established technique
for methodically examining a solution space. The second part is a
technique for constructing compact displays of the results of our
search-based bottleneck detection strategy. In this technique, called
the Sub-Graph Folding Algorithm (SGFA), bottleneck search
results are presented using dynamic graphs that record the refine-
ment of a bottleneck search. To control the complexity of the
results graph, sub-graphs showing similar local application behav-
ior are combined into a composite sub-graph. In effect, the SGFA
dynamically clusters application processes based on their qualita-
tive behavior. Both parts of our performance diagnosis approach
rely on a multicast and data aggregation infrastructure like MRNet
for scalable communication and data processing.

We focus on on-line automated performance bottleneck detec-
tion techniques (those that perform the bulk of their analysis while
the application runs, with minimal user involvement) because we
believe they are highly effective for large-scale performance tun-
ing. First, they relieve the user from the difficult task of identifying
which performance data is important. Because the data volume
generated when monitoring large-scale applications can be mas-
sive, the ability to automatically find the interesting data is
extremely valuable. Second, they relieve the user from having to
understand the complex interactions between application, operat-
ing system, and hardware. The user need not be a performance tun-
ing expert to use an on-line automated tool effectively because the
expertise is built into the tool. Finally, they can adapt their activity
in response to the application’s behavior as it runs. This ability
allows on-line automated techniques to adapt the data being col-
lected to obtain useful results from only a single application
run [22] and to collect and process a smaller volume of perfor-
mance data than tools that cannot adapt the data they collect during
a run.

The overall contribution of this research is in the area of perfor-
mance tool scalability. More specifically, the contributions of this
work are:
• the design and evaluation of a new, distributed search strategy

for finding performance bottlenecks in applications with a large
number of processes;

• a new model for expressing the cost of instrumentation in paral-
lel computation, designed for use with our distributed bottle-
neck search strategy; 

• a new approach for making concise graphical presentations of
the results of a bottleneck search (i.e., the SGFA); and 

• the recognition that the synergy between a distributed bottle-

neck search strategy and the SGFA allows us to avoid explicit
examination of the application’s global behavior.
To evaluate our new approach to automated performance diag-

nosis, we performed a scalability study using a prototype imple-
mentation of our performance diagnosis approach to find
bottlenecks in a quantum chromodynamics (QCD) application run-
ning on a Linux cluster. Because the goal of our work is to improve
the scalability of performance tools as opposed to parallel applica-
tions, we measured characteristics of the performance tool that
indicate a scalability bottleneck within the tool system itself. In
particular, for each process in the prototype tool implementation,
we measured the tool process’ CPU utilization and I/O behavior,
looking for signs of resource saturation caused by the tool pro-
cesses. In experiments with up to 1024 application processes, we
performed bottleneck searches of the QCD application with no
sign of tool resource saturation. We describe these results in more
detail in Section 4.1.

During our study, we also considered the scalability of our new
performance bottleneck search results visualization technique, the
SGFA. We quantified the scalability of the SGFA by considering
the number of nodes in a bottleneck search results graph as a mea-
sure of its complexity, and by assuming that it is preferable to min-
imize the number of graph nodes. In the most demanding scenario
with 1024 application processes, the SGFA reduced a bottleneck
search results graph containing over 30,000 nodes to a 44-node
graph containing a single composite sub-graph showing the same
qualitative performance diagnosis information as the original
graph. The complete results of this part of our evaluation are pro-
vided in Section 4.2.

In the next two sections, we detail our performance diagnosis
approach for programs with a large number of processes. In
Section 2 we present our design for a scalable data analysis and
performance diagnosis facility. In Section 3 we describe the Sub-
Graph Folding Algorithm. We present the results of the evaluation
of our approach in Section 4, and conclude in Section 5 with a dis-
cussion of previous work related to our research.

2 Scalable Bottleneck Detection
The first part of our scalable performance diagnosis approach is

a distributed data analysis and performance diagnosis facility,
embodied in the design of an on-line, automated strategy for find-
ing performance bottlenecks. The strategy addresses the problem
of efficiently examining both the local and global behavior of
applications with a large number of processes.

Our bottleneck search strategy adopts the search refinement
rules of the Performance Consultant [5,16,22], Paradyn’s auto-
mated performance diagnosis component. Like the Performance
Consultant, our bottleneck search strategy performs experiments
that determine whether an application is exhibiting performance
problems and, if so, where the problem is occurring. Each experi-
ment consists of a hypothesis, a reason why the application may be
exhibiting a performance problem, and a focus that indicates where
in the application the hypothesis will be tested. The Performance
Consultant uses a small number of built-in hypotheses such as “too
much time spent blocked for I/O” and “CPU bound.” Using a hard-
ware counter access facility like the Performance Application Pro-
gramming Interface (PAPI) [4], the Performance Consultant can
also create hypotheses based around hardware counters such as L2
cache misses. An experiment’s focus is constructed using program
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resources that name the static and dynamic entities that comprise
the program. The functions that constitute the program’s execut-
able code are resources, as are its processes and the hosts on which
they are running. The synchronization objects used by the applica-
tion (such as message tags, barriers, spin locks, and semaphores)
are also program resources. Program resources are arranged in
hierarchies as shown in Figure 1. In a resource hierarchy, each
resource represents all resources organized beneath it within its
hierarchy. For example, the Code resource represents all functions
in the application’s executable. An experiment’s focus is a tuple is
a tuple containing one resource from each resource hierarchy, pro-
viding a concise name for a potentially large set of resources. For
example, one experiment performed during our scalability study
with the QCD application had the focus </Code/con-
trol.c/main,/Machine, /SyncObject>. Because this
focus specifies the top level Machine resource, the focus does not
constrain the set of resources it names to any particular host—it
names the collection of main functions from all application pro-
cesses. Another experiment used the focus
</Code/update_h.c/update_h,/Machine/mcr498/-
su3_rmd{2473},/SyncObject>, which denotes only the
update_h function from process 2473 on host mcr498 because
it names specific resources from both the Code and Machine
resource hierarchies.

Dynamic instrumentation [15] is used to collect performance
data to test an experiment’s hypothesis at the program locations
named by the experiment’s focus. If the performance data collected
for an experiment is above the user-configurable threshold associ-
ated with the experiment’s hypothesis, the search is refined to cre-
ate more specific experiments. A bottleneck search begins with
experiments that test general performance problems, such as
whether the entire application is spending too much time waiting
for communication operations. With successive search refine-
ments, the search pinpoints the nature and location of application
bottlenecks. The Performance Consultant can refine its search to
the level of individual functions and loops. 

Because the Performance Consultant inserts instrumentation
into application processes as they run, each process’ behavior is

altered slightly from what it would have been if it were uninstru-
mented. With a user-configurable threshold for the cost of instru-
mentation, the Performance Consultant can limit the effect of its
instrumentation on the application’s behavior. For sensitive appli-
cations, the search can be made less aggressive to reduce the tool-
induced load and perturbation on system resources. Our new per-
formance diagnosis approach improves on our ability to control
instrumentation overhead with our new instrumentation cost model
(described in Section 2.1). Furthermore, our distributed bottleneck
search strategies add little new perturbation on the system nodes,
as demonstrated by our evaluation results (Section 4.1).

The results of a performance bottleneck search are shown effec-
tively in a search history graph (Figure 2) that records the cumula-
tive refinements of a search. Figure 2 focuses on the part of the
graph that shows the qualitative CPU utilization behavior of sev-
eral application processes. Each node in the graph represents an
experiment. The node’s background color indicates whether the
experiment is true (blue, or dark gray in black-and-white), false
(pink, or light gray), or not yet known (none shown in Figure 2).
The color of a node’s label indicates whether the experiment’s
dynamic instrumentation has been inserted (white) or is not cur-
rently active (black). At the root of the graph is a node labeled
“TopLevelHypothesis” representing a virtual experiment
that tests whether there are any performance problems in the appli-
cation as a whole. This virtual experiment involves no instrumenta-
tion. Rather, at the start of a bottleneck search this virtual
experiment is immediately refined to create a small number of
experiments for the entire application with specific hypotheses like
“the application is CPU bound” and “the application is spending
too much time waiting for I/O operations.” Figure 2 focuses on
experiments testing the CPUBound hypothesis. In a search history
graph, two nodes are connected by an edge if their associated
experiments are related by refinement (i.e., one experiment was
refined to create the other, more specific experiment). A node’s
label and its parent node’s label indicate the nature of the refine-
ment. For instance, the node labeled CPUb-
ound:mcr128.llnl.gov in the figure represents an
experiment testing whether all application processes running on

Figure 1: Program resources arranged into hierarchies. 
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the host mcr128.llnl.gov are CPU bound. This experiment
was found to be true, and the experiment was refined to create two
new experiments, each of which test whether a specific application
process (with process ID 1474 and 1475, respectively) are CPU
bound. Although we adopt Paradyn’s Search History Graph dis-
play, other tools have adopted hierarchical visualizations of search-
based performance diagnosis results similar to the approach
described here [24,31].

In traditional on-line parallel performance tools, the tool front-
end process identifies application performance problems by ana-
lyzing data generated by tool daemons that monitor the applica-
tion’s processes. For example, in the traditional Performance
Consultant, the bottleneck search strategy described above is per-
formed entirely within the tool’s front-end process. (Tool daemons
generate the raw performance data, but the tool front-end is
responsible for all analysis and search control.) Because central-
ized performance data and tool control processing limit tool scal-
ability as the number of application processes grows, our new
search strategy distributes portions of the search that examine local
application behavior (hereafter called “sub-searches”) to reduce
centralization of tool activities. In particular, our search strategy
distributes sub-searches that examine the behavior of each applica-
tion process to a search agent within the daemon that monitors the
process. It is important to note that the new bottleneck search strat-
egy uses the same number and placement of tool daemons as the
traditional centralized strategy.

Distributing local sub-searches has two benefits for automated
performance diagnosis tools over a centralized approach. First, dis-
tributed sub-searches reduce centralized processing of data and
control messages within the tool. Under our search strategy, the
parts of a search that examine the behavior of a particular applica-
tion process is delegated to a local search agent within the tool dae-
mon that is monitoring the process. Data and control messages for
that sub-search are processed entirely within the daemon instead of
being communicated to the tool’s front-end process. The second
benefit is that distributed sub-searches can reduce the time needed
to complete a search. Each distributed sub-search investigates local
application behavior on a single, independent host, so the tool may
perform these distributed sub-searches in parallel. Because local
sub-searches form a sizeable fraction of the total search for appli-
cations with a large number of processes, performing local sub-
searches in parallel can reduce the time required to complete a
search. 

Our bottleneck search strategy adopts the call-graph-based
search refinement of Paradyn’s Performance Consultant (the “cen-
tralized approach” or CA). We investigated two alternatives for
distributing local bottleneck searches: a partially distributed
approach (PDA) that requires complex management of the search’s
dynamic instrumentation, and a truly distributed approach (TDA)
that retains the PDA’s functionality while eliminating instrumenta-
tion management complexity.

Figure 2: Part of a traditional Search History Graph display
True experiments are shown as blue nodes (dark gray in black-and-white), false experiments are shown as pink nodes (light gray).Only a 

portion of the full search history graph can be shown—the full graph has over 30,000 nodes. 
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2.1 Partially Distributed Approach
The PDA consists of three parts: a partially distributed perfor-

mance bottleneck search strategy, a model for expressing the cost
of dynamic instrumentation in parallel computation, and a policy
for scheduling instrumentation generated by both the centralized
and distributed parts of the search.

Under the traditional Performance Consultant’s search refine-
ment rules, the initial experiments of a search investigate a hypoth-
esis about the application’s global behavior, such as whether the
application as a whole is CPU bound. When an experiment dealing
with global application behavior is refined to examine the applica-
tion’s behavior on specific hosts, our new search strategy delegates
control for the host-specific experiments (and all experiments
refined from them) to a local search agent running on that host. For
example, when an experiment labelled “CPUBound” is refined to
an experiment labelled “mcr128.llnl.gov”, that experiment
will be performed by the local search agent running within the tool
daemon on the host mcr128.llnl.gov. Furthermore, that
experiment becomes the root of a sub-search performed by the
local search agent that examines local behavior of the application
processes on that host.

Our goal in using a distributed performance bottleneck search
strategy is to off-load at least some of the performance diagnosis
activity from the tool’s front-end. However, distributing the bottle-
neck search introduces two requirements on the approach used to
monitor and control our search’s dynamic instrumentation:
• Local search agents must be able to make independent decisions

about inserting and removing the instrumentation that supports
their local sub-searches; and

• Instrumentation requests for collecting global performance data
must be satisfied by all tool daemons at approximately the same
time so that data from all application processes is available to
form the aggregated global data value. 

The traditional Performance Consultant’s centralized search con-
trol and single instrumentation cost value satisfy the second
requirement because decisions about when to insert dynamic
instrumentation are made centrally with complete instrumentation
cost knowledge. However, such a centralized decision-making
scheme does not satisfy the first requirement.

To allow local search agents to make decisions independently
about their own local data instrumentation, our distributed perfor-
mance diagnosis strategy represents the cost of instrumentation in
parallel computation using a model that maintains the cost of
instrumentation in each application process. More specifically, for
an application with P processes, the model expresses the instru-

mentation cost as where  is the instru-

mentation cost in application process i, . The benefit of
maintaining the instrumentation cost for each application process
is that it allows each local search agent to restrict its view of the
application’s overall instrumentation cost. Each local search agent
tracks only the cost of instrumentation in the processes it controls.

Although having each local search agent maintain instrumenta-
tion cost information only for local processes allows the PDA to
satisfy the first instrumentation management requirement, it com-
plicates our ability to satisfy the second requirement when sched-
uling a workload with both local and global instrumentation
requests. Local search agents do not have complete information
about an application’s instrumentation cost, so they cannot be

guaranteed to make the same scheduling decision based on their
own cost information in response to a global instrumentation
request from the tool’s front-end. A reliable distributed consensus
algorithm (e.g., [6,18]) could be used in the PDA to enable the col-
lection of local search agents to reach the same decision regarding
global instrumentation, however such an algorithm implementation
would place unacceptable computation and communication load
on daemon processes. It also would require communication chan-
nels between daemon processes that do not exist in our existing
tool communication model. The PDA centralizes decision making
for global instrumentation requests, using MRNet to gather and
aggregate instrumentation cost information. 

For simplicity, the PDA uses a fixed-partition policy for sched-
uling both local and global instrumentation. The combined instru-
mentation cost threshold defines the available instrumentation
capacity. The fixed partition ensures that instrumentation of one
class does not starve instrumentation of the other. This policy
trades the potential for unused search capacity against the guaran-
tee that a local search will not block the global search and vice
versa. Because the local and global search agents use the same
search refinement rules, we expect them to produce similar
sequences of instrumentation requests. Therefore, once the overall
search reaches steady state we expect both local and global instru-
mentation to be throttled by the cost limits under instrumentation
scheduling policy.

2.2 Totally Distributed Approach
Initial experience with the PDA showed that it yields the

expected tool scalability benefit, but at a cost in tool complexity
due to the need to schedule and track instrumentation cost for both
global and local instrumentation. A truly distributed bottleneck
search strategy (i.e., one with no centralized search component for
global instrumentation) would avoid the increased tool complexity
while retaining the scalability advantages of the partially distrib-
uted strategy.

Because the TDA performs no explicit examination of the appli-
cation’s global behavior, it must infer global behavior using local
behavior information. There are several possible approaches for
making this inference. The first approach is to assume that the
behavior across all application processes is so similar that bottle-
neck search results taken from a limited number of processes is
representative of all the others. This approach fails if the chosen
processes are not truly representative of the other processes. A bet-
ter approach is to incorporate information from all application pro-
cesses into the approximation. With this approach, the bottleneck
search results can identify not only behavioral variations across all
application processes, but also can identify how many and possibly
which processes exhibit each type of behavior. Information about
each application process must be included to ensure that the our
search strategy’s global bottleneck results truly represent the appli-
cation’s global behavior. 

In our TDA design, we use the Sub-Graph Folding Algorithm
(Section 3) to approximate the application’s qualitative global
behavior. Because the SGFA dynamically clusters application pro-
cesses based on their qualitative local behavior, and retains infor-
mation about the number of processes in each category, our TDA
technique does not sacrifice insight into an application’s global
behavior. 

C c1 c2 … cP, , ,( )= ci

1 i P≤ ≤
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3 Sub-Graph Folding Algorithm
With the Sub-Graph Folding Algorithm, our performance diag-

nosis approach also addresses the scalability barrier of qualita-
tively aggregating performance diagnosis results for a large
number of processes. For a handful of application processes, the
search history graph (Figure 2) is effective for showing the results
of a bottleneck search. However, because the Search History Graph
display shows search results for individual application processes
with one sub-graph per process, the display does not scale. 

Using ideas from scalable performance visualization [7,17],
experiment management for performance tuning [16], and the
PRISM parallel debugger [28], we developed the Sub-Graph Fold-
ing Algorithm (SGFA) for visualizing the results of a performance
bottleneck search. The SGFA combines sub-graphs based on the
qualitative behavior of hosts and processes into a composite sub-
graph. Sub-graphs indicating similar qualitative behavior are cate-
gorized together in the composite sub-graph. We expect the num-
ber of such behavioral categories to be small for most applications,
allowing SGFA to produce search result displays that are substan-

tially more compact than the traditional Search History Graph dis-
play. Figure  shows the result of applying the SGFA to the result of
a TDA bottleneck search on 1024 application processes. There are
44 nodes in the folded graph; the original graph had over 30,000.
Like Paradyn’s traditional Search History Graph display, nodes
with the same parent and no children of their own are collapsed
into a meta-node to reduce screen area demands.

Processes with similar qualitative behavior are represented in
the traditional Search History Graph display as sub-graphs with
similar shapes and node truth values. The SGFA incrementally
produces a composite sub-graph from the similar sub-graphs from
each host. As each node is added to the original graph, the SGFA
traverses the node’s sub-graph in the original graph and the com-
posite sub-graph together. If an equivalent node is not already
present in the composite sub-graph, the SGFA adds the sub-graph
rooted at that node in the original sub-graph to the composite sub-
graph. In the example folded graph shown in Figure , the SGFA
has created a single composite sub-graph that represents all of the
un-folded sub-graphs. 

Example of a Search History Graph display after applying the SGFA
This is the complete folded form of the Search History Graph partially shown in Figure 2; whereas the un-folded graph has over 30,000
nodes, the folded graph contains 44 nodes. Nodes with “thermometer” gauges represent multiple experiments in the un-folded graph. Each
bar indicates what fraction of the experiments its node represents. The label “su3_rmd{*}” represents multiple process names in the un-
folded graph. True experiments are shown as blue nodes (dark gray in black-and-white), false experiments are shown as pink nodes (light
gray in black-and-white). Like Paradyn’s traditional Search History Graph display, nodes with the same parent but no children of their own
are collapsed into a meta-node to reduce the screen area required for rendering the graph. The thermometer gauge for each sub-node in a
meta-node are still drawn immediately to the right of the sub-node within the collapsed node, separated by a thin line.
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When folding sub-graphs into a composite graph, SGFA must
identify node equivalence. SGFA considers several node character-
istics when determining whether two nodes are equivalent; the
characteristics used depend on the types of the nodes under consid-
eration. For some types of nodes, such as those labelled with host
or process names, SGFA does not require node labels to be identi-
cal for the nodes to be considered equivalent. For example, when
comparing the nodes labelled “su3_rmd{3751}” and
“su3_rmd{1634}” in Figure 2, the SGFA uses executable name
but disregards process ID values. On the other hand, there are node
types whose labels must be identical for the nodes to be considered
equivalent. This category of nodes includes nodes whose labels
name resource categories (e.g., Message) or specific application
functions. The SGFA always considers truth value when determin-
ing node equivalence.

Some nodes in a folded graph represent multiple experiments
from the original graph. In our presentation approach, each node in
a folded sub-graph is shown with a thermometer gauge to indicate
the fraction of experiments it represents. For example, there are
two nodes labelled “update_h” in Figure . The thermometer
gauge on the node representing experiments with a “true” truth
value is mostly shaded, indicating that the experiment on function
update_h was true in most of the sub-graphs in the original
graph, but not all. Such a situation can arise, for example, if there
are small variations in a program’s behavior across processes and
the observed performance data for an experiment is close to the
experiment’s user-configurable threshold. When equivalent nodes
from the original search have labels that are similar but not identi-
cal, SGFA uses wild card labels in the folded graph. For example,
the nodes labelled with process identifiers in Figure 2 are labelled
“su3_rmd{*}” in the folded graph. Because a TDA bottleneck
search used to generate the Search History Graph display shown in
Figure , the experiments labeled “CPUBound,” “ExcessiveSyn-
cWaitingTime,” and “ExcessiveIOBlockingTime” reflect refine-
ment of both hypothesis and focus (to each individual host); hence,
there is a node with a composite generalized label containing both
a hypothesis and part of a focus. SGFA uses a string generalization
algorithm like the longest common subsequence algorithm [13] to
construct wild card node labels.

For a visualization technique to be truly scalable, it must have
not only a scalable on-screen presentation but also a scalable
approach for building the on-screen presentation. A centralized
SGFA implementation is a poor match for presenting the results
from the our distributed bottleneck search strategy because the
centralized SGFA limits the scalability of the tool as a whole. A
distributed SGFA approach is needed to complement the scalabil-
ity benefit of the distributed bottleneck search strategy.

We designed and implemented an MRNet-based SGFA
approach that uses custom MRNet data transformation filters. A
stateful SGFA filter running in each process of the MRNet overlay
network and the tool front-end maintains a folded sub-graph con-
taining results of the local search agents reachable by that process.
When a filter’s folded graph changes, for example to add a node or
to change a node’s truth state, the filter delivers a description of the
change upstream. By induction, the filter running in the tool’s
front-end has the entire folded graph. 

Because we performed our experimentation in a batch environ-
ment, we modified Paradyn to operate without its traditional inter-
active graphical user interface. To visualize the result of bottleneck

searches, we developed a minimal post-mortem Search History
Graph visualization tool (shown in Figure ). Positive experience
with this approach has led us to consider future work investigating
another performance diagnosis strategy for large-scale programs in
batch environments. The proposed approach uses completely inde-
pendent bottleneck search agents like the CDA, but instead of
using an on-line implementation of the SGFA to combine results,
each agent writes its own search results to local storage (or a paral-
lel file system) and then uses a post-mortem tool to apply the
SGFA and to visualize the results.

4 Evaluation
To evaluate our distributed bottleneck search strategy and the

SGFA, we modified Paradyn version 4.1 to search for performance
bottlenecks using one of the CA, PDA, or TDA approaches, and to
apply the SGFA to search results. Because we implemented our
bottleneck search strategy in the context of Paradyn’s Performance
Consultant, we call the augmented bottleneck detection component
the Distributed Performance Consultant. We used the modified
version of Paradyn to search for bottlenecks in a parallel applica-
tion with 16 to 1024 processes. For all experiments we used
su3_rmd, a simulation of the pure lattice gauge theory of quan-
tum chromodynamics produced by the MILC collaboration [23]
for simulating the Standard Model of nuclear physics. The code is
implemented in C and we configured it to use MPI for inter-pro-
cess communication. We used a weak scaling approach in our
study. 

In our experiments we used balanced MRNet topologies with
moderate fan-out at each process. Because the number of data
points in our scalability study would be limited if we used the same
fan-out at each level in the process network, we used topologies
with fan-outs of eight at all levels except for those processes con-
nected directly to the daemons. By using a smaller fan-out of two
or four at this last level, we were able to run experiments for num-
bers of application processes at each power of two between 16 and
1024.

Our experiments were run on the Multiprogrammatic Capability
Cluster (MCR) [19] at Lawrence Livermore National Laboratory.
At the time the experiments were performed, MCR contained 1152
nodes (1048 compute nodes) connected with a Quadrics QsNet
Elan3 interconnect. Each node had two 2.4 GHz Pentium 4 Xeon
processors and 4 GB RAM. Each node ran CHAOS 2.0 [9], a
Linux distribution derived from Red Hat Enterprise Linux 3 by
LLNL. The MPI implementation on MCR is provided by Quadrics,
but is based on the MPICH 1.2 distribution [11].

The goal of this work is to evaluate the scalability of our new
approach for finding performance bottlenecks in programs with a
large number of processes. Consequently, we focused on the per-
formance characteristics of the tool itself, rather than the applica-
tion that provided a test workload for our tool. Nevertheless, to
ensure the performance diagnosis results provided by our new
approach were qualitatively similar to those provided using the
Performance Consultant’s traditional approach, we examined the
results produced by our prototype implementation. For example,
with 1024 application processes, our performance bottleneck
searches indicated CPU time bottlenecks (i.e., the observed CPU
utilization was above the CPU utilization hypothesis threshold) in
the mult_su3_nn and scalar_mult_add_su3_matrix
functions of the MILC su3_rmd code. Because the Performance



PERSONAL USE ONLY—DO NOT REDISTRIBUTE
Consultant uses inclusive CPU time metrics that measure the time
required by a function and all of its callees, the Performance Con-
sultant also reported CPU time bottlenecks in the main, update,
update_u, and update_h functions. Except for these experi-
ments, all other experiments performed by the Performance Con-
sultant were false. It was unexpected that no communication-
related performance bottlenecks were identified, but further
inspection into the su3_rmd code shows that although the program
uses a gather operation, it implements the gather using point-to-
point operations instead of the MPI_Gather collective communica-
tion operation. Individual gather operations are distinguished using
a unique message tag for each gather operation. The use of point-
to-point operations appears to allow the program to avoid signifi-
cant blocking for each gather.

4.1 Distributed Performance Consultant Results
To evaluate the Distributed Performance Consultant, we modi-

fied Paradyn to use either the CA, PDA, or TDA approach when
performing a bottleneck search. We performed a scalability study
for the three approaches, watching the computation and communi-
cation load at all tool processes (including MRNet internal pro-
cesses) for signs of resource saturation that would indicate a
scalability bottleneck within the tool system itself. We used a tool

process’ CPU utilization as a measure of its computation load and
the rate at which it reads and writes data to the MRNet infrastruc-
ture to quantify its communication load. To support the PDA, we
modified Paradyn to track the cost of global and local instrumenta-
tion separately, and to implement an instrumentation scheduling
policy that uses a simple fixed-partitioning policy. To support the
TDA, we implemented the Sub-Graph Folding Algorithm using
custom MRNet filters to support scalable presentation of Distrib-
uted Performance Consultant results. To support running our
experiments under MCR’s batch scheduling system, we modified
the tool front-end to present a text-based user interface instead of a
graphical user interface and we automatically perform our experi-
ment when our batch jobs were run. 

The results of our scalability study are shown in Figures 3
and 4. We requested batch job time limits for runs using the CA
that were three times longer than for runs using the PDA and TDA.
Because CA runs with 64 application processes failed to complete
during their batch job’s allotted time limit, we did not attempt CA
runs with more than 64 processes. In contrast, we performed
experiments with the PDA and TDA for up to 1024 application
processes, limited by the available system size and not by resource
saturation. We used the SGFA to verify that the qualitative results
produced by each search strategy provided comparable results. 

(a) Front-End CPU Load (b) Daemon CPU Load

(c) MRNet Internal Process CPU Load

Figure 3: Computation load for the CA, PDA, and TDA bottleneck search strategies
The CPU utilization is shown for (a) the tool’s front-end, (b) tool daemons, and (c) MRNet internal processes. Note the Y-axis scale differs 

significantly between plots. Because CA runs with 64 application processes failed to complete during their batch job’s allotted time limit, we 
did not attempt CA runs with more than 64 processes. 
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(a) Front-End Read Rate (b) Front-End Write Rate

(c) Daemon Read Rate (d) Daemon Write Rate

(e) MRNet Internal Process Read Rate (f) MRNet Internal Process Write Rate

Figure 4: MRNet I/O load for the CA, PDA, and TDA bottleneck search strategies. 
The number of bytes read from MRNet is shown (a) for the tool’s front-end, (c) tool daemons, and (e) MRNet internal
processes. The number of bytes written onto MRNet is shown (b) for the tool’s front-end, (d) tool daemons, and (f) MRNet
internal processes. The Y-axis is logarithmic in each plot. Plots (b) and (c) do not contain a TDA curve because the front-end
does not send data and the daemons do not receive data across MRNet during a TDA search. Because CA runs with more than
64 application processes failed to complete during their batch job’s allotted time limit, we did not attempt CA runs with more
than 64 processes.
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Figure 3 compares the computation load at the tool’s front-end,
daemons, and MRNet internal processes for each bottleneck search
strategy under consideration. Each chart in the figure shows the
CPU utilization for each search strategy across a range of process
counts. We measured CPU utilization by sampling the getrusage
system call at one-second intervals in the front-end process, all
daemon processes, and all MRNet internal processes during the
bottleneck search. For each process, we computed the average
CPU utilization over the duration of the bottleneck search. The
data point for a given search strategy and process count is the aver-
age across all processes of the same type (front-end, daemon, or
MRNet internal process) across all runs using the search strategy
on that number of processes.

Our CPU load results show the expected scalability benefit of
the TDA search strategy and, to a lesser extent, the PDA search
strategy. CA saturates the tool front-end with relatively small num-
bers of application processes; back-pressure causes the daemon
CPU load to decrease. (The CPU load reported by getrusage
can be larger than 100% on multiprocessor hosts such as the nodes
of the MCR cluster.) In contrast, when using TDA the front-end
CPU load remained below 5% and relatively constant as we varied
the number of application processes. 

The average CPU load for daemons and MRNet internal pro-
cesses also remained below 5% in our experiments with the distrib-
uted search strategies. As expected, the MRNet internal process
CPU load under the PDA tends to be slightly higher than the CPU
load under the TDA because the internal processes are aggregating
global performance data under the PDA but not under the TDA.
However, our CPU load results also revealed unexpected behavior.
First, the daemon CPU load tends to be slightly lower under the
PDA than the TDA. This behavior may be the result of differences
in the way that PDA searches and TDA searches are performed by
the daemons. Under the PDA, local sub-searches are started only
when the front-end refines a global experiment to a host-specific
experiment. If global experiments with hypotheses like Excessive-
SyncWaitingTime and ExcessiveIOBlockingTime are not refined,
daemons are not involved in evaluating the performance data for
these hypotheses during a search under the PDA. In contrast, under
the TDA each daemon begins its search by creating host-specific
experiments for all hypotheses, and continues to evaluate perfor-
mance data for those experiments throughout its bottleneck search. 

A second unexpected behavior exposed by our CPU load results
is the dip in the TDA daemon CPU load and corresponding spike
in MRNet internal process CPU load for 128 application processes.
We observed that the daemon TDA load curve follows a sawtooth
pattern. The high points in the curve correspond to MRNet topolo-
gies where the fan-out at the last level in the process network is
two, intermediate points where the last-level fan-out is four, and
low points when the last-level fan-out is eight. Whether the varia-
tions in CPU load are related to the MRNet topology, and the
nature of this relationship, still needs to be investigated. 

Figure 4 compares the network I/O load at the tool’s front-end,
back-ends, and MRNet internal nodes for each of our three bottle-
neck search strategies. We instrumented the MRNet library to col-
lect the number of bytes read and written on all MRNet socket
connections. We modified each Paradyn process to sample these
counts at one-second intervals during a search. For each process,
we computed the average read or write rate during the bottleneck
search. To obtain the chart values for a given search strategy, we

averaged the read or write rates for all processes of the same type
(front-end, daemon, or MRNet internal process) across all runs that
used that search strategy. Variability across runs was low. 

Our MRNet I/O results show the scalability of the TDA. As
expected, there were no front-end writes nor daemon reads during
the bottleneck search under the TDA strategy. When there were
reads and writes under the TDA, the data rate was very low and
remained nearly constant as we increased the number of applica-
tion processes. Our TDA I/O results also exhibit variability that
echoes the variability in the TDA CPU load results. As with the
CPU load, this remains to be investigated as to whether and how
the I/O fluctuation is related to the MRNet topology we used.

4.2 SGFA Results
We evaluated the SGFA by implementing it in a custom MRNet

data transformation filter as described in Section 3 and measuring
its ability to reduce the complexity of Search History Graph results
during our Distributed Performance Consultant scalability study.
We used the number of nodes in a search history graph as a mea-
sure of its complexity. We instrumented the Paradyn front-end to
report the number of nodes in the un-folded and folded search his-
tory graphs at the completion of a bottleneck search.

The results of our comparison are shown in Figure 5. The chart
compares the complexity of the un-folded search history graphs
produced by the TDA Distributed Performance Consultant
approach with the complexity of the corresponding SGFA-pro-
duced graphs. The number of nodes in the un-folded graph grew
linearly with the number of application processes. This is expected
because the un-folded search history graph includes a complete
sub-graph for each application process and each sub-graph has
approximately the same complexity (around thirty nodes). In con-
trast, the complexity of the SGFA-produced graphs remained
nearly constant as we varied the number of application processes.
Each of the SGFA graphs contained a single composite sub-graph.

5 Related Work
The Distributed Performance Consultant and the Sub-Graph

Folding Algorithm are two synergistic parts of our approach for

Figure 5: Effect of SGFA on search history graph complexity. 
The chart compares the number of nodes in the un-folded
search history graph resulting from a TDA bottleneck search
with the graph produced by the SGFA. The Y-axis is
logarithmic.
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scalable on-line automated performance diagnosis. The Distributed
Performance Consultant is related to previous work in on-line
automated performance tools, instrumentation cost models, and
workload scheduling. The Sub-Graph Folding Algorithm builds on
previous work in scalable visualization techniques, especially
those for building scalable graph-based displays.

Despite their desirability for large-scale performance tuning,
few automated performance diagnosis tools exist. Paradyn [5,22] is
the seminal instance of this class of tools, but recent projects
KOJAK [24], Peridot [10], and SCALEA [31] also provide auto-
mated performance diagnosis functionality. KOJAK is a trace-
based off-line automated tool, whereas Paradyn, Peridot, and
SCALEA each use on-line analysis. On-line automated computa-
tional steering tool kits and tools like Falcon [12], Autopilot [26],
and Active Harmony [30] share several characteristics with on-line
automated performance diagnosis tools. Falcon and Autopilot use
a distributed system of sensors to collect data about an applica-
tion’s behavior and actuators to make modifications to application
variables to change its behavior. Active Harmony extends the com-
putational steering toolkit idea to include a component that auto-
matically tunes an application’s performance by adjusting
application parameters. Each of these systems requires the applica-
tion and the libraries it uses to be modified to expose steerable
parameters. MATE [25] augments on-line automated performance
diagnosis with dynamic code optimization to combine the advan-
tages of both automated performance diagnosis and computational
steering. MATE does not require program modifications to expose
steerable parameters. Instead, it uses dynamic instrumentation to
adjust program parameters.

The projects described here have placed varying degrees of
emphasis on the issue of scalability. Many use dynamic instrumen-
tation or some form of dynamically-enabled compile-time instru-
mentation. Although the nominal reason for using such
instrumentation is not always scalability, its effect is to control the
volume of performance data collected when monitoring the appli-
cation’s behavior. Of the projects discussed here, Peridot’s
approach is the most similar to our Distributed Performance Con-
sultant for scalability as the number of application processes
increases. Although its design has not yet been tested at scale, Peri-
dot proposed to use a hierarchy of agents that monitor and evaluate
hierarchically-specified “performance properties” as defined by
the APART Specification Language [8] or ASL. (The ASL is a
product of the APART Working Group [1], a working group
funded by the European Union for studying automated perfor-
mance analysis techniques and tools.) We also use a hierarchy of
processes for scalability (i.e., MRNet), but our preferred approach
(TDA) uses a single level of distributed performance diagnosis
agents and has been evaluated at scale. Falcon and Autopilot also
use a distributed analysis approach like ours, but these computa-
tional steering tool kits provide only distributed decision-making
mechanism by design. Finally, none of these projects addresses the
issue of scalable visualization of performance diagnosis results
that we address with the SGFA.

Because the effects of instrumentation on an application are so
complex, no existing model captures all dimensions of instrumen-
tation cost. Existing models have focused on the dimensions that
are easiest to measure or approximate. Malony and Reed [21] and
Yan and Listgarten [32] proposed cost models for trace-based
instrumentation systems that try to compensate for the effects of

instrumentation in event traces. Their models assume simple
instrumentation such as the writing of fixed-length record to a trace
file. Hollingsworth and Miller [14] presented a simple model for
predicting and measuring the cost of general instrumentation in an
on-line performance tool. Paradyn’s Performance Consultant [22]
uses their model in a feedback system that controls instrumentation
cost during automated bottleneck searches.

None of these instrumentation cost models is well-suited for our
scalable automated performance diagnosis approach. Our instru-
mentation is more complex than the instrumentation assumed by
Reed and Malony and Yan and Listgarten. The Hollingsworth and
Miller model is not well suited because it aggregates the instru-
mentation cost for parallel computation into a single value. Our
PDA and especially TDA approaches require cost information at
the granularity of individual nodes, but that information is lost in
the Hollingsworth and Miller model.

The PDA’s local/global instrumentation request scheduling pol-
icy draws upon previous research in scheduling mixed sequen-
tial/parallel workloads, including studies by Leutenegger and
Vernon [20] for shared-memory multiprocessors, Arpaci et al [2]
for a network of workstations, and Arpaci-Dusseau [3] for avoid-
ing the scalability problems of traditional gang scheduling systems
with implicit co-scheduling. The PDA’s scheduling problem is
slightly different and more restricted than the problems addressed
in this previous work. In the PDA, gang scheduling of global
instrumentation is a requirement, not just a performance benefit. 

The Sub-Graph Folding Algorithm is related to previous work
in scalable visualization techniques, especially those for building
scalable graph-based displays. Couch [7] proposed an abstract
technique for constructing scalable performance visualizations that
groups processes into categories and displays only per-category
statistics. Kimelman et al [17] described a technique for reducing
the complexity of dynamic graph-based displays like search his-
tory graphs by manually combining nodes of the graph. Stasko and
Muthukumarasamy [29] proposed the semantic zooming technique
for constructing scalable graph-based displays by abstracting the
graph into a matrix of blocks. Each block’s characteristics (e.g.,
color and texture) indicate some characteristics of the sub-graph
represented by that block. Unlike Couch and Kimelman’s
approaches, the SGFA requires no user intervention to construct its
scalable display. Although a rigorous user interface study is needed
to decide conclusively, we believe many users will prefer an
SGFA-based search history graph display over a semantic zooming
display because the SGFA display always retains familiar graph-
like characteristics (i.e., nodes and edges) whereas semantic zoom-
ing does not.

SGFA’s folding operation is similar to that used by the PRISM
parallel debugger [28] and Karavanic’s structural merge
operator [16]. PRISM’s Where Tree provides a concise, tree-based
representation of the call stacks of all application processes by
folding together equivalent call sequences to form a tree. Kara-
vanic’s structural merge operator combines two trees of program
resources called EventMaps. The operator combines equivalent
nodes from the two EventMaps to form a composite tree contain-
ing the resources that are present in both EventMaps. In contrast to
the PRISM folding operation, SGFA folds trees rather than linear
sequences of nodes, and considers node types and truth values in
addition to node name when folding. SGFA differs from Kara-
vanic’s structural merge operator in that the operator requires the
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user to provide mappings that indicate equivalent nodes, whereas
SGFA’s built-in node equivalence rules allow SGFA to operate
without user intervention.
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