
SCALABLE ON-LINE AUTOMATED PERFORMANCE DIAGNOSIS

BY

PHILIP CHARLES ROTH

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

University of Wisconsin–Madison

2005

© Copyright by Philip Charles Roth 2005

All Rights Reserved

i

ABSTRACT

SCALABLE ON-LINE AUTOMATED PERFORMANCE DIAGNOSIS

PHILIP CHARLES ROTH

Under the supervision of Professor Barton P. Miller

at the University of Wisconsin–Madison

Performance tools are critical for the effective use of large-scale computing

resources, but existing tools have failed to address three problems that limit their

scalability: managing a large volume of performance data, communicating

between a large number of distributed components, and presenting performance

data and analysis results for a large number of application components. We

present a four-part approach enabling tools to overcome these scalability barriers.

First, we introduce Multicast/Reduction Overlay Networks (MRONs) and

MRNet, our MRON implementation. An MRNet-based tool interposes a hierarchy

of processes between the tool’s front-end and its back-ends that can be used to

distribute and parallelize tool activities. Using MRNet in simple tests and in the

Paradyn performance tool, average message latency and throughput, start-up

latency, and performance data processing throughput scaled linearly with no sign

of resource saturation for up to 512 tool back-ends.

Next, we present the Distributed Performance Consultant, an approach for

finding performance problems in applications with a large number of processes,

and the Sub-Graph Folding Algorithm, a technique for producing scalable graph-

based displays of bottleneck search results. The Distributed Performance Con-

ii

sultant includes a distributed bottleneck search strategy and a way to monitor

and control the cost of a search’s instrumentation. The Sub-Graph Folding Algo-

rithm combines sub-graphs of a search results graph that show similar qualita-

tive behavior into a composite sub-graph. Using an approach that combines these

two synergistic parts, we performed bottleneck searches on up to 1024 application

processes with no sign of resource saturation. For 1024 application processes, the

Sub-Graph Folding Algorithm converted a 30309-node search results graph into a

44-node graph with a single composite sub-graph.

Finally, we introduce Deep Start, an approach for finding performance prob-

lems in applications with a large number of functions. Deep Start uses sampling

to augment an instrumentation-based bottleneck search strategy. Deep Start fin-

ished finding bottlenecks 10% to 61% faster than a search strategy guided only by

the application’s call graph. Also, Deep Start often found bottlenecks hidden from

the call graph search strategy.

iii

Acknowledgments

First and foremost, thanks to God for providing the opportunity to perform

this work and the strength to see it through to the end.

Thanks to Bart Miller, my advisor, for his guidance, encouragement, and sup-

port. I cannot put into words my appreciation for his willingness to be flexible

when I found myself in a tough situation. Without a well-timed “I have no doubt”

when things looked bleakest, I would not have had the courage to finish this

work.

Thanks to the other members of my committee: Miron Livny, Remzi Arpaci-

Dusseau, Marvin Solomon, and Gregory Moses. I appreciate the time they spent

to evaluate my research, and their insightful comments and questions about the

work.

Thanks to the members of the Paradyn research group, past and present, for

fruitful discussions and for developing and maintaining the Paradyn performance

tool. Special thanks to Dorian Arnold for great work on MRNet and to Dorian, Vic

Zandy, Karen Karavanic, Will Benton, and Brian Wylie for their friendship and

willingness to listen.

Thanks to Scott Futral, Bronis de Supinski, Chris Chambreau, John Gyllen-

haal, Barbara Herron, and Charlie Hargreaves for their help with the computing

resources at Lawrence Livermore National Laboratory.

iv

Thanks to Jeffrey Vetter for his support and sponsorship, both at Lawrence

Livermore National Laboratory and now at Oak Ridge National Laboratory. His

understanding and encouragement have been a substantial help as I finished this

research.

Thanks to Daniel Reed, my Masters advisor at the University of Illinois at

Urbana-Champaign, for his words of encouragement even though I was no longer

his student.

Last, thanks to my family for their support and love. Though they did not

understand why this took so long and was so difficult, I appreciate their willing-

ness to look past bad moods, absences, and distracted presences. Most special

thanks to my wife Traci and to Sarah and Elijah, for they bore the brunt of it all.

I dedicate this dissertation to them.

v

Contents

Abstract . i

Acknowledgments . iii

Contents .v

List of Figures .viii

List of Tables .x

1 Introduction. .1

1.1 Parallel Performance Tool Scalability Barriers . 3

1.2 On-line Automated Performance Tools . 9

1.3 Contributions . 11

1.4 Dissertation Organization . 16

2 Related Work .18

2.1 Collective Communication . 18

2.1.1 Collective Communication Using Hierarchical Overlay Networks 19

2.1.2 Parallel Data Aggregation and Volume Reduction Algorithms . . 23

2.2 On-line Automated Performance Diagnosis And Tuning 26

2.3 Sampling-Based Performance Tools . 33

2.4 Dynamic Instrumentation Management . 35

2.5 Scalable Data Visualization . 38

2.6 Summary . 43

vi

3 The Performance Consultant .45

4 Scalable Multicast/Reduction Overlay Networks 50

4.1 MRNet Design and Implementation . 53

4.1.1 MRNet Abstractions . 56

4.1.2 MRNet Data Transfer . 58

4.1.3 MRNet Filters . 61

4.1.4 Data Handling in MRNet Processes . 64

4.1.5 Multithreading in MRNet Processes . 68

4.1.6 Instantiation of MRNet-Based Tools . 69

4.2 MRNet Process Layout . 74

4.3 A Real-World Tool Example . 77

4.3.1 Scalable Tool Start-Up . 77

4.3.2 Distributed Performance Data Aggregation 81

4.4 Evaluation . 84

4.4.1 Micro-benchmark Results . 85

4.4.2 Integrated Performance Results . 88

4.5 Summary . 96

5 Scalable Automated Performance Diagnosis for

Applications with a Large Numbers of Processes .99

5.1 PDA Bottleneck Search Strategy . 103

5.2 Dynamic Instrumentation Management . 109

5.2.1 Instrumentation Cost Model for Parallel Computation 110

5.2.2 Dynamic Instrumentation Scheduling Policy 113

5.3 TDA Bottleneck Search Strategy . 116

5.4 Evaluation . 117

5.4.1 Experimental Environment . 117

5.4.2 Experimental Results . 119

5.5 Summary and Future Work . 124

vii

6 Scalable Automated Performance Diagnosis for

Applications with Large Call Graphs. .127

6.1 The Deep Start Search Strategy . 130

6.1.1 Stack Sampling . 131

6.1.2 Choosing Deep Starters . 131

6.1.3 Adding Deep Starters . 135

6.2 Deep Start Evaluation . 137

6.2.1 Experimental Environment . 137

6.2.2 Experimental Methodology . 139

6.2.3 Experimental Results . 139

6.2.4 Deep Starter Threshold Sensitivity . 141

6.2.5 Comparison of the Deep Start and Call Graph Searches 143

6.3 Summary and Future Work . 144

7 Scalable Presentation of Performance

Bottleneck Search Results .147

7.1 The Sub-Graph Folding Algorithm . 149

7.2 Evaluation . 152

7.3 Summary . 154

8 Conclusion .156

8.1 Contributions . 156

8.2 Directions for Future Research . 158

References .160

viii

List of Figures

1.1 The components of a typical parallel tool . 4

1.2 A Search History Graph display . 15

2.1 A semantic zooming display of a graph . 40

2.2 Example of folding in the PRISM debugger’s Where Tree 42

3.1 Paradyn organizes the application resources into hierarchies 46

4.1 The components of an MRNet-based parallel tool 52

4.2 Example tool code using the MRNet API . 59

4.3 Handling of upstream-flowing data in an MRNet process 66

4.4 Handling of downstream-flowing data in an MRNet process 67

4.5 Recursive instantiation of MRNet’s internal process network 72

4.6 Balanced and unbalanced MRON internal process topologies with the
same number of back-ends . 76

4.7 Performance data aggregation using ordinal aggregation (a) and time-
aligned aggregation (b) . 81

4.8 Distributed data aggregation of four data streams using Paradyn’s cus-
tom MRNet filter . 83

4.9 MRNet micro-benchmark experiment results . 87

4.10 Paradyn start-up latency . 90

4.11 Fraction of offered load serviced by the Paradyn front-end 94

5.1 Portion of search history graph showing our PDA distributed performance
bottleneck search strategy . 104

ix

5.2 The PDA within Paradyn . 108

5.3 Reduction of instrumentation cost data as it is delivered to the Paradyn
front-end . 112

5.4 Example of instrumentation scheduling by the Distributed Performance
Consultant . 115

5.5 Computation load for the CA, PDA, and TDA. 120

5.6 MRNet read load for the CA, PDA, and TDA . 123

5.7 MRNet write load for the CA, PDA, and TDA 124

6.1 Part of an application call graph showing a hidden performance bottle-
neck . 128

6.2 Example of a Deep Start function count graph 132

6.3 Function count graph nodes with count-tree . 133

6.4 Deep starter and connecting experiments in the Search History Graph
display . 137

6.5 Profiles for Deep Start and call graph searches 144

7.1 Part of a traditional Search History Graph display 148

7.2 Example Search History Graph display after applying the SGFA . . . 148

7.3 The effect of SGFA on search history graph complexity 154

x

List of Tables

6.1 Characteristics of the applications used to evaluate Deep Start. 138

6.2 Summary of deep starter threshold sensitivity experiments. 142

6.3 Summary of Deep Start/Call Graph comparison experiments. 142

1

Chapter 1

Introduction

Performance tools are critical for the effective use of large-scale computing

resources, but existing tools have failed to address several problems that limit

their scalability. This dissertation describes several novel techniques for sur-

mounting these performance tool scalability barriers.

With the increasing availability of large parallel systems [1,60,81,101], large

clusters of commodity systems [13,63,87,99], and the Grid [30,31,33], many real-

world high-performance applications are also large-scale applications. They cre-

ate thousands of processes, are built from hundreds of thousands of lines of code,

and run for days, weeks, or sometimes longer. However, large-scale applications

usually make poor use of the systems that run them. Applications that achieve

more than a small fraction of their system’s theoretical peak performance are

uncommon. By design, performance monitoring and diagnosis tools are intended

to expose the reasons why applications fail to achieve the desired level of perfor-

mance. However, existing performance tools have been ineffective for improving

2

the performance of large-scale applications because they fail to overcome three

barriers to performance tool scalability: how to manage a large volume of perfor-

mance data, how to communicate efficiently between a large number of distrib-

uted tool components, and how to make scalable presentations of performance

data and analysis results.

This dissertation describes the design and implementation of several novel

techniques that enable tools to overcome these three performance tool scalability

barriers. To address the problems of managing a large volume of performance

data and communicating efficiently between a large number of distributed tool

components, we designed and implemented MRNet [89], a software-based infra-

structure that provides scalable multicast and data aggregation functionality for

all types of parallel tools. Also for the problem of managing a large volume of per-

formance data, we designed and implemented the Distributed Performance Con-

sultant that automatically finds and explains performance problems in large-

scale applications. The Distributed Performance Consultant uses search, a well-

established technique for methodically examining a solution space. Because cen-

tralized performance data and tool control processing limit tool scalability as the

number of application processes grows, our search strategy distributes sub-

searches to reduce centralization of tool activities. The Distributed Performance

Consultant also includes a new model for the cost of instrumentation in parallel

and distributed applications, and a new strategy for scheduling instrumentation

requests during a distributed performance problem search. To complement the

Distributed Performance Consultant, we developed a strategy called Deep

3

Start [90] for efficiently finding performance problems in applications with large,

complex executables. Finally, to address the problem of making scalable presenta-

tions of performance analysis results, we designed and evaluated the Sub-Graph

Folding Algorithm, a visualization technique for making scalable displays of the

results of our automated performance problem searches.

Because of the importance of parallel performance tools for the effective use of

large-scale computing resources, our research focuses on overcoming barriers to

the scalability of parallel performance tools. However, our techniques may be gen-

eralized (with some adaptation, depending on the technique) to improve the scal-

ability of a broader class of parallel tools. For example, MRNet is designed to

support scalable communication and data processing in all types of parallel tools.

It provides a rich set of built-in data aggregation operations and is easily

extended to use tool-specific aggregations. The Distributed Performance Consult-

ant, Deep Start, and Sub-Graph Folding Algorithm also incorporate techniques

that can be generalized, though generalization is likely to require more substan-

tial modification to these techniques than is necessary with MRNet.

1.1 Parallel Performance Tool Scalability Barriers

Like any parallel tool, a parallel performance tool uses a system of distributed

components to implement its functionality. A parallel performance tool uses its

distributed component system to implement functionality like data collection and

application process control. A tool function may be a tool scalability barrier if its

cost in terms of computation, communication, or storage is larger than the under-

4

lying system can support. The presentation of performance data and analysis

results may also be a tool scalability barrier if characteristics such as its complex-

ity or abstraction level are appropriate for small-scale computation but prevent

users from obtaining useful information for large-scale computation.

Regardless of the functionality it provides, a parallel tool implements its func-

tionality using a system of distributed components. The components of a typical

parallel tool system are shown in Figure 1.1. Many parallel tools follow this orga-

nization, including the TotalView [25], PRISM [94,95], and p2d2 [51] parallel

debuggers, the SCALEA [103], TAU [92], and Paradyn [74] parallel performance

tools, and the Autopilot [85] computational steering system. Data collection and

process control occur in the tool’s back-end components (often called tool dae-

mons) running on the nodes of a parallel or distributed system. Data analysis and

global tool control (i.e., control of the entire tool system) are usually implemented

in a component distinct from the tool back-ends, although some low-level analysis

may take place in the tool back-ends. The user interacts with the tool’s user inter-

Figure 1.1 The components of a typical parallel tool . Shaded boxes represent potential
machine boundaries.

User Interface

Analysis and Control

Back-End 0

Process 0

Back-End 1

Process 1

Back-End n-1

Process n-1

...

...

5

face component. Often the user interface, data analysis, and global tool control

activities are provided by the same component. In this case, this combined compo-

nent is called the tool’s front-end.

All tool functionality comes at a cost. These costs can be divided into several

categories:

• Computation. Tools incur a computation cost whenever some processor exe-

cutes code to implement tool functionality. The most obvious computation cost

is for data analysis, but a tool also pays a computation cost for other activities

like data collection and implementing a user interface.

• Communication. Tools incur a communication cost whenever they transfer

data between tool components. For example, tools incur a communication cost

if they transfer data from their back-ends for analysis, either because the

analysis is centralized in the tool’s front-end or because the analysis occurs in

tool components running on a different system than the one on which the data

was collected. Tools with a parallelized analysis incur a communication cost

for exchanging data between analysis components. There is also a communica-

tion cost for transferring control requests and responses within the tool sys-

tem. Also, there is a communication cost to transfer analysis results to the

user interface component if the analysis and user interface activities are not

implemented in the same tool component.

• Storage. Tools that do not analyze data as it is collected must store the data

for off-line, or post mortem, analysis. The cost of storing this data has a space

component and may also have a time component. The storage cost’s space com-

6

ponent is paid whenever data is moved between collection and analysis. If a

tool stores the collected data in a database or dedicated storage server, it also

pays a storage cost in terms of the time required to transfer the data to and

from the storage server. In contrast to off-line tools, on-line tools that analyze

the data as it is being collected do not incur a storage cost between data collec-

tion and analysis.

In this dissertation, we describe several new techniques for surmounting tool

scalability barriers in parallel performance tools. We divide these scalability bar-

riers into three categories: management of performance data, collective communi-

cation within a tool system, and the presentation of performance data and

analysis results. Although we focused on these scalability barriers in the context

of parallel performance tools, the techniques we propose may be adapted to

address scalability problems in other types of parallel tools.

The first barrier to performance tool scalability is how to manage a large vol-

ume of performance data. A large number of processes, complex executables, and

high processor speeds tend to increase performance data volume. Less obvious

factors may also increase data volume, such as the complexity of the hardware,

operating system, and software infrastructure. There is an inherent tension

between collecting data with sufficient detail and keeping data collection, stor-

age, and processing overheads to tolerable levels. Approaches for controlling per-

formance data volume typically have used one or more of the following

techniques:

7

• collecting data with a high level of detail from all nodes for the duration of an

application’s execution and then reducing it [54,88,107];

• collecting data with limited detail from all nodes throughout the

execution [4,38,57,108];

• collecting high-detail data only for a limited subset of the nodes (often called

representative nodes) [85,88]; or

• collecting high-detail data for limited intervals during an application’s

execution [49,74].

The first two techniques are inherently non-scalable; the volume of data they pro-

duce is proportional to the number of nodes used to execute the application and

the length of the application execution. In contrast, the last two techniques hold

promise for controlling performance data volume, and we use them in combina-

tion in the Distributed Performance Consultant. Nevertheless, existing policies

for determining when and where to collect data have not been successful in limit-

ing performance data volume to manageable levels with large-scale applications.

Inefficient collective communication is a barrier to the scalability of all paral-

lel programs, including performance tools. Like all parallel programs, the compo-

nents of a parallel tool communicate with each other using point-to-point or

collective communication operations. Point-to-point communication involves one

source component and one destination component. In contrast, if the operation

involves more than one source component or more than one destination compo-

nent it is a collective (or group) communication operation. Many important paral-

lel tool activities are implemented using collective communication. For example, a

8

tool’s front-end may send a request to all of its back-ends asking them to spawn

an application’s processes. In response, each back-end indicates to the front-end

whether it spawned the application process(es) successfully. Because hardware

support for collective communication is rare, collective communication operations

are usually implemented using a sequence of point-to-point communication oper-

ations. In a tool with the typical parallel tool organization (Figure 1.1) where the

back-ends do not communicate directly with each other, the point-to-point opera-

tions that constitute the collective operation are serialized at the tool’s front-end.

This serialization makes the tool front-end a bottleneck as the number of tool

back-ends is increased, limiting the overall scalability of the tool.

Research on improving the scalability of software-based collective communica-

tion has focused on reducing the effect of serialization by parallelizing a collective

operation’s point-to-point communication [8,9,27,55,66,69,97] or implementing

collective operations at the network layer [21]. However, existing collective com-

munication infrastructures have proven unsuitable for building scalable, high-

performance parallel tools because they exhibit limited communication

throughput [8,9,27], provide a limited interface for interacting with the communi-

cation sub-system [8,66], rely on kernel or network layer features that are not

generally available [69,97], or lack usage models [71] or available

implementations [72] that support running tools and parallel applications

together.

The third barrier to performance tool scalability is the presentation of perfor-

mance data and analysis results from large, complex applications. Visualization

9

has been effective for presenting the performance of sequential and small-scale

parallel applications [44,67,70,74,76,80,83,111,112]. Most of these tools feature

displays that show the behavior of individual application elements (e.g., processes

or functions). Displays like ParaGraph’s space-time display [44] are intuitive and

provide detailed information about an application’s communication behavior.

Unfortunately, displays that present data from individual application elements

are inherently non-scalable. Although researchers have proposed techniques for

constructing scalable visualizations [18,56,98], none has gained widespread

acceptance. Adaptations of existing small-scale displays using scrollable views

are insufficient because they limit the user to a local view of application behavior.

The most promising techniques are those that categorize application elements by

their behavior and represent each category with a single graphical element [18].

However, existing research has not produced scalable, automated visualization

techniques for this categorization step.

1.2 On-line Automated Performance Tools

On-line automated performance tools are uniquely suited for large-scale per-

formance tuning. Many performance tools support measurement, simple data

analysis, and visualization [4,38,44,83]. These tools can be used to diagnose

application performance problems, but they require significant user involvement.

To use these tools effectively, the user must have a good understanding of the

interactions between the application, the operating system(s), and the hardware.

Unfortunately, obtaining this understanding is difficult with large-scale applica-

10

tions because the interactions are complex and it is difficult to cull the interesting

data from the large performance data volume.

In contrast, automated performance tools [24,35,45,74,77,78,79,111] diagnose

performance problems with minimal user involvement. The user need not be a

performance tuning expert to use the tool effectively because the expertise is built

into the tool. Automated performance tools are especially desirable for large-scale

performance tuning for two reasons. First, they relieve the user from the difficult

task of identifying which data is important. Because the data volume generated

by performance monitoring of large-scale applications can be massive, these tools’

ability to automatically find the interesting data is extremely valuable. Second,

they relieve the user from having to understand the complex interactions

between application, operating system, and hardware. Automated performance

diagnosis tools try to analyze these complex interactions with minimal user

involvement. On-line automated performance tools augment these benefits

because they can adapt their activity as the application runs in response to the

application’s behavior. Whereas other tools require multiple runs to obtain useful

results, this adaptability allows on-line automated tools to adapt the data being

collected to obtain useful results with only a single application run [74]. Also,

because they collect only the data they need when they need it, they can obtain

the same results using a smaller performance data volume than other types of

tools. Because we believe on-line automated tools are the most feasible approach

for effective performance tuning as scale increases, we chose an on-line auto-

mated performance tool (Paradyn [74]) as the context of our research.

11

1.3 Contributions

This dissertation describes several contributions that allow on-line automated

performance tools to overcome the scalability barriers presented in Section 1.1:

• MRNet, a novel software-based multicast and data aggregation infrastructure

for parallel tools;

• The Distributed Performance Consultant, a new approach for automatically

finding performance problems in applications running on a large number of

hosts;

• Deep Start, a new approach for automatically finding performance problems

in applications with large, complex executables; and

• The Sub-Graph Folding Algorithm, a new technique for making scalable,

graphical presentations of the results of search-based performance diagnosis

strategies.

In this section, we give an overview of each of these research contributions. Sub-

sequent chapters describe each contribution in detail.

The first contribution of our research is the design and evaluation of MRNet, a

novel software-based infrastructure providing scalable multicast and data aggre-

gation functionality for parallel tools. This infrastructure may be used to reduce

the cost of many important activities in all types of parallel tools, including per-

formance tools. A fundamental part of this contribution is the exploration of a

wide range of uses of the multicast/aggregation idiom for improving the scalabil-

ity of important tool activities. For example, we used this idiom to improve the

scalability of bottleneck search control in the Distributed Performance Consult-

12

ant, reduction of bottleneck search results in the Sub-Graph Folding Algorithm,

performance data aggregation, and a collection of activities typically performed

during start-up of a parallel performance tool. We describe MRNet and our scal-

able performance data aggregation and tool start-up techniques in Chapter 4.

The second contribution of our research is the design and evaluation of the

Distributed Performance Consultant, a new approach for automatically finding

performance problems in applications with a large number of processes. Our

approach encompasses a distributed automated performance problem search

strategy, a model for instrumentation cost in parallel and distributed applica-

tions, and a policy for efficiently scheduling data collection instrumentation.

The first component of the Distributed Performance Consultant is a distrib-

uted automated performance problem search strategy. This search strategy has

two complementary parts. The first part deals with local application behavior,

i.e., the behavior of specific application processes. The second part deals with glo-

bal application behavior, i.e., the behavior across all application processes. For

examining local behavior, our strategy distributes sub-searches: whenever the

search examines a specific process’ behavior, our strategy delegates control to a

search agent running on that process’ host. For examining global application

behavior, the strategy uses MRNet for efficient aggregation of performance data

collected from all application processes. The Distributed Performance Consultant

also uses MRNet for overall tool control during the search.

The second component of the Distributed Performance Consultant is a new

model for tracking the cost of instrumentation for parallel and distributed compu-

13

tation. Knowledge of instrumentation cost is useful for controlling [47] or com-

pensating for [68,109] the effects of instrumentation. Existing models of

instrumentation cost are not suitable for use in a scalable distributed on-line tool

that uses complex instrumentation like the Distributed Performance Consultant

either because they assume instrumentation has a constant cost or because they

track instrumentation with an aggregated value that loses the information about

the cost of instrumentation in each individual application process. Our model

does not assume simple instrumentation and tracks overall instrumentation cost

as a vector of instrumentation costs, where each item corresponds to a single pro-

cess’ instrumentation cost.

The third component of the Distributed Performance Consultant is a new pol-

icy for efficiently scheduling requests for local and global instrumentation. Dis-

tributing local sub-searches introduces a problem for managing instrumentation

requests not faced in existing performance tools. In our distributed performance

diagnosis strategy, local sub-searches could occur concurrently with the global

search. Therefore, the strategy must be able to schedule requests efficiently for

both local and global data collection instrumentation. However, global instrumen-

tation must be inserted into all application processes to be useful. With the Dis-

tributed Performance Consultant, we introduce a new instrumentation

scheduling policy that schedules instrumentation requests fairly, avoids starva-

tion of both global and local instrumentation requests, and generates an efficient

search.

Distributing local application behavior searches yields the expected scalability

14

benefit, but at a cost in terms of tool complexity for instrumentation cost tracking

and instrumentation scheduling. As a natural step from a partially-distributed

search strategy that combines explicit examination of global application behavior

with distributed investigation of local application behavior, we also introduce a

truly distributed search strategy that leverages our Sub-Graph Folding Algo-

rithm to approximate the results of a global application behavior search while

avoiding the additional complexities to instrumentation cost tracking and instru-

mentation scheduling.

The techniques incorporated in the Distributed Performance Consultant can

be generalized for use in a broader class of tools. The Distributed Performance

Consultant incorporates an on-line, distributed search-based algorithm. The

techniques used to distribute and control the search are applicable to both on-line

or off-line search-based tools. Also, because we believe any tool that uses instru-

mentation should monitor and control the impact of its instrumentation, our

instrumentation cost model and scheduling policy are applicable to any parallel

tool that uses instrumentation.

We describe the Distributed Performance Consultant’s distributed search

strategy, parallel application instrumentation cost model, and instrumentation

scheduling policy in Chapter 5.

The third contribution of our research is Deep Start, a new technique for effi-

ciently examining the behavior of large, complex application executables. Deep

Start uses stack sampling to augment an instrumentation-based automated

search for performance bottlenecks. This hybrid strategy locates performance

15

problems more quickly and finds problems hidden from a more straightforward

search strategy. Deep Start uses stack samples collected as a by-product of nor-

mal search instrumentation to find deep starters, functions that are likely to be

application bottlenecks. Deep starters are examined early during a search to

improve the likelihood of finding performance problems quickly. The Deep Start

approach of combining search and sampling is applicable to other tools that rely

on search alone; the type of data being sampled is likely to be tool-specific. Deep

Start is described in Chapter 6.

The final contribution of our research is a new technique for making scalable,

graphical presentations of the results of search-based performance diagnosis

strategies like the Distributed Performance Consultant. For sequential and

Figure 1.2 A Search History Graph display.

16

small-scale parallel applications, the results of a performance diagnosis search

are presented effectively using a search history graph as shown in Figure 1.2. A

search history graph is a directed acyclic graph that represents the decisions

made during a search as nodes and edges. These graphs become hopelessly clut-

tered for applications with more than a few tens of processes. Our new technique,

called the Sub-Graph Folding Algorithm (SGFA), significantly reduces the com-

plexity of a search history graph. Under the hypothesis that the processes of a

large-scale application will fall into a small number of behavioral categories,

SGFA combines sub-graphs showing similar qualitative process behavior into a

single composite sub-graph. SGFA builds on previous work (e.g., [56,94,95]) that

combines graph nodes that are similar in some way to reduce graph complexity,

but SGFA is unique in applying the approach on the basis of qualitative analysis

results. The SGFA “folding” technique can be applied to displays of qualitative

data beyond the search history graph, including textual displays. SGFA is

described in Chapter 7.

1.4 Dissertation Organization

This dissertation contains seven chapters. Chapter 2 compares the research

described in this dissertation to related research in areas such as overlay net-

works, automated performance tools, and scalable visualization techniques.

Because Paradyn’s Performance Consultant was the context for our research, we

briefly review this automated performance diagnosis component in Chapter 3.

The next four chapters detail our research on scalable on-line automated perfor-

17

mance diagnosis. Chapter 4 presents MRNet, our multicast and data aggregation

infrastructure for scalable parallel tools. As an example of MRNet’s use in a real-

world parallel tool, this chapter also describes our MRNet-based techniques for

global performance data aggregation and scalable tool start-up. In Chapters 5

and 6, we present techniques for automatically finding application performance

problems in large-scale applications. Chapter 5 describes the Distributed Perfor-

mance Consultant, our strategy for automatically finding performance problems

in applications with a large number of processes. Chapter 6 describes Deep Start,

our strategy for automatically finding performance problems in complex applica-

tions with a large number of functions. In Chapter 7, we present the Sub-Graph

Folding Algorithm, our approach for producing scalable, graphical displays of the

results from our scalable performance diagnosis strategies. We summarize our

research on scalable on-line automated performance diagnosis and outline possi-

ble directions for future research in Chapter 8.

18

Chapter 2

Related Work

This chapter describes previous work that is closely related to our research.

First, we survey existing work in collective communication infrastructure and

parallel algorithms related to our scalable tool infrastructure and scalable perfor-

mance diagnosis approach (Section 2.1). Next, we examine existing work in on-

line automated performance diagnosis and tuning (Section 2.2). We then examine

sampling as a technique for obtaining performance data (Section 2.3). Next, we

relate our approach for managing software-based instrumentation to existing

work in instrumentation cost models and workload scheduling policies

(Section 2.4). Finally, we examine previous work on scalable performance visual-

ization techniques (Section 2.5). We conclude the chapter with a summary of the

related work (Section 2.6).

2.1 Collective Communication

Collective communication is communication between a group of processes. Col-

lective communication operations like “broadcast” and “gather” and data reduc-

19

tions like “global sum” are the building blocks for all but the most trivial parallel

algorithms. Given their low-level nature and widespread use, the performance of

collective communication operations has a significant impact on the scalability of

parallel programs, including performance tools. Our research into scalable multi-

cast and data reduction techniques is related to existing work on parallel infra-

structure and tools that use hierarchical overlay networks for collective

communication, and on parallel algorithms for data aggregation and data volume

reduction.

2.1.1 Collective Communication Using Hierarchical Overlay Networks

A collection of connected processes is often called an overlay network because

it defines a logical network that overlays a physical network. Hierarchical overlay

networks with data aggregation and multicast capabilities have been used in col-

lective communication infrastructures and distributed cluster monitoring tools.

Lilith [27] and Ygdrasil [8] are multicast and data aggregation infrastructures

for parallel tools. Although both use a hierarchy of processes for scalability, they

differ in their communication model and tool architecture. In Lilith’s communica-

tion model, synchronous waves of messages are sent to or from the tool’s front-

end at the root of the process tree [26]. Lilith’s architecture allows tool back-end

code to run within each process of the Lilith process network. Ygdrasil general-

izes the multicast/reduction capabilities of the Ladebug [9] parallel debugger. It is

best suited to the synchronous request/response communication model used by

tools like parallel debuggers. Unlike Lilith, Ygdrasil allows tool back-end code

20

only at the leaves of its process tree. The remaining processes in the process tree

perform multicast and reduction operations on data transferred between tool

front-end and back-ends. Both Lilith and Ygdrasil are implemented in Java to

leverage that language’s natural ability to load code dynamically.

MRNet differs from Lilith and Ygdrasil in its communication model, tool

architecture, and software engineering trade-offs. Unlike Lilith’s communication

model of synchronous message waves and Ygdrasil’s synchronous

request/response communication model, MRNet’s communication model supports

multiple simultaneous asynchronous collective communication operations.

MRNet-based tools have an architecture similar to that of Ygdrasil-based tools,

with tool back-end code running only at the leaves of its process network.

Whereas Lilith and Ygdrasil use Java for ease of extensibility, MRNet trades ease

of extensibility for the higher potential data throughput made possible by explicit

memory management.

Most research in software-based collective communication has focused on pro-

viding multicast and data aggregation support for applications. The Message

Passing Interface [71,72] standards include several collective communication

operations, such as broadcast, scatter, and gather. Although some MPI implemen-

tations use serialized point-to-point operations to implement these collective

operations, others provide optimized implementations that use an overlay net-

work. For example, MagPIe [55] provides MPI collective communication primi-

tives optimized for applications run in a geographically-distributed environment

like the Grid. MagPIe uses a process tree consisting of a flat, single-level tree at

21

the root for efficient communication across a WAN, followed by a binary tree for

efficient communication within the local network. The ACCT [105] system auto-

matically tunes its MPI collective communication algorithms based on modelling

and experimental results, tailoring the algorithms to the system on which the

MPI application runs. Because optimized MPI implementations are not univer-

sally available, we cannot depend on the availability of a high-throughput MPI

layer for efficient collective communication in parallel tools.

The data reductions supported by MPI are more restrictive than those sup-

ported by MRNet. MPI only supports ordinal processing of the input arrays (i.e.,

they apply the reduction operation to the first element of each input array, then

the second element, and so on.) In contrast, MRNet’s filters can operate on as

much (or as little) of each of the input arrays as desired, allowing MRNet data

aggregations to perform sophisticated data aggregations like the timestamp-

based data aggregation described in Chapter 4. Furthermore, a tool’s use of MPI

may conflict with MPI use in the monitored application. For example, in a com-

mon tool start-up scenario a process manager creates tool back-end processes,

which then create application processes. The tool back-end processes are sup-

posed to be transparent to the process manager, but may not be if they are also

MPI processes. The dynamic process and communicator creation functions speci-

fied by the MPI-2 standard [72] may alleviate this problem, but support for these

functions is lacking in existing MPI implementations. MRNet does not use MPI

for collective communication, so it is safe to use in tools that monitor MPI appli-

cations or even as the foundation for an MPI implementation’s multicast and

22

data reduction functionality.

In addition to the parallel tool and application infrastructure projects men-

tioned previously, a few cluster monitoring tools such as Ganglia [69] and

Supermon [97] use a hierarchical overlay network with data aggregation func-

tionality for scalability.

Ganglia [69] is a widely-used distributed monitoring system for clusters and

computational Grids consisting of federations of clusters. Ganglia can monitor

system-level and application-level metrics, with built-in support for common sys-

tem-level metrics like CPU utilization, number of processors, and memory usage.

Ganglia uses a hierarchical organization for scalability. Above the level of individ-

ual clusters, Ganglia uses an overlay network of processes connected by point-to-

point TCP connections for data transfer and aggregation. The topology of this

daemon hierarchy is specified statically, but fail-over connections can be specified

for fault tolerance. Within each cluster, Ganglia uses IP multicast

functionality [21] to implement a listen/announce protocol for maintaining clus-

ter membership and for distributing monitored data to all cluster nodes for fault

tolerance within the cluster.

Like Ganglia, Supermon is a cluster monitoring system that can use a hierar-

chical overlay network for aggregating data. Within each cluster node, a loadable

kernel module extracts system-level configuration and performance data and pre-

sents it via a file in the procfs filesystem to a user-level monitor program. A

supermon (for “super monitor”) is connected with TCP point-to-point connections

to the monitor on one or more cluster nodes. For scalability, supermons can be

23

connected to other supermons to form a hierarchy.

Although Ganglia, Supermon, and MRNet each use a hierarchical overlay net-

work for collective communication, their use of this network differs in significant

ways that make their approaches less suitable than MRNet as a foundation for

parallel tools. Ganglia, Supermon, and MRNet-based tools each use an overlay

network for efficiently gathering data from the tool’s back-ends to its front-end,

but neither Ganglia nor Supermon uses the network for scalable multicast. Also,

data aggregation support is more flexible with MRNet than with Ganglia and

Supermon. Ganglia and Supermon’s only data aggregation is the concatenation

operation. In contrast, MRNet provides several built-in data aggregations for

common operations, and allows a tool to dynamically add tool-specific data aggre-

gations to be run in the overlay network processes. Finally, Ganglia, Supermon,

and MRNet differ in their support for high-throughput collective communication.

Ganglia seems to be targeted to data collection intervals on the order of several

seconds or more. On the other hand, Supermon and MRNet share the goal of

high-throughput data collection, though a throughput comparison based on pub-

lished results is not possible due to differences in the data aggregation used and

uncertainty about the amount of data contained in each Supermon sample.

2.1.2 Parallel Data Aggregation and Volume Reduction Algorithms

As part of our evaluation of the MRNet infrastructure, we modified Paradyn

to use MRNet for tool start-up and performance data aggregation. This work is

related to previous research on parallel algorithms for data aggregation and data

24

volume reduction.

The first aspect of our MRNet evaluation in a real-world setting involved its

use for performance data aggregation. In addition to performance tools, data

aggregation has also been studied in the context of parallel databases and ad-hoc

wireless sensor networks that provide a database-like query interface.

Graefe [39] presents basic techniques for computing aggregates in a parallel

database. He also suggests guidelines for efficient data aggregation, such as to

compute aggregates at the lowest-possible system level to avoid unnecessary data

movement. Shatdal and Naughton [91] present an adaptive algorithm that

dynamically selects between two data aggregation approaches based on query

characteristics including the type of aggregation being performed and the layout

of the data being aggregated. Gray et al [40] suggest ways for efficiently imple-

menting their “data cube” aggregation operator in a parallel database. Although

this parallel database research provides useful guidance for implementing these

more conventional data aggregations, it does not cover some of the more unusual

(and important) aggregation operations needed by many performance tools such

as the time-aligned performance data aggregation and clock skew detection

reductions described in Section 4.3. Also, this research does not address the use of

a hierarchy of processes for scalable data aggregation like that used by Lilith,

Ygdrasil, TAG (described below), and MRNet.

TAG [66] is a wireless sensor network that acts like a parallel database. It

provides a SQL-based interface for expressing data aggregation queries and a

relational database model for representing aggregation results collected from

25

wireless sensor networks. Like MRNet, TAG supports multiple simultaneous

aggregation operations and supports streams of aggregated data in response to

an aggregation request. TAG uses a SQL/relational interface, in contrast to our

RPC-style interface. Also, TAG organizes its sensors with an ad-hoc routing tree,

whereas MRNet’s network configuration is specified a priori using a configura-

tion file. Like MPI data reductions, TAG only supports ordinal data aggregation;

MRNet’s filters can align and aggregate data based on other criteria such as its

timestamp.

The second aspect of our MRNet evaluation in a real-world setting involved its

use for performance data volume reduction. One of the techniques used in our

MRNet-based tool start-up research is based on an approach used in

ETRUSCA [88], our earlier system for reducing performance data volume, and

further refined by Reed et al [84]. ETRUSCA (for Event Trace Reduction Using

Statistical Cluster Analysis) processes event traces from parallel applications to

compute a small number of performance metrics for each process. Periodically,

ETRUSCA categorizes processes so that those with similar metric values are in

the same category. Once the processes are categorized, ETRUSCA chooses process

from each category that best represents the category and filters the traces to keep

only the representatives’ event trace records. Although this technique is effective

for reducing event trace data volume, its use of centralized processing to find pro-

cess categories and to select category representatives limits its overall scalability.

In our scalable tool start-up approach, we overcame this scalability barrier by

using MRNet-based data reductions to categorize the processes and to select cate-

26

gory representatives.

2.2 On-line Automated Performance Diagnosis And Tuning

On-line performance tools are those that perform the bulk of their data analy-

sis while the monitored application is still running. Automated performance diag-

nosis tools are those that find and explain application performance problems with

minimal user involvement. Tools that combine the two approaches, on-line auto-

mated performance diagnosis tools, are especially desirable for tuning large-scale

applications because:

• they automatically cull the interesting data from a potentially massive vol-

ume of performance data, relieving the user from the challenging task of ana-

lyzing the complex interactions between application, system software, and

hardware; and

• they avoid the need to store the potentially massive volume of performance

data between its collection and analysis.

However, an on-line automated performance diagnosis tool contends with the

application for computing resources. Therefore, to avoid significantly altering the

application’s behavior when it is monitored by an on-line automated performance

diagnosis tool, the tool must use efficient methods for collecting performance

data, for transferring the data to the tool’s data analysis component(s), and for

analyzing the data. Because of their desirability for tuning large-scale applica-

tions, on-line automated performance diagnosis tools are an active research area.

In this section, we survey existing work in on-line automated performance diag-

27

nosis tools. Most of the projects mentioned here are affiliated with the APART

working group [5], a working group funded by the European Union for discussing

tools and techniques for automating performance diagnosis.

Perhaps due to the combination of challenges in implementing a low-impact

on-line tool and a useful automated performance diagnosis tool, few on-line auto-

mated performance diagnosis and tuning tools exist despite their desirability for

large-scale performance tuning. Paradyn [15,74] is the seminal instance of this

class of tools, but recent projects Peridot [36] and SCALEA [103,104] also provide

on-line automated performance diagnosis functionality. Because on-line auto-

mated computational steering toolkits and tools like Falcon [42], Autopilot [85],

and Active Harmony [100] share several characteristics with on-line automated

performance diagnosis tools, we include them in our survey. Finally, the Monitor-

ing, Analysis, and Tuning Environment (MATE) [78] augments on-line auto-

mated performance diagnosis with dynamic optimization based on the results of

the performance diagnosis, exceeding the advantages of both automated perfor-

mance diagnosis and computational steering.

Most of the automated performance diagnosis tools described in this section

find application performance problems using search, a technique described in

introductory artificial intelligence texts (e.g., Rich and Knight [86]) for finding a

goal state in a problem state space. One heuristic for reducing the time required

for a search through a problem state space is to start the search as close as possi-

ble to the goal state. We adapted this idea for Deep Start, our technique for auto-

matically finding performance bottlenecks in applications with a large number of

28

functions. Deep Start uses stack sample data to select deep starters that are close

to the goal states in our problem domain: the bottlenecks of the application being

examined. Like the usual situation for an artificial intelligence problem search,

one of our goals for Deep Start is to reduce the time required to find solutions

(i.e., application bottlenecks). However, in contrast to the usual artificial intelli-

gence search that stops when the first solution is found, Deep Start attempts to

find as many bottlenecks as possible.

Paradyn [15,74] is an on-line performance diagnosis tool. Paradyn’s Perfor-

mance Consultant uses an automated, instrumentation-based search to find

application performance bottlenecks. The Performance Consultant’s search deter-

mines both why and where an application is experiencing a performance problem.

Paradyn uses dynamic instrumentation [49] to control performance data volume

and time histograms to support long-running applications. Dynamic instrumenta-

tion is a technology for inserting, modifying and removing instrumentation as an

application runs. Using dynamic instrumentation, Paradyn collects only the data

it needs for performance monitoring and automated performance diagnosis.

Although dynamic instrumentation is used to generate performance data, Para-

dyn’s daemons using sampling to control the volume of data delivered to the tool’s

front-end. Paradyn stores sampled data in time histograms, fixed-size data struc-

tures that each hold the performance data for a single performance metric. A

decreasing sampling rate is used to keep time histograms from overflowing with

long-running applications. Time histograms were originally developed for Para-

dyn’s progenitor IPS-2 [48,75]. Because the Performance Consultant provides the

29

context for our work in scalable automated performance diagnosis and scalable

data visualization, we provide a more detailed review of this tool in Chapter 3.

Peridot [36] is an on-line automated performance diagnosis system whose

design shares several characteristics with our approach to scalable on-line auto-

mated performance diagnosis. Like our approach, it uses an agent running on

each node of the system to examine the behavior of processes running on that

node, with a global diagnosis agent to examine global application behavior. Peri-

dot uses selective instrumentation, instrumentation that is inserted at compile-

time but can be enabled or disabled while the application runs. Peridot’s strategy

for finding application performance problems is based on the APART Specifica-

tion Language [28], a language for formally expressing an application’s perfor-

mance properties.

SCALEA [103] is an on-line automated performance diagnosis tool for use

with MPI, OpenMP, and HPF programs and the Vienna Fortran Compiler [10].

Like Paradyn’s Performance Consultant, SCALEA’s performance diagnosis strat-

egy performs an instrumentation-based, on-line search for why and where an

application is experiencing performance problems. SCALEA’s search is guided by

an extensive hierarchy of performance overheads, or reasons why an application

may be exhibiting a performance degradation. SCALEA’s search strategy deter-

mines where an application is experiencing a performance overhead by dividing

the application’s source into code regions. The tool instruments code regions at

compile time, with instrumentation requests expressed in a formal, text-based

language called the Instrumentation Request Language (IRL). To support the

30

refinement of code regions, and to avoid the need to instrument code regions to

collect data about all possible performance overheads, SCALEA uses an experi-

ment management component that allows it to perform its automated perfor-

mance diagnosis search across multiple application runs. SCALEA uses a novel

language called the Instrumentation Request Language (IRL) for expressing

requests to its instrumentation service. Recently, SCALEA functionality has been

re-packaged in a Grid monitoring system called SCALEA-G [104]. SCALEA-G is

based on the Grid Monitoring Architecture [102] and implemented as a collection

of services conforming to the Open Grid Services Architecture [37]. In this form,

the tool can monitor both Grid infrastructure and Grid applications.

On-line automated computational steering toolkits and tools like Falcon [42]

and Autopilot [85] share several characteristics with on-line automated perfor-

mance diagnosis tools. Both may dynamically control an application based on the

performance data they collect: on-line performance diagnosis tools, to adapt the

data they are collecting in order to manage the performance data volume; compu-

tational steering systems, to modify application variables in order to change the

workings of the application for improved performance. Both must analyze the

performance data quickly enough to make effective on-line control decisions.

Falcon and Autopilot are steering toolkits for distributed computation. They

use a distributed system of sensors to collect data about an application’s behavior

and actuators to make modifications to application variables to change that

behavior. They require the applications to include sensors and actuators at build

time so that they are available when the application runs for monitoring and con-

31

trolling the application’s behavior. That is, the applications must be designed to

be steerable, although the literature about Autopilot (the newer of the two sys-

tems) indicates the use of dynamic instrumentation for inserting sensors and

actuators at run time is a possible direction for future work. Autopilot also pro-

vides a distributed directory service for sensors and actuators so Autopilot clients

can discover and attach to a steerable application dynamically, and a decision

engine based on fuzzy logic to assist clients in decision-making.

Active Harmony [100] extends the approach of these computational steering

toolkits to include a component that automatically tunes an application’s perfor-

mance by manipulating the values of steerable parameters in search of settings

that give good performance. Like Falcon and Autopilot, Active Harmony requires

the application and the libraries it uses to be modified to expose steerable param-

eters. At run-time, Active Harmony searches through the space defined by the set

of steerable parameters by applying a collection of parameter values, observing

the performance with those values, and then modifying the values based on the

observed performance. Unlike Autopilot and Falcon, Active Harmony does not

provide explicit support for distributed applications.

MATE [78] augments on-line performance diagnosis with a dynamic perfor-

mance tuning capability like that of computation steering. Unlike traditional

computational steering, MATE does not require the application to include and

expose monitoring points and tuning controls (e.g. steerable parameters, sensors,

and actuators), but can make use of such information if it is available. Without

such information, MATE operates in automatic tuning mode, using only built-in

32

knowledge of the tuning and monitoring points available in the operating system

and the libraries used by the application. Although this approach is desirable

because it completely relieves the burden from the user, in practice better results

were possible in cooperative tuning mode, i.e. when the user provided some

insight into the workings of the application. Like Paradyn, MATE uses dynamic

instrumentation to collect the data needed by its automated performance diagno-

sis component. MATE also uses dynamic instrumentation to optimize the applica-

tion at run time, for example by changing the values of global variables or

replacing one function with another.

The projects described in this section have placed varying degrees of emphasis

on the issue of scalability. Most of the projects use dynamic instrumentation or

some form of dynamically-enabled compile-time instrumentation. Although the

nominal reason for using such instrumentation is not always scalability, its effect

is to control the volume of performance data collected when monitoring the appli-

cation’s behavior. Outside their instrumentation approach, Active Harmony and

MATE do not explicitly address the issue of scalability (though MATE suggests

distributed performance analysis and tuning as future work). Paradyn’s time his-

tograms address temporal scalability by fixing the memory requirement needed

to store performance data regardless of the application’s run time; none of the

other projects explicitly addresses temporal scalabilty. For scalability as the num-

ber of application processes increases, Peridot uses a distributed analysis

approach with local and global diagnosis agents like that of our performance

diagnosis strategy; Falcon and Autopilot support distributed decision-making

33

with a similar organization. However, the Peridot literature lacks detail about

how it addresses the issues of distributed control of its automated performance

diagnosis strategy, and the two computational steering toolkits provide only dis-

tributed decision-making mechanism by design. Also, unlike our scalable perfor-

mance diagnosis strategy, none of these projects incorporates a hierarchical

process organization for scalable processing of global application performance

data. Finally, none of these projects addresses the problem of scalable visualiza-

tion of performance diagnosis results, the issue we address with our Sub-Graph

Folding Algorithm.

2.3 Sampling-Based Performance Tools

Many performance tools use sampling as their primary method to obtain

application performance data. Of these tools, most sample the system’s perfor-

mance counter to build a profile of the application’s execution. Most UNIX distri-

butions include the prof and gprof [38] profiling tools for performing flat and call

graph-based profiles, respectively. Quartz [4] profiles parallel applications run-

ning on shared memory multiprocessors. The Digital Continuous Profiling

Interface [3], or DCPI, uses program counter sampling to obtain low-level infor-

mation about instructions executing on in-order Alpha [17] processors. Recogniz-

ing the limitations of the DCPI approach for out-of-order processors,

ProfileMe [20] uses hardware support to obtain accurate instruction profile infor-

mation on out-of-order Alphas.

Although most profilers sample only a program’s performance counter, at least

34

one profiler samples the program’s call stack instead. CPPROF [43] uses call

stack samples to build a “Call Path Refinement Profile” that represents the time

spent to execute all call sequences observed during a program’s run. Using a pow-

erful language for describing various types of call sequences, CPPROF’s interac-

tive query component can be used to search manually through the profiling data

to pinpoint the call sequences that are the program’s performance bottlenecks.

Like CPPROF, our Deep Start automated performance diagnosis strategy

samples the entire execution stack. However, Deep Start does not use a dedicated

sampling activity to gather samples; rather, it acquires samples opportunistically

from its instrumentation-based automated search activity. When Paradyn inserts

or removes dynamic instrumentation during a bottleneck search, its daemons

walk the program’s execution stack to ensure the changes to the program’s text

are safe. Deep Start uses these stack walks as samples. Unlike CPPROF and the

other sampling-based tools, Deep Start does not necessarily acquire samples on a

regular basis, so the profile that Deep Start builds from its samples may be less

accurate than that obtained by the other sampling-based tools. However, because

Deep Start’s profile is used as a secondary source of qualitative behavioral infor-

mation rather than the primary source of quantitative performance information,

this potential lack of accuracy is acceptable in Deep Start. Furthermore, Deep

Start does not replace the instrumentation-based search with sampling because

sampling is not appropriate for obtaining certain types of performance informa-

tion such as wall clock time and inclusive CPU utilization (i.e., the CPU utiliza-

tion of a function and all of its direct and indirect callees).

35

2.4 Dynamic Instrumentation Management

The Distributed Performance Consultant introduces a new approach for man-

aging dynamic instrumentation, consisting of a model for the instrumentation

cost and a policy for scheduling instrumentation requests. In this section, we

present previous work related to our instrumentation cost model and instrumen-

tation scheduling policy.

Software-based performance monitoring systems affect the behavior of the

application being studied. Because these effects are usually negative, they are

often called “costs” of the monitoring system. For instrumentation-based monitor-

ing systems, there are three approaches for dealing with instrumentation cost:

ignore it, compensate for it, or control it. Although widely used due to its simplic-

ity, the approach of ignoring the cost of instrumentation is difficult to justify. The

approaches of compensating for and controlling instrumentation cost each

require the monitoring system to incorporate a model of the cost of instrumenta-

tion.

The cost of software-based performance measurement has many dimensions,

including the time required to execute instrumentation code, the memory

required for temporary storage of performance data, the effect of instrumentation

code and performance data on the system’s caches, and the differences between

the uninstrumented and instrumented program’s ordering of events. Trace-based

performance measurement systems also include a cost for storing performance

data to trace files. On-line performance measurement systems may have a cost

for communicating performance data among tool components.

36

Because the effects of instrumentation on an application are so complex, no

existing model captures all dimensions of instrumentation cost. Existing models

have focused on the dimensions that are easiest to measure or approximate. Mal-

ony and Reed [68] and Yan and Listgarten [109] propose cost models for trace-

based instrumentation systems that try to compensate for the effects of instru-

mentation in the event traces. Malony and Reed use a single constant to model

the cost of each instrumentation point, chosen as the average execution time of a

benchmark program’s instrumentation points. Yan and Listgarten extend this

model by placing instrumentation points into a small number of categories, and

assigning a constant instrumentation cost for each category. Unlike these models

for trace-based instrumentation systems, Hollingsworth and Miller [47] present a

simple model for predicting and measuring the cost of more general instrumenta-

tion in an on-line performance tool. Paradyn’s Performance Consultant [74] uses

their model in a feedback system that controls instrumentation cost during auto-

mated performance bottleneck searches.

None of these instrumentation cost models is well suited for our scalable auto-

mated performance diagnosis strategy. Because our performance diagnosis strat-

egy sometimes uses instrumentation that is more complex than the writing of a

fixed-size trace record, the Reed and Malony and Yan and Listgarten instrumen-

tation cost models are not appropriate for the Distributed Performance Consult-

ant. The Hollingsworth and Miller model is better than these other models for

representing the cost of instrumentation with a wide range of complexity, but it is

also not well-suited for use in the Distributed Performance Consultant because it

37

aggregates the instrumentation cost for parallel computation into a single value.

To control the effects of instrumentation requested by search agents running on

each node of a parallel system, the Distributed Performance Consultant must be

able to monitor instrumentation cost at the granularity of individual nodes, but

this information is lost in Hollingsworth and Miller’s aggregated instrumentation

cost value. In short, there is a need for a rigorous model of instrumentation cost

in parallel computation that can be used in a scalable, distributed tool.

In addition to the Distributed Performance Consultant’s need for a new

instrumentation cost model, there is a need for a new policy for scheduling

dynamic instrumentation. The instrumentation scheduling problem facing the

Distributed Performance Consultant is isomorphic to the problem of scheduling a

mixed sequential/parallel workload on a parallel system, where local instrumen-

tation requests correspond to sequential jobs and global instrumentation corre-

sponds to parallel jobs. While there is no existing work on distributed

instrumentation cost models, previous research has been done on parallel sched-

uling algorithms. This existing work has investigated scheduling policies for this

type of mixed sequential/parallel workload, including studies by Leutenegger and

Vernon [62] for shared-memory multiprocessors, Arpaci et al [6] for a network of

workstations, and Arpaci-Dusseau [7] for avoiding the scalability problems of tra-

ditional gang scheduling systems with implicit coscheduling.

The Distributed Performance Consultant’s local/global instrumentation

request scheduling policy draws upon this previous research to solve a different

and more restricted problem. In the Distributed Performance Consultant, gang

38

scheduling global instrumentation requests is a requirement, not just a perfor-

mance benefit. Also, whereas the mixed workload job scheduling problem usually

considers parallel jobs that have a different number of processes than the number

of available processors, our problem is limited to instrumentation requests for a

single node of the parallel system or for all nodes in the system. In addition,

although preemptive scheduling of instrumentation requests is possible, our ini-

tial investigation into scalable automated performance diagnosis uses a simpler,

non-preemptive instrumentation scheduling policy.

2.5 Scalable Data Visualization

A well-designed data visualization can be easier to understand than a textual

presentation of the same data, making data visualization a popular approach for

understanding the behavior of a parallel computation. Insightful performance

data visualizations are especially important for understanding the behavior of

large-scale computations, where the volume of performance data and the com-

plexity of the interaction between application software, system software, and the

hardware can make it challenging to identify and understand interesting applica-

tion behavior. The most common technique for visualizing the behavior of a paral-

lel computation is to represent each entity of the computation (e.g., each process)

with its own graphical element in an aggregate display (e.g., an individual bar

within a bar chart containing multiple bars). This technique is popular because it

explicitly represents the computation’s parallelism in the visualization, but it

does not scale. With this technique, the number of graphical elements in the visu-

39

alization is the same as the number of entities in the computation. However, the

number of graphical elements that can be visualized is limited by the display

technology, limiting the size of the computation whose data can be visualized

using this technique. Research into scalable visualization techniques is an area of

ongoing research. In this section, we survey existing techniques for scalable data

visualization and relate them to the Sub-Graph Folding Algorithm (SGFA), our

approach for visualizing the results of an automated performance bottleneck

search.

Couch [18] proposes an abstract technique for constructing scalable perfor-

mance visualizations that groups processes into categories and displays only per-

category statistics. Both Couch’s Seeplex tool and our SGFA put this approach

into practice. However, Seeplex requires significant user involvement to manu-

ally categorize the data, whereas SGFA categorizes processes without user inter-

action. Also, Seeplex categorizes quantitative data, whereas SGFA categorizes

processes using qualitative data describing the results of a performance bottle-

neck search.

Kimelman et al [56] describe a technique for reducing the complexity of

dynamic graph-based displays like search history graphs (see Figure 1.2). In their

approach, the user specifies criteria to select nodes from the complete graph. The

user then “disposes” of the selected nodes by placing them in the background

visually, removing them from the graph, or grouping them into a new meta-node.

Their approach re-applies the user’s node disposal preferences as the graph

changes. Because their technique produces graphs that are less complex than the

40

original graph, their technique may be used to improve the scalability of graph-

based displays. SGFA is similar to their technique because it combines several

nodes from the full search history graph into a single node in the folded sub-

graph to reduce graph complexity. However, their technique requires the user to

define the node selection and disposal rules manually, whereas SGFA operates

automatically. On the other hand, their technique is more generally applicable

than SGFA because it does not require the graph to have sub-graphs with a sensi-

ble categorization. Whereas SGFA takes advantage of the regular structure

present in Paradyn’s qualitative performance data, their technique makes no

assumptions about the underlying data.

Stasko and Muthukumarasamy [98] propose the semantic zooming technique

for constructing scalable graph-based displays (see Figure 2.1). Unlike the zoom-

ing functionality found in many graphical tools, semantic zooming does not imply

strict magnification and demagnification as the user zooms the display into and

out of the data. Instead, when zoomed out of a graph-based display like the

(a) (b) (c)

Figure 2.1 A semantic zooming display of a graph. Shades of gray are used to indicate
the number of nodes in the sub-graph associated with each block. When zoomed out to show
the entire graph (a), the display provides a coarse indication of the node distribution in the
graph. Zooming in (b) provides more detail. When zoomed in as far as possible, the display
shows the graph’s individual nodes and edges (c).

41

search history graph display, semantic zooming represents the graph as a matrix

of blocks where each block represents a sub-graph of the underlying graph. For

each block, the characteristics of the sub-graph associated with the block are indi-

cated by the graphical characteristics of the block, such as its color and texture.

For example, in Figure 2.1 the blocks that represent sub-graphs with many nodes

have a darker color than those representing sub-graphs with few nodes.

Figure 2.1a shows the display when zoomed out to show the entire graph. At this

zoom level, the display provides a coarse idea of the distribution of nodes in the

graph. To zoom in to the next level of detail, the user selects a single block from

the display and the display adjusts so that the sub-graph associated with the

selected block is represented by all the blocks in the display (Figure 2.1b). When

zoomed in far enough, the display shows the individual nodes and edges of the

underlying graph (Figure 2.1c). Although a rigorous user interface study is

needed to decide conclusively, we believe many users will prefer an SGFA-based

search history graph display over a semantic zooming display because the SGFA

display always retains the familiar graph-like characteristics (i.e., nodes and

edges) of the underlying graph, whereas the semantic zooming display does not.

SGFA’s folding operation is similar to that used by the PRISM parallel

debugger [94] and Karavanic’s structural merge operator [53]. PRISM uses a

Where Tree display (see Figure 2.2) to show the call stacks from multiple SPMD

application processes in a single, scalable representation. In this display, each

node represents a function call in one or more processes. Nodes from different

process’ call stacks are grouped together into a single tree node if they call the

42

same function at the same call site. Because each application process has the

same program entry point (e.g., a C program’s main function), the node that rep-

resents the program entry function is the root of the Where Tree. Identical call

sequences from this entry point function are represented as common node

sequences in the tree. Karavanic’s structural merge operator also forms a compos-

ite tree by folding equivalent graph nodes together. The structural merge opera-

tor combines two trees of program resources called EventMaps. Each EventMap

represents the program resources involved in a single application run. The struc-

tural merge operator combines equivalent nodes from the two EventMaps to form

a composite tree containing the program resources that were present in both

application runs. Like the PRISM folding operation and Karavanic’s structural

merge operator, SGFA combines equivalent nodes from source graphs into a com-

posite graph. In contrast to the PRISM folding operation, SGFA folds trees rather

than linear sequences of stack frames. Also, SGFA considers node types and truth

values in addition to node names when determining which nodes can be folded

(a) (b)

Figure 2.2 Example of folding in the PRISM debugger’ s Where Tree. Four call stacks
(a) are folded into a single tree (b).

find_factordo_workmain

mat_muldo_workmain

mat_muldo_workmain

rescalemain

multiply

mat_mul

do_work

main

multiply

mat_mul

rescale

43

together, whereas PRISM only considers the function name. SGFA differs from

Karavanic’s structural merge operator in that the structural merge operator

requires the user to provide mappings that indicate equivalent nodes, whereas

SGFA’s built-in node equivalence rules allow SGFA to operate without user inter-

vention.

2.6 Summary

Our research is related to previous work in several areas. The MRNet scalable

multicast and data reduction infrastructure builds on previous work in collective

communication infrastructure but provides flexibility in high-throughput data

reductions that is not found in the existing work. Our scalable tool start-up tech-

niques and performance data aggregation approach leverage MRNet’s flexibility

and performance to greatly improve tool scalability. Our scalable tool start-up

techniques also apply the general approach of categorizing application processes

based on some measurable characteristic and then operating only with a repre-

sentative or summary of each category. The Distributed Performance Consultant

builds on previous work in automated performance diagnosis tools, but addresses

scalability issues of performance data management and tool control that are not

addressed by existing on-line automated performance diagnosis tools. The Deep

Start hybrid strategy for automatically finding application performance problems

augments instrumentation with sampling, a novel approach for automated per-

formance tools. Finally, our Sub-Graph Folding Algorithm applies a process cate-

gorization technique like that used by our scalable tool start-up strategy to the

44

domain of scalable visualization. Its graph folding operation is similar but some-

what more complex than the graph folding or merging operations found in exist-

ing tools.

45

Chapter 3

The Performance Consultant

The Performance Consultant is the automated performance diagnosis compo-

nent of the Paradyn performance tool. Because the Performance Consultant pro-

vides the context for our research, this chapter briefly reviews the Performance

Consultant to provide background for subsequent chapters. More complete

descriptions of Paradyn and the Performance Consultant can be found in earlier

publications [15,47,48,49,50,74].

The Performance Consultant automatically finds application bottlenecks by

performing experiments that determine whether the application is exhibiting

performance problems and, if so, where the problems are occurring. Initially, the

experiments test the behavior of the application as a whole. If the Performance

Consultant discovers global performance bottlenecks (by comparing observed per-

formance against user-configurable thresholds), it performs new experiments

that are more and more specific to pinpoint the nature and location of each bottle-

neck. Because dynamic instrumentation [49] is used to collect performance data,

46

the Performance Consultant collects only the data it needs to test its experiments

and can remove the instrumentation when it is no longer needed.

The Performance Consultant involves a small number of key concepts:

• The Hypothesis. An experiment’s hypothesis is a reason why an application

may be performing poorly. For example, “too much time spent blocked for I/O”

is one of the hypotheses used by the Performance Consultant. An experiment’s

hypothesis determines the instrumentation that is used to collect performance

data for the experiment. Each experiment tests a single hypothesis.

• The Resource. An application’s resources are the entities that comprise the

application, both statically and as it runs. The functions that constitute the

application’s executable code are resources, as are its processes and the hosts

on which they are running. The synchronization objects used by the applica-

tion such as message tags, barriers, spin locks, and semaphores are also pro-

gram resources. Paradyn organizes resources into hierarchies by type (see

Figure 3.1). Each resource represents all resources organized beneath it

Figure 3.1 Paradyn organizes the application resourc es into hierarchies.

47

within its hierarchy. For example, the Code resource represents all functions

in the application’s executable(s).

• The Focus. A focus is a tuple containing one resource from each resource

hierarchy. A focus provides a concise name for a potentially large set of

resources. For example, the focus

</Code/setup.c,/Machine/lc01.cs.wisc.edu,/SyncObjec t>

denotes all functions from the source file setup.c , but only if they are execut-

ing in processes running on the host named lc01.cs.wisc.edu . This focus spec-

ifies the top level SyncObject resource, so it does not constrain the set of

resources it names to any synchronization object or type of synchronization

object. Each experiment reflects both a hypothesis and a focus.

• Experiment activation. An experiment is activated when the Performance

Consultant requests that instrumentation code be inserted into the applica-

tion to collect the performance data needed to evaluate whether the experi-

ment is true (i.e., its hypothesis is true at its focus).

• Search refinement. If an experiment is true, the Performance Consultant

uses a technique called refinement to continue its bottleneck search by creat-

ing one or more new experiments that are more specific than the original

experiment. New experiments can be defined by refining either the experi-

ment’s hypothesis or its focus. However, because the Performance Consultant

uses a small number of predefined hypotheses, search refinement usually

involves the refinement of an experiment’s focus. To refine a focus, the Perfor-

mance Consultant replaces one of the resources in the focus with another of

48

the same type. If the resource being replaced is a Code resource (i.e., a

resource representing a function), the new foci are generated by replacing it

with the resources representing its callees in the application’s call graph. If

the resource being replaced is not a Code resource, the replacement resources

are the children of the original resource from the Paradyn resource hierarchy.

Refinement allows the Performance Consultant to perform a step-by-step nar-

rowing of its search to examine a more specific hypothesis or set of resources

when it determines an experiment is true.

• The search path. A search path is a sequence of experiments related by

refinement. The Performance Consultant terminates a search path when it

cannot refine the last experiment on a path. Because the refinement of an

experiment may result in the creation of more than one new experiment, the

Performance Consultant may have many search paths that are active simulta-

neously (i.e., are not terminated). Thus, the Performance Consultant may

have a large number of experiments under consideration at any given time. To

keep the effects of instrumentation to tolerable levels, the Performance Con-

sultant throttles experiment activation to keep the instrumentation’s cost

below a user-configurable threshold.

• The search history graph. A search history graph records the cumulative

refinements of a search. Paradyn’s Search History Graph display (see

Figure 1.2) represents this graph visually. This display is dynamic; nodes are

added to the graph as the search is refined. Node label and background colors

indicate whether the experiment is active and its truth state, respectively.

49

Also, by clicking on graph nodes users can obtain detailed information about

each experiment including its full hypothesis and focus names, the current

value of the performance metric it uses to determine its truth state, and when

it started and stopped collecting performance data.

50

Chapter 4

Scalable Multicast/Reduction Overlay Networks

Two of the tool scalability barriers presented in Chapter 1, the management of

large-volume performance data flows and communication between a large num-

ber of distributed tool components, are encompassed by the same high-level prob-

lem: the problem of monitoring and controlling a large number of distributed

components. For the large-scale parallel computing systems of today and the near

future, “a large number” means thousands or even tens of thousands of compo-

nents, but the need for tools that can monitor and control hundreds of thousands

of components looms on the horizon.

There are several high-level requirements that must be satisfied by any solu-

tion to the large-scale monitoring and controlling problem. A solution must:

• Be applicable to on-line tools, because of their desirability for large-scale per-

formance diagnosis and tuning (see Chapter 1);

• Enable a tool to process monitoring data as quickly as necessary to support

the tool’s purpose. (With the first requirement, this implies that a solution

51

must enable tools to process monitoring data at the same rate as it is being

generated to support on-line tools that adapt its behavior based on its col-

lected data);

• Enable a tool’s front-end to issue control requests scalably to any subset of its

back-ends;

• Enable any subset of a tool’s back-ends to deliver responses scalably to its

front-end; and

• Provide a scalable approach for starting and connecting tool processes.

To address the large-scale monitoring and controlling problem, we propose the

use of scalable overlay networks that provide multicast and data reduction ser-

vices. We call these networks Multicast/Reduction Overlay Networks, or MRONs.

An MRON-based tool interposes a hierarchical network of processes between its

front-end and back-ends as shown in Figure 4.1, unlike a typical parallel tool

where each back-end is connected directly to the tool’s front-end (see Figure 1.1).

A tool can use an MRON to parallelize and distribute important tool activities,

yielding a twofold benefit: parallelization reduces the latency of each activity and

distribution reduces the tool front-end’s computation and communication load.

This chapter presents our research into using MRONs to address the large-

scale monitoring and controlling problem. Section 4.1 describes our MRON

approach and discusses how it addresses the large-scale monitoring and control-

ling problem by presenting the design and implementation of MRNet, our initial

implementation of the MRON concept. Section 4.2 discusses issues involved in

choosing the process layout, or connection topology and process placement strat-

52

egy, of MRNet-based tools. Section 4.3 presents our experience when applying

MRNet to the Paradyn parallel performance tool, including its use for non-con-

ventional collective communication operations like partitioning tool back-ends

into equivalence classes and finding the skew between the clock’s of the tool front-

end and each back-end process. Section 4.4 presents the results of our evaluation

of MRNet’s low-level behavior and its behavior when integrated into Paradyn.

Section 4.5 concludes the chapter with a summary of our MRON research and a

discussion of potential future work.

Figure 4.1 The components of an MRNet-based parallel tool. Shaded boxes represent
potential host boundaries. Dark ellipses represent internal processes of the overlay network.
Any tree topology is possible between front-end and back-ends; a binary tree topology is
shown. Compare this organization with that of a typical parallel tool (Figure 1.1).

User Interface

Analysis and Control

Back-End 0

Process 0

Back-End 1

Process 1

Back-End 2

Process 2

Back-End 3

Process 3

Back-End p-2

Process p-2

Back-End p-1

Process p-1

Front-End

 In
te

rn
al

 P
ro

ce
ss

es

53

Our MRON research makes several research contributions:

• A list of requirements for solving the large-scale monitoring and controlling

problem. This list, presented above, builds on our delineation of the tool scal-

ability problem space into three scalability barriers (see Chapter 1);

• An MRON design. MRNet’s design embodies our approach to implementing

MRONs. This design incorporates techniques for scalable communication and

data processing that enables tools to address the large-scale monitoring and

controlling problem;

• Evaluation of MRNet’s behavior and performance. Our MRNet evaluation con-

firms the scalability of our MRON approach’s low-level collective communica-

tion operations;

• Exploration of a wide range of data reductions. As part of our work in inte-

grating MRNet into Paradyn, we explored a wider range of non-conventional

data reductions than had been investigated previously.

4.1 MRNet Design and Implementation

Our approach to building MRONs is embodied in the design and implementa-

tion of tool infrastructure called MRNet. MRNet-based tools are organized as a

tree of processes, with the tool’s front-end at the root and its back-ends at the

leaves of the tree (Figure 4.1). The processes between the root and leaves are

called internal processes. MRNet does not dictate the process layout, or connec-

tion topology and process placement strategy, of tool and MRNet internal pro-

cesses. Instead, tools use a simple text-based language called the MRNet

54

Configuration Language, or MCL, to specify the desired layout. Tools can use

common topologies like k-ary and k-nomial trees or custom topologies tailored to

the system(s) running the tool. For instance, a tool may use a custom layout so

that the overlay network topology reflects the physical topology of the underlying

system’s interconnect.

Using MRNet, tools can efficiently multicast data and compute averages,

sums, and other more complex data aggregations. Tools send data across MRNet

on logical data channels called streams. A stream transfers data between the

tool’s front-end and some collection of its back-ends. Data travelling toward the

tool’s front-end is said to be flowing upstream; downstream-flowing data is travel-

ling toward the tool back-ends. Regardless of its direction, data transferred on a

stream can be manipulated using filters running throughout the overlay network.

Using filters, MRNet can manipulate data sent over a stream in parallel to aggre-

gate data efficiently.

The hierarchical communication structure used in our approach to MRONs

has been studied previously in a variety of contexts (e.g., [8,27,55,66,69,97,106]).

However, several features make our approach better-suited as a general facility

for building scalable parallel tools:

• Flexible organization. Tools can use any tree organization for the MRNet

process layout, allowing tools to customize the process layout for the system

running the tool.

• Scalable, flexible data aggregation. MRNet filters are the mechanism for

efficient computation of averages, sums, concatenation, and other conven-

55

tional data reductions. In our MRON approach, custom filters can be added to

MRNet to perform tool-specific aggregation operations. For example, when we

integrated MRNet into Paradyn (see Section 4.3), we used a custom histogram

filter to partition the application processes into equivalence classes based on

characteristics of each process such as its collection of functions. We also used

a custom filter to implement a scalable algorithm for detecting the clock skew

between the tool’s front-end and each Paradyn daemon. No other overlay net-

work system has explored such a rich variety of aggregation operations.

• High-bandwidth communication. Data is transferred within MRNet in an

efficient, packed binary representation. Copy-free data paths are used when

possible for low-cost transfer of data through the overlay network.

• Scalable multicast. When sending control requests to tool back-ends, serial-

ization limits the scalability of existing tools as the number of back-ends

increases. MRNet’s efficient message multicast enables low-cost communica-

tion of control requests from the tool front-end to its back-ends.

• Multiple concurrent data channels. MRNet supports multiple concurrent

data streams. Multicast and data reduction takes place within the context of a

stream, so more than one multicast or data reduction operation can be active

simultaneously.

MRNet enables tools to address the problem of monitoring and controlling a

large number of distributed components. MRNet’s data aggregation facility

enables scalable processing of global application data, data that describes the

behavior of all application processes as a whole. MRNet-based tools can off-load

56

their global data processing onto the processes of the overlay network, reducing

the processing and communication load on the tool’s front-end. In addition,

MRNet’s multicast and data aggregation capabilities enable scalable communica-

tion of requests and responses between the tool’s front-end and its back-ends.

4.1.1 MRNet Abstractions

A tool’s front-end and back-ends interact with MRNet using a small number of

abstractions. MRNet implements the abstractions in a C++ API. All classes and

type definitions in the API are contained within a C++ namespace called “MRN.”

MRNet’s abstractions are:

• Network: For the tool’s front-end and back-end processes, the Network object

abstracts the MRON. The tool’s front-end uses its Network object to configure

the MRON, for example to create streams. In MRNet, tool back-ends do not

create streams. Instead, back-ends become aware of new streams when they

first receive a message sent along the new stream. To support this model, the

back-end’s Network object provides a method for receiving a message without

a priori specification of the message’s stream.

• EndPoint: When creating a stream, the tool’s front-end must indicate which

back-ends will communicate using the stream. In MRNet, each tool back-end

is represented using an EndPoint object. Because communication between

tool back-ends is not supported in our MRON communication model, tool

back-ends do not use EndPoint objects.

57

• Communicator: A Communicator object holds a collection of one or more

EndPoint objects. Communicator s provide a concise way to specify which tool

back-ends are involved in MRNet collective communication operations, pro-

viding a similar function to communicators in MPI [71,72].

• Stream: A Stream object implements the MRNet concept of a logical data

channel. In MRNet, each Stream is associated with exactly one Communica-

tor that specifies which back-ends can transfer data across the Stream . To

give a tool a means to differentiate data intended for different purposes but

sent to the same collection of back-ends, a Communicator object can be associ-

ated with several Stream objects. For example, in MRNet there is one broad-

cast Communicator that specifies all back-ends. Any collective

communication operation that involves the front-end and all back-ends can

share the broadcast Communicator . A tool’s front-end creates MRNet streams

using a method provided by its Network object, but tool back-ends do not cre-

ate Stream objects directly. Instead, a back-end obtains Stream objects via a

data receive operation provided by the back-end’s Network object. This opera-

tion allows a back-end to receive data without specifying the stream on which

the data is sent; a Stream object representing the data’s stream is provided

via an output parameter of the receive operation.

• Filter: When a tool front-end creates a Stream object, it provides the IDs of

the synchronization and transformation filters to be used by the stream.

58

4.1.2 MRNet Data Transfer

With any communication infrastructure, there are two high-level aspects to

data transfer: the data transfer operations provided in the infrastructure’s API

and how the infrastructure transfers data internally. We describe these two

aspects in this section.

Several styles of data transfer operations have been used in the APIs of exist-

ing communication infrastructures. The styles differ in whether programs explic-

itly manage a data buffer and whether data is added to and removed from the

buffer using a single API operation or a sequence of operations. For example, in

the PVM [34] communication model, programs explicitly manage a data buffer

when transferring multiple data items; the buffer is packed and unpacked using

a sequence of operations, one per data item. In contrast, a program that uses an

XDR [65] library to send data over a TCP/IP socket sends multiple data items

using a sequence of operations, but can rely on the XDR library to buffer the data

until the sender calls an XDR “end of record” function.

An example of MRNet’s API is shown in Figure 4.2. The tool front-end begins

by creating its Network object to instantiate the MRON (Figure 4.2a, line 1), pro-

viding the name of a configuration file containing the desired MRNet process lay-

out. Next, the front-end obtains the broadcast Communicator from its Network

and uses it to build a Stream for communicating with all of the tool’s back-ends

(line 2). The Stream is configured to use a synchronization filter that implements

the “wait for all” synchronization policy (see Section 4.1.4) and a “floating point

maximum” transformation filter on upstream-flowing data, and no transforma-

59

tion filter on downstream-flowing data. Next, the front-end sends an array of

floating point values on the Stream (line 4). MRNet’s data transfer operations

are similar to the C standard library’s printf and scanf functions, including

the use of a format string to specify the type(s) of the data being transferred.

1
2
3

4
5
6

front_end(const char* config_file_path, int nvalue s, float* values)
{

float result;
void* buf = NULL;

Network* mrn = new Network(config_file_path);
Communicator* bc_comm = mrn->get_broadcast_communic ator();
Stream* stream = new Stream(bc_comm, SYNC_WAIT_FOR _ALL,

TRANS_FP_MAX,
TRANS_NULL);

stream->send(VALUE_TAG, “%af”, values, nvalues);
stream->recv(buf);
stream->unpack(“%f”, &result);

}

(a)

1

2
3

4

5

back_end(const char* host, unsigned short port)
{

Stream* stream = NULL;
float* values = NULL;
unsigned int nvalues;
void* buf = NULL;
int tag;

Network* mrn = new Network(host, port);

mrn->recv(&tag, &stream, &buf);
stream->unpack(“%af”, &values, &nvalues);

float result = do_something(values, nvalues);

stream->send(“%f”, result);
}

(b)

Figure 4.2 Example tool code using the MRNet API. Example code is shown for both the
tool’s front-end (a) and its back-end (b). Error checking code and a statement allowing use of
the MRN namespace without explicit scoping are omitted for the sake of readability.

60

Unlike printf and scanf format strings, MRNet format strings also support

notation for specifying arrays of simple types. For example, the format string

"%d %f %aud" indicates data consisting of an integer, a floating point number,

and an array of unsigned integers. Although it is not specified in the format

string, MRNet requires the number of elements in an array to be specified when

it is sent, and provides the number of elements with the array when it is received.

In the example code, the send operation takes a format string, a tag, and the

array to be transferred. Next, the front-end receives (line 5) and unpacks (line 6)

a response from the Stream . When the data is received, the front-end obtains the

tag value and an opaque data buffer containing the transferred data. The front-

end calls an unpacking operation with a format string (perhaps chosen based on

the tag value received with the data buffer) to extract the response from the

buffer. Separating data receipt and unpacking enables a receiver to use event-

driven control flow. For example, the receiver can employ an event loop that

receives the next available data buffer without a priori specification of the data’s

sender or its type(s). Once the data buffer and tag are received, the receiver can

take the appropriate action to extract the data items from the buffer. In the exam-

ple, the response received by the front-end is the maximum value of the back-

end’s responses.

The code of the tool’s back-end (Figure 4.2b) is symmetric to the front-end

code. The back-end first connects to MRNet by creating its Network object

(line 1), specifying the process to which it must connect. Next, it receives the

array of floating point values from the front-end on a Stream (line 2) and

61

unpacks the array elements and length (line 3). The back-end performs some

unspecified operation on the data to produce a floating point value (line 4) and

sends the value to the tool front-end on its Stream (line 5).

Internally, MRNet transfers data across its overlay network in the form of

messages containing one or more packets. Each packet holds a collection of typed

data and type information is transferred with a packet as it is transferred across

the overlay network. For efficient transfer between processes, packets keep data

in packed binary form. Data is packed into and unpacked from these buffers

using functions that provide the XDR interface but use a “receiver makes right”

approach like that of PBIO [23] when transferring data between heterogeneous

hosts. For efficient delivery of multi-packet messages, MRNet uses system func-

tions that transfer multiple non-contiguous memory buffers with a single system

call (e.g., readv and writev on UNIX systems) if such functions are available.

4.1.3 MRNet Filters

In our MRON design, filters manipulate data as it is transferred through the

overlay network. MRNet uses two types of filters: synchronization filters that syn-

chronize data arriving asynchronously at MRNet processes, and transformation

filters that manipulate data, for example to compute its sum or average. In our

approach, filters are implemented as C++ functions that take a collection of input

packets and produce a collection of output packets. Filters can be stateful, and

custom filters can be dynamically loaded into MRNet to perform tool-specific syn-

chronization or aggregation operations.

62

MRNet uses synchronization filters to synchronize data that arrives asynchro-

nously to an MRNet process. Synchronization filters enable an MRNet process to

ensure that it has a collection of packets synchronized according to some synchro-

nization policy before it manipulates the data in the packets. We have identified

three synchronization policies that we feel are generally useful:

• Wait for all. Under this policy, the filter collects input packets until it has at

least one from each child connection involved in the filter’s stream. The collec-

tion of packets produced by this filter includes exactly one packet per child

connection.

• Wait for all with timeout. This policy is the same as the Wait for all policy,

except that it produces packets if a user-configured timer expires before a

packet has been collected from each child connection. The collection of packets

produced by this filter includes at most one packet per child connection; if the

packets are produced in response to the expiration of the timer, packets may

be missing from some of the child connections.

• Do not wait. Under this policy, the synchronization filter produces packets as

soon as they are received.

Transformation filters produce a collection of output packets in response to a

(potentially synchronized) collection of input packets. Transformation filters can

implement simple data aggregation operations like summation and averaging, or

more complex operations like the computation of a sliding window average. For

example, when applying MRNet to Paradyn, we used transformation filters for

unconventional operations like a histogram filter that partitions application pro-

63

cesses into equivalence classes based on the characteristics of each process.

To support complex synchronization or transformation behavior, MRNet fil-

ters can retain state. In synchronization filters, this state can be used to hold

packets that are not yet ready to be passed along to the stream’s transformation

filter. In transformation filters, this filter state may be used to support complex

aggregation operations such as sliding window averages. Filter state is kept on a

per-filter, per-stream basis, so stateful filters need not contain complex logic to

manage filter state for a dynamic collection of streams.

No collection of synchronization and transformation filters is appropriate for

all tools, so our MRON design supports the use of custom filters. In general, there

are two approaches to incorporating custom filters into an implementation of our

MRON design: custom filters may be incorporated at compile time or at run-time

(i.e., dynamically). The compile-time approach is simpler to implement, but it pro-

duces a tool-specific executable file for internal processes. On the other hand, a

dynamic approach allows the internal process executable to be tool-independent.

Also, the dynamic approach provides flexibility in how custom filter code is incor-

porated into internal processes. For example, the custom filter code may be dis-

tributed from the tool’s front-end to each internal process, or each internal

process may load the custom filter code from the file system available to it.

MRNet supports dynamic loading of custom filters into internal processes. In

its initial implementation, MRNet requires the custom filter code to be in a

shared object located within a file system accessible to the tool front-end and each

internal process (e.g., a file system shared across all hosts that run MRNet inter-

64

nal processes). Dynamic loading of tool-specific filters is initiated by the tool’s

front-end, but carried out by the tool front-end and all internal processes. To load

a tool-specific filter, the front-end calls the Network object’s load_filterFunc

method with the filter function’s name and the pathname of the shared object

that contains the function. The front-end delivers a request containing this infor-

mation to all MRNet internal processes. Upon receiving the request, each process

uses system functions to load the shared object and to obtain the address of the

filter function (e.g., dlopen and dlsym on UNIX) in the process’ address space. If

successful, the load_filterFunc method returns an identifier representing the

newly-loaded filter. This identifier can then be used in subsequent Stream cre-

ation.

4.1.4 Data Handling in MRNet Processes

MRNet’s scalability is derived from the parallelism made possible by its hier-

archical process network. A tool’s front-end and internal processes perform most

of the MRON-related data handling. These processes execute the filters that

manipulate the data sent across MRNet streams, and these processes route

downstream-flowing data so that it eventually reaches the back-ends associated

with the stream.

The tool front-end and internal processes handle data differently depending

on whether it is flowing upstream or downstream. Transformation filters can be

applied to manipulate the data flowing in either direction, but synchronization

filters are needed only for data flowing upstream because only upstream-flowing

65

data arrives on multiple input connections. The actions taken when processing

upstream-flowing data are illustrated in Figure 4.3. When a message arrives

(Figure 4.3a), its individual packets are extracted (Figure 4.3b) and passed into

the synchronization filter associated with the message’s stream (Figure 4.3c). If

the addition of a packet causes the synchronization filter’s synchronization crite-

ria to be met, it passes its collection of synchronized packets to the transforma-

tion filter (Figure 4.3d). The transformation filter applies its transformation

operation and produces a collection of output packets (Figure 4.3e). In the exam-

ple, the transformation filter has reduced the four input packets to one output

packet. Any packets produced by the transformation filter are added to the outgo-

ing message. Once all incoming packets have been handled, the outgoing message

is either queued for receipt by the tool (if the message is being handled in the

tool’s front-end) or is sent to the process’ parent process (Figure 4.3f).

Synchronization filters are not needed for data flowing downstream, but

downstream-flowing data must be routed to the correct outgoing downstream

connections to reach the appropriate back-ends. The actions taken for down-

stream-flowing data are illustrated in Figure 4.4. When a message arrives its

packets are extracted (Figure 4.4a), as with upstream-flowing data. The packets

are then passed to the transformation filter associated with the message’s stream

(Figure 4.4b). If the transformation filter produces any packets, they are added to

the outgoing message. Once all input packets have been handled, the MRON pro-

cess determines the outgoing connections that lead to the back-ends associated

with the stream, and sends the outgoing message on each of those connections

66

(a) (b) (c)

(d) (e) (f)

Figure 4.3 Handling of upstream-flowing data in an M RNet process. .A message with
three packets (represented by a gray oval containing three black squares) arrives to an
MRON process (a). The packets are extracted from the message, and passed one by one to
the synchronization filter associated with the message’s stream (b). If the addition of the new
packet causes the synchronization filter’s synchronization criteria to be met, a synchronized
collection of packets is passed along to the stream’s upstream transformation filter (c). The
transformation filter produces a collection of output packets (e). The output packet(s) are
batched into a message for later delivery to the process’ parent (f).

Packet Unbatching

Data Transformation

Packet Batching

Packet Synchronization

Packet Unbatching

Data Transformation

Packet Batching

Packet Synchronization

Packet Unbatching

Packet Synchronization

Data Transformation

Packet Batching

Packet Unbatching

Packet Synchronization

Data Transformation

Packet Batching

Packet Unbatching

Packet Synchronization

Data Transformation

Packet Batching

Packet Unbatching

Packet Synchronization

Data Transformation

Packet Batching

67

(a) (b) (c)

(d) (e) (f)

Figure 4.4 Handling of downstream-flowing data in an MRNet process. .A message
with three packets (represented by a gray oval containing three black squares) arrives to an
MRON process (a). The packets are extracted from the message (b), and passed one by one
to the downstream transformation filter associated with the message’s stream (c). The
transformation filter produces output packets that are batched into an output message (d).
Once all input packets have been processed and batched into the output message (e), the
output message is routed on the appropriate child connections to reach the back-ends
associated with the stream (f).

Packet Batching

Data Transformation

Packet Unbatching

Routing

Packet Batching

Data Transformation

Packet Unbatching

Routing

Packet Batching

Data Transformation

Packet Unbatching

Routing

Packet Batching

Data Transformation

Packet Unbatching

Routing

Packet Batching

Data Transformation

Packet Unbatching

Routing

Packet Batching

Data Transformation

Packet Unbatching

Routing

68

(Figure 4.4c). As a performance optimization, if a stream does not use a transfor-

mation filter for downstream-flowing data, the packets of a downstream-flowing

message sent on the stream need not be extracted before it is sent on outgoing

connections.

Within the tool front-end and each internal process, MRNet implements the

data handling approach described above using StreamManager objects. There is

one StreamManager object per Stream , and the StreamManager object associ-

ated with a given stream manages all data processing for messages sent on that

stream. When a message arrives at the tool front-end or one of MRNet’s internal

processes, the process first determines the stream to which the message belongs

and delivers the message to that stream’s StreamManager object. The Stream-

Manager object extracts the message’s packets, delivers each packet in turn to

the stream’s filters, collects any output packets into an outgoing message, and

delivers the outgoing message on the appropriate outgoing connection.

4.1.5 Multithreading in MRNet Processes

Parallel systems whose nodes contain multiple processors are becoming com-

monplace. On such systems, MRNet processes can manage their connections

using multiple threads for efficiency. Currently, MRNet creates one thread per

input connection. Each thread performs a read operation on its input connection,

blocking until data is available. Once data is available on the connection, the data

is read and processed within the context of that thread. On hosts with multiple

processors, the use of multiple threads allows MRNet to process data sent along

69

different streams simultaneously.

To avoid problems caused by conflicting thread packages and to avoid intro-

ducing a thread package into single-threaded tools, parent and child processes

can also operate in single-threaded mode. In single-threaded mode, MRNet polls

all of its input connections for available data and blocks if none is available. How-

ever, in situations such as when a single-threaded tool must service both a con-

nection to a user interface server and to MRNet, it is undesirable for MRNet to

block if no data is available. In such situations, a useful approach for managing

control in the tool front-end is to have the front-end poll for available input out-

side of MRNet, but to include the MRNet connections when polling. When input

is available on one of the MRNet connections, the front-end gives control to

MRNet to consume and process the data. To facilitate this approach, the Network

abstraction provides a method for obtaining the local MRNet connections.

4.1.6 Instantiation of MRNet-Based Tools

Monitoring and controlling large-scale parallel computation involves two

large-scale programs: a parallel application and a parallel tool. Applications typi-

cally use a parallel communication facility like MPI [71,72] or PVM [34] to com-

municate between processes. Tool processes monitor and control application

processes, and communicate between themselves (e.g., to transfer monitoring

data and control messages). Although some parallel communication facilities like

PVM allow a tool to share the application’s communication infrastructure, the

model used by common communication facilities like MPI-1 [71] assumes that all

70

processes participating in the parallel computation are application processes.

From the perspective of a communication facility like MPI-1, a tool is a separate

parallel program whose interaction with the application is outside the scope of

the communication facility.

Large-scale computing environments usually provide a process management

system, such as a batch queueing system, to start parallel applications. When

starting application processes, a process manager provides the processes with the

information they need to participate in the parallel computation. For example,

IBM’s Parallel Operating Environment (POE) [52] uses environment variables to

pass information to the MPI run-time library in each application process, such as

its position within the application’s global MPI communicator.

Existing process management systems are not generally tool-aware. They

reflect the assumption that all processes created to start a job are part of the

same parallel application, so they provide no support for starting an application

and a tool to monitor and control the application as part of the same job. To work

around this limitation, parallel tools often request the process manager to start

the tool’s back-end processes, which then start the application processes. The tool

back-end process is transparent to the application process, which behaves as if it

were started directly by the process management system. Using this work-

around, each application process obtains from the process management system

the information it needs to participate in the parallel computation, yet is created

under the control of a tool back-end process.

Although it is often desirable or even necessary to use a process manager to

71

start tool back-ends, the lack of tool awareness in existing process managers

makes them unsuitable for launching other types of tool processes such as

MRNet’s internal process tree. As noted above, existing process managers expect

that all processes created to start a job are part of the parallel application. This

assumption is reflected in the information they provide to the processes they cre-

ate. If the process manager starts tool processes in addition to tool back-ends, the

information provided to the tool back-ends (hence, to the application processes) is

incorrect. For example, POE communicates the size of an application’s global MPI

communicator to the MPI library in each application process using an environ-

ment variable. If POE creates both tool back-end and internal processes as part of

the same request, POE sets the environment variable to the total number of pro-

cesses being created, not the number of application processes. Using one job to

launch tool back-ends and another job to launch internal processes may work in

some environments, but it is not a general solution because some environments

do not guarantee that the two jobs will be scheduled together. In short, until pro-

cess management systems become tool-aware, another approach to creating inter-

nal processes is needed.

In MRNet, we use a recursive technique with a remote shell utility to create

and connect internal processes (see Figure 4.5). In environments without a pro-

cess management system, the technique can be extended to create tool back-end

processes in addition to internal processes. Beginning at the tool’s front-end with

configuration information specifying the topology and process placement of the

entire tool process network, the root of each process tree (Figure 4.5a) creates the

72

processes that are its directly-connected children (Figure 4.5b). The remote shell

utility is used to create processes that are not located on the same host as the root

process. Once started, each child process connects to its parent in the tree using

information provided to it when it is created such as its parent’s host name and

the port number of a socket waiting for connections (Figure 4.5c). When a child

process establishes a connection to its parent, the parent delivers the portion of

(a) (b)

(c) (d)

Figure 4.5 Recursive instantiation of MRNet’s intern al process network. Beginning
with a process at the root of a sub-tree of the process network (a), the root process creates
its directly-connected children sequentially (b). Each child connects back to the root process
(c), and receives a description of its own sub-tree (d). Independent of its parent and its
siblings, each child then uses the same approach to instantiate its sub-tree.

73

the MRNet configuration that specifies the sub-tree rooted at the child, if any

(Figure 4.5d). The child then instantiates its own sub-tree using the same

approach, independent of further activity by parent and siblings. The recursion

stops at processes whose only children are tool back-ends. With our recursive

approach, different branches of the internal process tree can be instantiated in

parallel for scalable instantiation of MRNet’s process tree.

As described, our recursive approach creates and connects only internal pro-

cesses. In environments where a process management system must be used to

create the tool back-ends, MRNet returns control to the tool’s front-end after cre-

ating the internal processes along with information its back-ends need to connect

to the leaves of the tree of internal processes. Then, the front-end issues a request

to the process management system to create the tool’s back-end processes, provid-

ing them the information they need to connect to the leaves of the internal pro-

cess tree. Using the connection information provided by the front-end via an

information channel like the environment or a shared file system, each back-end

process connects to the appropriate internal process. In environments without a

suitable process management system, our recursive approach for instantiating

the tree of internal processes can be extended to create tool back-end processes.

In this approach, each leaf of the internal process tree uses the remote shell util-

ity to create the tool back-end processes that are its children, providing each

back-end process with the information needed to connect back to the creating pro-

cess. With both approaches, when all back-ends have connected to their appropri-

ate internal process, the tool’s instantiation is complete.

74

4.2 MRNet Process Layout

Tool requirements and system capabilities vary, so no single process layout is

appropriate for all tools. Hence, an MRON implementation should allow a tool to

tailor its process layout to the tool’s computation and communication require-

ments and to the capabilities of the system running the tool. We briefly discuss

several process layout issues to provide guidance for constructing high-perfor-

mance internal process network layouts. A full investigation of internal process

network layout issues is left for future work.

When choosing the process layout for an MRON-based tool, there are two key

issues to consider: whether the internal processes are co-located with the applica-

tion processes under study, and how the internal processes are connected. Our

primary measures of a layout’s quality are its:

• latency for a single broadcast operation, measured from initiation by the

front-end to the last receipt by a back-end;

• latency for a single data aggregation operation, measured from initiation by

the back-ends to receipt by the front-end;

• throughput for streams of broadcasts and data aggregations; and

• CPU utilization of MRON processes.

The first issue to consider when choosing an MRON process layout is whether

to co-locate internal processes and application processes on the same nodes.

While some literature on broadcast/reduction networks assumes that internal

processes will be co-located with application processes [8,27,66], we believe this

approach has serious flaws in practice. First, the internal processes would con-

75

tend with application processes for CPU and network resources, perhaps seri-

ously impacting the application’s performance. Second, differing loads across

MRON internal processes could create an imbalance among the application pro-

cesses, skewing their performance. Because a parallel program’s speed is often

limited by its slowest process, this performance skew would increase the tool’s

impact on the application. As a result, we recommend that an MRON’s internal

processes be located on resources distinct from those running the application pro-

cesses to achieve more predictable and understandable application behavior.

The second issue to consider when choosing an MRON process layout is the

topology of internal processes. Both balanced and unbalanced tree topologies

have attractive properties for MRON layouts. The literature on parallel collective

communication algorithms argues for unbalanced tree topologies in many situa-

tions. For example, Bernaschi and Iannello [12] show that the optimal communi-

cation tree for broadcast is somewhere between a single-level flat tree and a

binomial tree, depending on the latency for transferring messages between pro-

cesses and the minimum interval between message send operations in a process.

Similarly, optimal algorithms for several broadcast and data aggregation prob-

lems evaluated under the LogP [19] and LogGP [2] models use unbalanced com-

munication trees. However, this literature assumes all processes involved in the

operation are data sources (for reductions) or sinks (for broadcasts). In contrast,

MRON internal processes are neither data sources nor sinks. For reduction oper-

ations, MRON leaf processes are the only data sources and the root is the only

data sink; for multicast operations, the root is the only data source and the leaf

76

processes are the only data sinks.

Balanced tree topologies provide several attractive advantages over unbal-

anced tree topologies for our work. Their regularity makes them more predictable

and easier to analyze when choosing the most appropriate size and shape for the

MRON internal process tree. Although the latency of individual collective com-

munication operations may be worse with balanced trees than unbalanced trees,

they can provide better throughput for pipelined collective communication opera-

tions. For example, consider the tree topologies shown in Figure 4.6 connecting a

tool front-end to sixteen tool back-ends. Assuming a LogP model with a minimum

gap g between successive send operations in a process, an overhead o for each

send and receive, and a message transfer latency L, the time required to complete

a broadcast operation to all sixteen back-ends using the balanced tree topology

shown in Figure 4.6a is 8g+4o+2L, but the tool can start a new broadcast each 4g

cycles. A comparable unbalanced tree topology reaching sixteen back-ends is

shown in Figure 4.6b. This topology is constructed from a binomial tree with four

nodes providing low-latency broadcast to each binomial tree node, with four tool

back-ends attached to each binomial tree node. Depending on the relative values

(a) (b)

Figure 4.6 Balanced and unbalanced MRON internal pro cess topologies with the
same number of back-ends. The latency of a single broadcast or aggregation operation
might be better with the unbalanced (b) topology, but the balanced topology (a) has better
throughput for pipelined operations.

77

of g, o, and L, a single broadcast operation using this topology may complete

before the balanced tree’s broadcast, but a tool using this topology needs at least

6g cycles between each broadcast operation due to the larger fan-out at the tree’s

root. Furthermore, if the tool supports six-way fan-out as is being used at the root

of the unbalanced tree topology, then it could use a balanced topology with a six-

way fan-out throughout the tree to reach far more than sixteen tool back-ends.

Therefore, we chose to use balanced tree topologies in our evaluation of the proto-

type MRON implementation, leaving investigation into optimal MRON communi-

cation topologies for future work. Furthermore, we used multi-level topologies

with moderate (four- or eight-way) fan-out at each internal process because the

ability of each internal process to keep up with its upward and downward data

flows is limited.

4.3 A Real-World Tool Example

To evaluate MRNet’s usefulness as infrastructure for scalable tools, we inte-

grated MRNet into Paradyn, an existing parallel performance tool. There are two

main ways that Paradyn can use MRNet: to simplify the complex interactions

between front-end and tool daemons during tool and job start-up, and to off-load

the performance data processing tasks from the Paradyn front-end. We describe

how we integrated MRNet into Paradyn, providing a quantitative evaluation of

MRNet within Paradyn in Section 4.4.2.

4.3.1 Scalable Tool Start-Up

Tools such as debuggers and performance tools may transfer large amounts of

78

data during tool start-up when they create or attach to an application’s processes.

For example, a debugger that sets breakpoints by function name might deliver

the names and addresses of all functions to the tool’s user interface. In parallel

tools with the typical process organization depicted in Figure 1.1, the front-end

becomes a bottleneck when connected to a large number of application processes.

Besides reducing tool interactivity, the start-up latency caused by this bottleneck

may create problems for parallel runtime systems that fail if the application pro-

cesses are not created in a timely fashion. Our modified version of Paradyn uses

both built-in and custom MRNet aggregation filters for all activities involving the

tool’s daemons (i.e., its back-ends) during the tool start-up phase, including:

• reporting data about Paradyn daemons to the front-end;

• distributing data about known performance data metrics to all daemons;

• detecting clock skew between the front-end process and each daemon process;

and

• reporting data about application processes to the front-end.

Although most of these activities manipulate Paradyn-specific data, the MRNet-

based techniques they use are applicable to many activities commonly performed

by parallel tools.

During Paradyn start-up, most of the data transferred within the tool system

can be placed into two categories: information about the application processes,

and information about instrumentation. Data in the first category is transferred

from tool back-ends to the tool front-end. At start-up, the Paradyn back-ends

examine application processes to identify the relevant parts of the program, such

79

as modules, functions, and process IDs. Such items are called resources in Para-

dyn terminology. Once the application resources are identified, they are reported

to the front-end along with statically-determined call-graphs for all application

processes. In contrast to the application process information, data in the second

category is transferred from the tool’s front-end to its back-ends. This data con-

sists of a collection of performance metric definitions that specify how to instru-

ment processes to collect performance data.

Paradyn uses MRNet in two ways to reduce the cost of reporting data from

daemons to the front-end. The method used depends on whether the data is likely

to be the same across a significant number of processes (e.g., function names and

their addresses) or is likely to be different across processes (e.g., process IDs and

host names). If the data is likely to be the same across a significant number of

processes, then most of the data transferred during tool start-up is redundant

(especially if the application processes are created from a small number of execut-

ables and run on a collection of homogeneous hosts). To report this data, each

Paradyn daemon first computes a summary of the data (i.e., a checksum). Next,

the daemons write the checksums to an MRNet stream created to use a custom

binning filter. This filter partitions the daemons into equivalence classes based on

their checksum values. When the front-end receives the final set of equivalence

classes, it requests complete function resource information only for a representa-

tive process from each class. Unlike function names, data like process identifiers

and host names are likely to be different across hosts. Nevertheless, Paradyn also

uses MRNet for reporting this data. Paradyn uses a parallel concatenation aggre-

80

gation to construct larger resource report messages that are more efficiently

delivered by the underlying communication subsystem than many small resource

report messages.

Paradyn uses MRNet to deliver configuration data efficiently from the front-

end to all back-ends. In Paradyn, metric definitions describing how to instrument

processes to collect metric performance data are provided to the front end in a

configuration file written in the Paradyn Metric Definition Language [50]. The

front-end uses simple broadcast operations to deliver these metric definitions to

all tool back-ends.

Clock skew detection is the only start-up activity that does not fall neatly into

the two communication paradigms mentioned earlier. The MRNet-based clock

skew detection scheme occurs in two phases. The first phase consists of repeated

broadcast/reduction pairs on a special stream reserved for finding clock “local”

clock skew between each process and the downstream processes to which it is

directly connected (i.e., its children in the MRNet process tree). The second phase

consists of a single broadcast to all daemons requesting them to initiate the col-

lection of skew results. Each daemon initializes its “cumulative skew” value to

zero, and passes it upstream into the MRNet network. When an MRNet internal

process receives a cumulative skew value from one of its downstream connec-

tions, it adds its observed local clock skew value for that connection to the cumu-

lative value, thereby computing the skew of its clock with each daemon reachable

along that connection. By induction, when the algorithm finishes the Paradyn

front-end holds the skews between its clock and the clocks of each tool back-end.

81

4.3.2 Distributed Performance Data Aggregation

Like many parallel performance tools, Paradyn aggregates performance data

collected by its back-ends to examine an application’s global behavior. For each

global performance measure being monitored, each Paradyn back-end produces a

sequence of data samples representing the measure’s value for the processes and

threads that it controls. For example, to obtain a sequence of samples represent-

ing an application’s overall CPU utilization, each Paradyn back-end collects a

sequence of CPU utilization samples for its processes, and the Paradyn front-end

aggregates corresponding samples across all sequences into a single global sam-

ple sequence. Ordinal aggregation is a common technique for constructing a glo-

bal sample sequence; that is, aggregating the first sample from each sequence,

then the second, and so on as shown in Figure 4.7a. The Paradyn design recog-

(a) (b)

Figure 4.7 Performance data aggregation using ordina l aggregation (a) and time-
aligned aggregation (b). In both examples, four sample data streams DS0..3 are being
aggregated into one output sample stream ODS. Ordinal aggregation aggregates the first
sample from each stream, then the second, and so on. Time-aligned aggregation considers
the samples’ start and end times to aggregate data taken from the same interval during the
program’s execution.

DS0

DS1

DS2

DS3

ODS

Time

1 2 3

5

4

1 2 3 4

1 2 3 4 5

1 2 3

1 2 3

5

4

4

DS0

DS1

DS2

DS3

ODS

Time

1 2 3

5

4

1 2 3 4

1 2 3 4 5

1 2 3

2 3

5

4

41

interval i i+1 i+2 i+3

82

nizes that its back-ends collect data asynchronously, so ordinal aggregation may

combine samples representing different intervals of the application’s execution.

As a result, Paradyn represents a data sample as {v,i}, where v is the sample’s

value and i is the time interval to which the value applies. The interval’s start

and end timestamps are set by the back-ends when the sample is collected. Para-

dyn’s performance data aggregation takes into account each sample’s time inter-

val as well as its value, so that aggregation is done with values over comparable

time intervals as illustrated in Figure 4.7b.

Without MRNet, Paradyn aggregates data samples entirely within its front-

end. The computation and communication cost of aggregation causes the front-

end to become a scalability barrier when Paradyn monitors global performance

measures on a large number of nodes. Using MRNet, Paradyn distributes its

aggregation activity to filters running throughout the MRNet network, reducing

its front-end data processing load. Paradyn’s distributed data aggregation scheme

uses a custom Performance Data Aggregation filter within each MRNet internal

process that aligns data samples from all its inputs and then reduces them to

form a single output sample. Collectively, these filters produce a single aggre-

gated sample for the tool’s front-end.

Paradyn’s Performance Data Aggregation filter collects data samples on all of

its inputs, aligns the data samples, and then reduces them. To determine how to

align the samples and when to deliver the aligned samples to the aggregation fil-

ter, the filter maintains the notion of an output sample interval. This interval

defines the start and end times for the aligned data samples, and therefore the

83

start and end time for the aggregated output sample.

Consider the example illustrated in Figure 4.8, showing the Performance Data

Aggregation filter in an internal process with four input connections. Samples

have already arrived for some of the input connections (Figure 4.8a). When a

sample S arrives on an input connection, the filter places it on a queue associated

with that input connection (Figure 4.8b). The filter then checks to see whether

the interval of the newly-arrived sample overlaps with the current output sample

(a) (b) (c)

(d) (e)

Figure 4.8 Distributed data aggregation of four data streams using Paradyn’s custom
MRNet filter. The initial situation (a) where one of the data streams does not have a
complete output interval of data. When a sample arrives, it is placed on a queue associated
with its input connection (b). If the sample’s interval overlaps the current output sample
interval, it is split to attribute the overlap to the output sample interval (c). If the newly-arrived
sample completes the data for the output sample interval, the samples are reduced (d), and
the output sample interval is advanced (e).

Output Sample Interval

Timet0 t1

Output Sample Interval

Timet0 t1

Output Sample Interval

Timet0 t1

Output Sample Interval

Timet0 t1

Output Sample Interval

Timet1 t2

84

interval. If so, it attributes a percentage of S’s value to the input connection’s cur-

rent output sample, leaving the remainder in S and adjusting its interval start

time to remove the overlap (Figure 4.8c). Note that because the sample’s value is

attributed proportionally to the current output interval, and the remainder used

in the next output sample interval, there is no lost performance data due to

round-off issues. If S’s arrival caused the current output sample interval to be full

(i.e., to have sample data from all input connections over all input connections),

the filter reduces the aligned samples (Figure 4.8d) and advances its output sam-

ple interval (Figure 4.8e). The output sample uses the same interval as the

aligned input samples.

Paradyn’s MRNet-based performance data aggregation scheme exhibits a

common trade-off between centralized and distributed algorithms. The central-

ized aggregation scheme has complete knowledge of all of the samples to be

aggregated, so it only considers each sample once when finding the aggregated

sample’s start and end times. On the other hand, the distributed scheme per-

forms multiple alignments throughout the network, leading to more overall work

in the tool system. Nevertheless, because distributed scheme does these align-

ments in parallel and reduces the computation cost for data aggregation in the

tool’s front-end, the MRNet-based distributed scheme exhibits better overall scal-

ability than the centralized scheme.

4.4 Evaluation

To evaluate MRNet, we measured its performance alone within a test harness

85

and then integrated with Paradyn. Our micro-benchmark experiments with the

test harness tool measured MRNet’s start-up latency, the round-trip latency of a

single broadcast followed by a reduction, and MRNet’s reduction throughput

using several process tree topologies. Our Paradyn experiments compared the

performance of both start-up and performance data aggregation activities with

and without MRNet. Our experiments were run on the ASCI Blue Pacific

system [59] at Lawrence Livermore National Laboratory. At the time the experi-

ments were performed, Blue Pacific contained 280 nodes (256 compute nodes)

connected by an IBM SP switch interconnect. Each node has four 333 MHz Pow-

erPC 604e processors, 1.5 GB RAM, and runs AIX 5.1 with Parallel System Sup-

port Programs version 3.4. Our results showed that MRNet significantly

improves the scalability of key activities in parallel performance and system

administration tools.

4.4.1 Micro-benchmark Results

We began by measuring the low-level performance of MRNet within a minimal

test harness. For each run of our test harness tool, we requested an appropri-

ately-sized partition from the Blue Pacific batch scheduling system. Once we

were given our partition, we determined the partition nodes’ host names and

used an automatic configuration generator program to build an MRNet configu-

ration file with the desired topology within the partition. We then executed the

tool’s front-end program, passing the configuration file’s name as an argument.

During each run of the test harness, we measured three MRNet performance

86

characteristics: the latency to instantiate the MRNet network, the latency of a

broadcast operation followed by a data reduction, and the MRNet’s throughput

during a sequence of data reductions. The results of these experiments are shown

in Figure 4.9.

Our micro-benchmark measurements confirm the necessity of infrastructure

like MRNet for building scalable parallel tools. Using a flat, single-level topology

(which closely approximates the architecture of many parallel tools), instantia-

tion latency grows quickly as the number of tool back-ends increases due to the

serialization of the process creation operations. The instantiation latency grows

quite slowly when using MRNet with fully-populated balanced tree topologies

with four- and eight-way fan-outs because MRNet creates the process tree in par-

allel. The round-trip latency and data reduction throughput measurements also

show the benefits of MRNet to parallel tools. In the flat topology, each broadcast

or reduce is implemented using serialized point-to-point message transfers.

Although each message transfer is less time-consuming than the rsh used to cre-

ate processes during tool instantiation, the effect of serialization is similar: the

latency grows rapidly as the number of back-ends increases. Also, the tool front-

end is involved in every message transfer, so it cannot start a subsequent reduc-

tion before the previous operation completes. Multi-level MRNet process configu-

rations allow MRNet to perform point-to-point message transfers in parallel.

Furthermore, the moderate fan-outs at each MRNet process allows data reduc-

tions to be pipelined as they pass through the network, keeping reduction

throughput high as application size increases. The trends in MRNet’s micro-

87

(a) (b)

(c)

Figure 4.9 MRNet micro-benchmark experiment results. Tool instantiation latency (a),
round-trip latency of a single broadcast followed by a single reduction (b), and data reduction
throughput (c) using single- and multi-level MRNet topologies. Compared to the “flat” (i.e.,
single-level) topology commonly found in parallel tools, multi-level MRNet topologies
exhibited dramatically better scalability and overall performance, showing the necessity of
multi-level process networks like MRNet for building scalable parallel tools.

0 100 200 300 400 500 600

Back-Ends

0

100

200

300

400

500

600

700

800

900
T

im
e(

se
c)

Flat
4-way Fanout
8-way Fanout

0 100 200 300 400 500 600

Back-Ends

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e(
se

c)

Flat
4-way Fanout
8-way Fanout

0 100 200 300 400 500 600

Back-Ends

0

10

20

30

40

50

60

70

80

T
hr

ou
gh

pu
t

(o
ps

/s
ec

)

Flat
4-way Fanout
8-way Fanout

88

benchmark scalability studies were expected; previous tool infrastructures using

a hierarchy of processes such as the Ladebug parallel debugger [9] and Lilith [27]

show similar scalability trends.

4.4.2 Integrated Performance Results

To evaluate MRNet’s real-world performance, we modified the Paradyn paral-

lel performance tool to use MRNet as described in Section 4.3. We evaluated

MRNet’s performance during tool start-up and while the tool was collecting and

processing performance data.

Paradyn’s start-up protocol was already highly tuned to reduce redundant

data transfer. For several data transfers from tool daemons to the front-end, it

used a technique whereby each tool daemon computes a checksum over its own

data, the front-end partitions the daemons into equivalence classes based on the

checksum values, and then requests the complete data from only a single repre-

sentative of each equivalence class. We measured the latency of Paradyn’s start-

up activities when preparing to monitor smg2000 [14], a parallel linear equation

solver included in the benchmark suite for the ASCI Purple system. The smg2000

executable is relatively small, containing approximately 434 functions in a 290

KB executable. We started the timer when all daemons were known to have been

started (but not yet reported themselves to the tool front-end), and stopped the

timer after the daemons had reported information about themselves and the

application processes they created, and were ready to run the application.

The results of our scalability study with several MRNet topologies are shown

89

in Figure 4.10a. Without MRNet, serialization of the communication between

Paradyn’s front-end and daemons causes overall start-up latency to rise exponen-

tially as the number of daemons increases. Using MRNet and process topologies

with moderate fan-outs, the start-up latency curves are much flatter and growth

is nearly linear, indicating a significant improvement in overall tool scalability. To

investigate how much of the overall start-up latency that MRNet could affect, we

measured the latency of individual start-up activities with and without MRNet

for our largest experimental configuration; these results are shown in

Figure 4.10b. The individual activities shown in the figure are:

• ReportSelf: Using an MRNet concatenation filter, each daemon reports basic

characteristics to the front end such as the host on which it is running;

• ReportMetrics: The front-end broadcasts Metric Definition Language data

to all daemons; the daemons respond using the equivalence class algorithm

described above to report all metrics that they support (including internal

metrics not specified in the MDL data);

• Find Clock Skew: The front-end finds its clock skew with respect to each

daemon using the algorithm presented in Section 4.3.1;

• Parse Executable: Each daemon examines the application executable and

the shared libraries it uses to find names and addresses of all functions, and

parses the code to discover the application’s static call graph;

• Report Process: After creating or attaching to an application process, each

daemon reports data about the process to the front end including its process

id, its command-line arguments, whether it was created by the daemon or was

90

(a)

(b)

Figure 4.10 Paradyn start-up latency. For increasing numbers of daemons (a), start-up
latency scales much better when using MRNet than without it. When broken down by
activity (b), start-up latency for 512 nodes shows some activities benefit from MRNet more
than others. Bold activity names indicate use of MRNet for data aggregation or concatenation
for at least part of the activity.

0 100 200 300 400 500 600

Daemons

0

10

20

30

40

50

60

70

L
at

en
cy

 (
se

c)

No MRNet
4-way Fanout
8-way Fanout
16-way Fanout

0 5 10 15 20 25

Time (sec)

Report Self

Report Metrics

Find Clock Skew

Report Process

Report Machine Resources

Report Code Eq Classes

Report Callgraph Eq Classes

Report Done

No MRNet
8-way Fanout

Parse Executable

Report Code Resources

Report Callgraph

91

already created when the daemon attached to it, and whether the front-end

should issue the command to resume the process when all start-up activities

are complete;

• Report Machine Resources: Using a concatenation filter, each daemon

defines Paradyn resources for the host, process, and initial thread of its appli-

cation processes via Paradyn’s resource definition protocol;

• Report Code Eq Classes and Report Code Resources: Using the equiva-

lence class algorithm, the daemons define resources for all functions and mod-

ules in the application executable;

• Report Callgraph Eq Classes and Report Callgraph: Using the equiva-

lence class algorithm, the daemons report their static call-graph information

(built during the “Parse Executable” activity described above) to the front-end;

and

• Report Done: The daemons indicate the end of the start-up phase.

Each activity that used MRNet to communicate with all daemons showed a

significant latency reduction by using MRNet. The activities that did not show a

significant improvement from using MRNet are activities that consist either of

work done entirely in parallel by the daemons (“Parse Executable”) or point-to-

point communication between a small number of daemons and the front-end

(“Report Code Resources”, “Report Callgraph”). In fact, the point-to-point commu-

nication activities transferred data via MRNet; the additional overhead of pass-

ing through intermediate MRNet processes was observed to be negligible.

Overall, the benefit of using MRNet increased as we increased the number of tool

92

daemons. With our largest configuration of 512 back-ends, the latency for per-

forming all start-up activities was 3.4 times faster with MRNet and a balanced,

fully-populated tree configuration with eight-way fan-out than without MRNet.

Based on our investigation of MRNet’s benefit for each individual activity during

Paradyn start-up, we expect this trend to continue with configurations signifi-

cantly larger than 512 daemons.

Clock skew detection was the Paradyn start-up activity that benefitted most

from using MRNet, because it uses repeated broadcast/reduction operations to

distribute and collect clock samples and intermediate skew results whereas the

other activities perform only one or two collective operations. We evaluated the

clock skews computed by the MRNet-based clock skew detection algorithm by

comparing them to skews computed using Blue Pacific’s SP switch clock (a glo-

bally-synchronous clock) and to skew results computed using a commonly-used

direct-communication scheme. To compute its clock skew with respect to a given

daemon under the direct communication scheme, the front-end sends a small

amount of data to the daemon. The daemon samples its clock when it receives the

data and sends this sample to the front-end. When the front-end receives the dae-

mon’s sample, it samples its own clock and computes the round-trip latency of the

sends and receives. The front-end approximates the one-way latency from the

round-trip latency, adds the one-way latency to the daemon’s clock sample, and

uses the difference between this value and the front end’s receive timestamp as

the clock skew.

In our experiments, the front-end measured the skew using the direct commu-

93

nication scheme 100 times and used the observed skew with the smallest abso-

lute value as the best approximation of the actual clock skew. Using a 64-daemon

topology with four-way fan-out (a three-level topology), the MRNet-based clock

skew detection algorithm produced skews with an average error of 10.5% as com-

pared to the skews computed using the globally-synchronous switch clock, while

the average error in the skews produced by the direct-connection method was

17.5%. However, the standard deviation of the errors produced by the MRNet-

based algorithm was 80.4, slightly higher than the standard deviation in the

direct connection method’s errors at 78.9. In short, MRNet’s clock skew detection

algorithm produced results sufficient for use even at Paradyn’s most demanding

sampling rate but is significantly more scalable than the direct-connection

method.

To assess the impact of MRNet on Paradyn’s performance data processing

capabilities, we measured how well Paradyn could consume and process the vol-

ume of performance data samples generated by its daemons in a variety of config-

urations. We varied the load placed on the tool’s front-end by varying the number

of daemons and the number of performance metrics for which data was collected

by each daemon. To simplify the evaluation, we ran Paradyn on a synthetic paral-

lel application with known behavior and easily-controllable run time. To keep the

data rate high, we configured the Paradyn daemons to use a fixed sampling rate

for the duration of the experiments. We fixed each daemon’s sampling rate to

Paradyn’s default initial rate of five samples per second per metric. Therefore, for

a given number of daemons D and metrics M, the overall rate at which samples

94

are generated within the tool is 5DM samples per second.

The results of our integrated performance data processing experiments are

shown in Figure 4.11. Each figure shows Paradyn’s performance when collecting

data for up to 32 metrics for configurations with between 4 and 256 daemons.

(a) 1 metric (b) 8 metrics

(c) 16 metrics (d) 32 metrics

Figure 4.11 Fraction of offered load serviced by the Paradyn front-end. When not
using MRNet and increasing the number of metrics for which data is being collected (shown
by the curves labelled “flat”), Paradyn’s ability to process the offered performance data
sample load degrades quickly as the number of daemons increases. However, using MRNet
to off-load some of the performance data processing allows Paradyn to scale much better as
the number of daemons and metrics increases with four-, eight-, and sixteen-way MRNet fan-
outs.

0 100 200 300 400 500 600

Daemons

0.0

0.2

0.4

0.6

0.8

1.0
F

ra
ct

io
n

of
 O

ff
er

ed
 L

oa
d

Flat
4-way Fanout
8-way Fanout
16-way Fanout

0 100 200 300 400 500 600

Daemons

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 O
ff

er
ed

 L
oa

d

Flat
4-way Fanout
8-way Fanout
16-way Fanout

0 100 200 300 400 500 600

Daemons

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 O
ff

er
ed

 L
oa

d

Flat
4-way Fanout
8-way Fanout
16-way Fanout

0 100 200 300 400 500 600

Daemons

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 O
ff

er
ed

 L
oa

d

Flat
4-way Fanout
8-way Fanout
16-way Fanout

95

Each data point marks the ratio of the rate at which the Paradyn front-end pro-

cessed performance data samples to the rate at which the daemons generated the

samples. This ratio represents the fraction of offered load processed by the Para-

dyn front-end. While there were minor start-up transients, the steady-state rate

at which the front-end consumed performance data did not fluctuate significantly.

Therefore, we report only the steady-state ratio. In these figures, a level curve at

value 1.0 indicates the Paradyn front-end was able to keep up with the perfor-

mance data volume generated by its daemons as the number of daemons was

increased.

Our results show that when Paradyn relies on MRNet for some of its perfor-

mance data processing activity, it scales significantly better with increases in the

number of tool daemons and number of metrics for which data is collected. When

increasing the number of metrics for which data is being collected, Paradyn’s abil-

ity to process the offered performance data sample load degraded quickly. For

example, when collecting data from only 64 daemons for 32 metrics per daemon

without MRNet, the Paradyn front-end processed the data at only about 60% of

the rate at which it was generated. With 256 daemons and 32 metrics, the front-

end processed data at a rate of less than 5% of the offered load. Note that as the

number of metrics per daemon increases, Paradyn increases the size of its mes-

sages containing performance data rather than the number of messages.

Using MRNet allowed the Paradyn front-end to scale much better as the num-

ber of daemons and metrics were increased. With four-, eight-, and sixteen-way

96

MRNet fan-outs, the front-end was able to process the entire offered load for all

tested configurations.

4.5 Summary

MRONs are scalable overlay networks providing multicast and data reduction

services for parallel tools that can be used to address the problem of monitoring

and controlling a large number of distributed tool components. MRON-based

tools can off-load data processing onto MRON processes to limit the computation

and communication load of the tool’s front-end.

Our approach for building MRONs is incorporated in MRNet. MRNet uses fil-

ters running throughout its overlay network to manipulate data sent between a

tool’s front-end and its back-ends in parallel. We evaluated the scalability and

performance of our MRON approach by measuring the performance of MRNet’s

low-level collective communication operations. We also integrated MRNet into

the Paradyn parallel performance tool to evaluate our MRON approach in the

context of parallel tools. Our results showed that our MRON approach can be

used to greatly reduce the cost of many important tool activities compared to tools

that use a traditional parallel tool organization, resulting in significant improve-

ments in overall scalability.

Using the research described in this chapter as a foundation, there are several

directions for future research in the area of scalable parallel tool infrastructure.

Our initial work focused on the infrastructure’s scalability but reliability and

resiliency are also important for large-scale parallel tools. Hence, one direction

97

for future MRON research involves the investigation of techniques for improving

an MRON’s fault tolerance and fault recovery characteristics without degrading

its scalability. In fact, this work has already been started by a member of the

Paradyn project.

Another direction for future work is a more complete study of process layout

issues for MRON-based tools. In our work with MRNet, we used regular process

layouts with moderate fan-outs for their simplicity and regularity, and we placed

the internal network processes on computing resources distinct from the tool and

application processes. A complete study is needed to determine how best to choose

a process layout tailored for a given tool’s computation and communication

requirements and the capabilities of the underlying system.

A third direction of future research is suggested by the recognition that the

process management systems available in some environments may be able to

start MRON internal processes more quickly than MRNet’s recursive, remote-

shell-based approach. Process management systems often use a network of pre-

existing, pre-authenticated daemons running on the nodes of a large parallel sys-

tem to enable low-latency creation of related processes like those that comprise

an MPI job. An MRON implementation can use this capability to spawn tool

back-end processes, but may also be able to use it for creating its internal net-

work processes. This instantiation approach requires a separate phase for con-

necting the internal network processes according to the desired process topology.

This connection phase is complicated by the need of each process a posteriori to

obtain the connection information (host and port number) of the processes to

98

which it connects. Whether any benefit gained from using the process manage-

ment system is outweighed by the cost of this connection phase is an open issue.

99

Chapter 5

Scalable Automated Performance Diagnosis for

Applications with a Large Numbers of Processes

In this chapter, we address the problem of diagnosing performance problems

in applications with thousands or more processes. Existing performance diagno-

sis tools fail to overcome the two scalability barriers (Chapter 1) encompassed by

this problem: the management and processing of large-volume performance data

flows generated when monitoring a large number of processes, and communica-

tion between a large number of tool components.

To be effective in finding application performance problems, performance

diagnosis tools must consider both local application behavior, the behavior of

individual application processes, and global application behavior, the aggregate

behavior of all of the application’s processes. For example, a tool that monitors

only an application’s global behavior may be able to determine that it suffers from

a global performance problem. However, without examining the behavior of each

process individually, the tool will not be able to determine that the global perfor-

100

mance problem is caused by an expensive function call sequence being executed

by a small number of processes. Conversely, examination of only an application’s

local behavior may not provide an indication of the application’s overall perfor-

mance.

To address the problem of diagnosing performance problems in applications

with a large number of processes, we developed and evaluated an on-line auto-

mated performance diagnosis approach that efficiently examines both local and

global application behavior. We developed our approach in the context of the Per-

formance Consultant, Paradyn’s automated performance diagnosis component

(see Chapter 3). We call the enhanced component the Distributed Performance

Consultant. Other performance diagnosis tools have adopted the Performance

Consultant’s search-based approach for finding application performance prob-

lems (e.g., [35,36,77,103]), so our approach also is applicable to other search-

based other tools.

Our Distributed Performance Consultant research takes two evolutionary

steps from the traditional Performance Consultant. The first is a move from the

Performance Consultant’s centralized approach (hereafter called the Centralized

Approach or CA) to a hybrid strategy that combines a centralized search of global

application behavior with distributed searches of local application behavior. We

call this approach the Partially Distributed Approach or PDA. The second step

leverages the synergy between the PDA’s distributed local bottleneck searches

and the Sub-Graph Folding Algorithm (Chapter 7) in a Truly Distributed

Approach or TDA. The TDA retains the functionality of the PDA while avoiding

101

the increase in instrumentation management complexity required to support the

PDA’s hybrid approach.

The Distributed Performance Consultant’s PDA has three parts:

• A distributed, on-line, automated performance bottleneck search

strategy. Our search strategy has two complementary parts, one to examine

the application’s local behavior and one to examine its global behavior. For

examining local application behavior, our strategy incorporates local decisions

regarding the portions of the search that consider the behavior of specific pro-

cesses. For examining global application behavior, our strategy uses central-

ized decisions based on performance data aggregated with MRNet

(Chapter 4). Our strategy uses MRNet for scalable communication between

tool components. Like the traditional Performance Consultant, our strategy

uses dynamic instrumentation [49] for collecting performance data.

• A model for representing the cost of instrumentation in parallel com-

putation. The traditional Performance Consultant tracks the cost of instru-

mentation using a single, aggregated value. This model is undesirable for

tracking the cost of instrumentation in parallel applications because it does

not retain cost information at the granularity of individual application pro-

cesses. A single, aggregated instrumentation cost value is especially undesir-

able with the Distributed Performance Consultant’s decentralized decision-

making approach. To support local decision-making for our bottleneck search

strategy, we extend the traditional Performance Consultant’s model to retain

instrumentation cost information for each application process.

102

• A policy for scheduling dynamic instrumentation requests generated

during a PDA bottleneck search. Under the PDA, monitoring and control-

ling the cost of our search strategy’s dynamic instrumentation requires not

only a model of the instrumentation’s cost, but also a policy for scheduling the

search’s instrumentation requests. With our search strategy, local and global

application behavior may be examined at the same time. Because the exami-

nation of global application behavior requires performance data from each

application process, instrumentation collecting that data must be present in

all application processes to be useful. In contrast, instrumentation that col-

lects performance data about a specific process’ behavior does not depend on

data generated by instrumentation in other application processes. The Dis-

tributed Performance Consultant includes an instrumentation scheduling pol-

icy that schedules both local and global instrumentation requests for efficient

distributed bottleneck searches.

By leveraging MRNet for scalable aggregation of local application behavior,

our approach of distributing the examination of local application behavior while

retaining a centralized examination of global application behavior yields the

expected scalable search behavior. However, this benefit comes at a cost in terms

of increased tool complexity for separate tracking of instrumentation cost and

scheduling of local and global instrumentation. Initial success with the PDA and

our Sub-Graph Folding Algorithm motivates the TDA that retains the PDA’s dis-

tributed local bottleneck searches but uses the SGFA to approximate the result of

an explicit examination of global application behavior. The TDA retains the PDA’s

103

functionality while eliminating the complexity required to support the PDA’s

hybrid search strategy.

This chapter presents the Distributed Performance Consultant’s PDA bottle-

neck search strategy (Section 5.1), instrumentation cost model, instrumentation

scheduling policy (Section 5.2), and TDA bottleneck search strategy (Section 5.3).

In our evaluation (Section 5.4), the computation and communication load placed

on the tool’s front-end was low enough using the PDA and TDA to allow bottle-

neck searches on up to 1024 application processes (limited by the available sys-

tem size, not by our approach). In contrast, the CA did not scale beyond 32

application processes. The chapter concludes with a summary of our Distributed

Performance Consultant research and a discussion of potential directions for

future work (Section 5.5).

5.1 PDA Bottleneck Search Strategy

The local and global behavior of a parallel application must be examined to

find application performance problems effectively. Furthermore, because monitor-

ing a large number of application processes can generate a massive volume of

performance data, performance diagnosis tools must be able to collect and ana-

lyze large-volume data flows efficiently if they are to be useful for tuning parallel

applications with a large number of processes. A multicast/reduction overlay net-

work like MRNet enables scalable processing of global performance data (see

Section 4.3), but does not address the part of the problem involving data that

describes local application behavior.

104

The first part of our performance diagnosis approach is a distributed, on-line

automated performance bottleneck search strategy. Our strategy adopts the call-

graph-based search refinement rules of Paradyn’s Performance Consultant [15].

However, unlike the Performance Consultant’s centralized design, our strategy

distributes the portions of the search that are restricted to specific hosts for effi-

cient examination of local application behavior.

Under the PC’s search refinement rules, the initial experiments of a search

investigate a hypothesis about the application’s global behavior, such as whether

Figure 5.1 Portion of search history graph showing o ur PDA distributed performance
bottleneck search strategy. The figure shows search refinement from an experiment
labelled “CPUBound” examining global application behavior. That experiment is refined to an
experiment examining the application’s code (left most sub-graph) and a collection of
experiments that examine local application behavior. Shaded boxes indicate true
experiments. Distributed sub-searches are shown inside lightly-shaded rounded rectangles.

CPUBound

TopLevelHypothesis

blue200.llnl.gov

main

om3{1272}

A B

C

D

blue201.llnl.gov

main

om3{374}

A B

C

blue711.llnl.gov

main

om3{23918}

A B

C

D

...

main

A B

C

D

E

105

the application as a whole is CPU bound. When an experiment dealing with glo-

bal application behavior is refined to examine the application’s behavior on spe-

cific hosts, our new search strategy delegates control for the host-specific

experiments (and all experiments refined from them) to a local search agent run-

ning on that host. Figure 5.1 shows an example of such delegation. When an

experiment with the hypothesis “CPU bound” and the focus

< /Code, /Machine, /SyncObject >

is refined to produce a collection of “CPU bound” experiments with foci

< /Code, /Machine/blue200.llnl.gov, /SyncObject >

< /Code, /Machine/blue201.llnl.gov, /SyncObject >

< /Code, /Machine/blue202.llnl.gov, /SyncObject >

...

our search strategy delegates the sub-search rooted at each host-specific experi-

ment to a search agent running on the host named by the experiment’s focus (i.e.,

blue200.llnl.gov , blue201.llnl.gov , etc.).

Distributing sub-searches has two benefits for automated performance diag-

nosis tools. First, distributed sub-searches reduce centralized processing of data

and control messages within the tool. Once a sub-search is delegated to a local

search agent, the data and control messages for that sub-search are processed by

the local search agent instead of the tool’s front end. The second benefit is that it

can reduce the time needed to complete a search. Each distributed sub-search

investigates local application behavior on a single, independent host, so the tool

may perform these distributed sub-searches in parallel. Because local sub-

searches form a sizeable fraction of the total search for applications with a large

106

number of processes, performing local sub-searches in parallel can reduce the

time required to complete a search.

A distributed data analysis like that used by our PDA bottleneck search strat-

egy introduces a data management issue not faced with a centralized data analy-

sis. The data being collected for a local search agent’s sub-search may also be

used as part of an aggregate value needed for the investigation of the applica-

tion’s global behavior. When local performance data can be used to form a needed

global aggregate value, there are a few possible approaches for optimizing the

management of performance data. We consider two new scenarios for data collec-

tion requests:

• The global search agent issues a request to collect global performance data

and some or all of the data needed for the global aggregate is already being

collected to support local sub-searches; and

• A local search agent issues a request to collect local performance data and the

requested data is already being collected for a global aggregate.

One approach for managing performance data in these two request scenarios is to

treat each request independently. That is, even if the requested data is already

being collected, the tool does not use the already-collected data to satisfy the later

request. Once the later request is issued, subsequent data samples are delivered

to both the local and global search agents. This approach has the advantage of

being simple to implement, but ignores the opportunity to re-use data that has

already been collected to increase the efficiency of the search.

To capitalize on performance data collection that has already occurred, the

107

performance data management approach could cache performance data in each

tool daemon. If a global data request is issued for data that is already being col-

lected, tool daemons deliver all of the already-collected data to be aggregated. For

the second request scenario, each daemon caches a copy of data collected in

response to a global data request. Subsequent local data requests use the

already-collected data from the cache if it is present. Depending on how many

data samples have been cached, the local search agent may be able to perform its

analysis entirely on the cached data without obtaining new data samples.

Although this approach could make the overall bottleneck search more efficient,

it increases the computation and memory costs incurred by the tool daemons.

To obtain a better idea of the Distributed Performance Consultant’s load on

Paradyn daemon processes and for ease of implementation, we used the simple,

non-caching data management approach in our initial implementation. The cach-

ing data management approach is left for future work.

The components that implement the Distributed Performance Consultant’s

PDA within Paradyn are shown in Figure 5.2. In the figure, the tool’s front-end

and a tool daemon are shown as shaded ovals. Each process’ threads are repre-

sented by white rectangles. The tool’s front-end contains several threads includ-

ing a Data Manager thread that issues instrumentation requests to the tool’s

daemons on behalf of the other front-end threads and holds the performance data

produced by those instrumentation requests, and a Performance Consultant

thread that provides overall control for the bottleneck search and controls the

search’s examination of global application behavior. Each tool daemon also con-

108

tains several threads. A Local Data Manager thread interfaces with the front-

end’s Data Manager. The Local Data Manager uses an Instrumentation Manager

thread to insert instrumentation into the application processes controlled by the

daemon. A Data Collector thread collects performance data generated by that

Figure 5.2 The PDA within Paradyn. Only one instance of a daemon process is shown
though, in practice, there will be one per application node. MRNet is used for all communica-
tion between the front-end and daemon processes. In the front-end, the Performance Con-
sultant obtains global performance data from the Data Manager, delegates local sub-
searches to the Local Performance Consultant running in the daemon, and delivers bottle-
neck search results to the User Interface Manager for visualization. In the daemon, the Local
Performance Consultant obtains local performance data from the Local Data Manager, which
uses the Instrumentation Manager and Data Collector to obtain the data.

Front-End

Daemon

Data
Manager

Instrumentation
Manager

Local Data
Manager

Local
Performance
Consultant

Data
Collector

Performance
Consultant

User Interface
Manager

Data
Visualization

Manager

Data
Visualization

Threads

MRNet

Legend

Control Flow

Data Flow

Process

Thread

109

instrumentation and delivers it to the Local Data Manager. The Local Data Man-

ager thread also services requests from the Local Performance Consultant

thread. This thread implements the local search agent of our distributed bottle-

neck search strategy. MRNet is used for all communication between the tool’s

front-end and daemons.

5.2 Dynamic Instrumentation Management

Our goal in using a distributed performance bottleneck search strategy is to

off-load at least some of the performance diagnosis activity from the tool’s front-

end. However, distributing the bottleneck search places two requirements on the

approach used to monitor and control the effects of our search’s dynamic instru-

mentation:

1. Allow local search agents to make independent decisions about inserting and

removing the instrumentation that supports their local sub-searches; and

2. Ensure that an instrumentation request for collecting global performance

data is satisfied by all tool daemons at approximately the same time so that

data from all application processes is available to form the aggregated global

data value.

An approach using a single aggregated instrumentation cost value and central-

ized search control like that used in the traditional Performance Consultant sat-

isfies the second requirement because decisions about when to insert dynamic

instrumentation are made centrally with complete instrumentation cost knowl-

edge. However, such a centralized decision-making scheme does not satisfy the

110

first requirement.

5.2.1 Instrumentation Cost Model for Parallel Computation

To allow local search agents under the PDA and TDA to make decisions inde-

pendently about their own local data instrumentation, the Distributed Perfor-

mance Consultant represents the cost of instrumentation in parallel computation

using a model that maintains the cost of instrumentation in each application pro-

cess. More specifically, for an application with P processes, the model expresses

the instrumentation cost as where is the instrumentation

cost in application process i, 1 ≤i ≤P. The benefit of maintaining the instrumenta-

tion cost for each application process is that it allows each local search agent to

restrict its view of the application’s overall instrumentation cost. Each local

search agent tracks only the cost of instrumentation in the processes it controls.

Although having each local search agent maintain instrumentation cost infor-

mation only for local processes allows the PDA to satisfy the first instrumenta-

tion management requirement, it complicates our ability to satisfy the second

requirement when scheduling a workload with both local and global instrumenta-

tion requests. Local search agents do not have complete information about an

application’s instrumentation cost, so they cannot be guaranteed to make the

same scheduling decision based on their own cost information in response to a

global instrumentation request from the tool’s front-end. A reliable distributed

consensus algorithm (e.g., [11,16,58,64]) could be used in the PDA to enable the

collection of local search agents to reach the same decision regarding global

C c1 c2 … cP, ,(,)= ci

111

instrumentation. However, there are several disadvantages to using such an algo-

rithm in the PDA. The algorithm’s implementation would place additional com-

putation and communication load on daemon processes. Because distributed

consensus algorithms tend to be complex, using such an algorithm would greatly

increase the complexity of the Local Performance Consultant’s implementation.

Also, using such an algorithm would require the addition of communication chan-

nels between tool daemons that are not present in our existing tool communica-

tion model.

Instead of a distributed consensus algorithm, the PDA centralizes decision

making for global instrumentation requests to ensure the same action is taken by

all daemons in response to such requests. For efficiency, the PDA uses MRNet to

gather instrumentation cost data from the local search agents to the global

search agent in the tool’s front-end. Because a decision to insert global instru-

mentation hinges on whether all processes could insert the requested instrumen-

tation without surpassing the PDA’s instrumentation cost threshold, and the

process with the highest instrumentation cost is the limiting factor in the deci-

sion, the PDA uses a “maximum value” MRNet data reduction to collect instru-

mentation cost information to the global search agent. To limit the overhead of

gathering instrumentation cost information, the PDA piggy-backs the cost data

with application performance data as it is sent to the tool’s front-end.

We extended Paradyn’s time-aligned performance data aggregation filter (see

Section 4.3.2) to accept an instrumentation cost value and to compute its maxi-

mum. Unlike the performance data, the instrumentation cost data is not aggre-

112

(a) (b) (c)

(e) (f)

Figure 5.3 Reduction of instrumentation cost data as it is delivered to the Paradyn
front-end. In the figure, Paradyn’s time-aligned performance data aggregation MRNet filter is
shown as a shaded, rounded rectangle. The expanded filter maintains both queues of
performance data samples and a vector of instrumentation cost information (a). When a
sample arrives from one of the downstream processes (b), the performance data sample and
instrumentation cost sample are extracted (c), the instrumentation cost value corresponding
to the incoming sample’s connection is updated and the performance data is binned (e). If the
addition of the newly-arrived performance data sample causes the filter to produce an output
packet, the filter’s maximum instrumentation cost value is delivered with the outgoing sample.

Instrumentation
Cost Data

Performance
Data Queues

0.74 0.19 0.23 0.46 Instrumentation
Cost Data

Performance
Data Queues

0.74 0.19 0.23 0.46

0.42

Instrumentation
Cost Data

Performance
Data Queues

0.74 0.19 0.23 0.46

0.42

Instrumentation
Cost Data

Performance
Data Queues

0.74 0.23 0.460.42 Instrumentation
Cost Data

Performance
Data Queues

0.74 0.23 0.460.42

0.74

113

gated using time-aligned aggregation. Instead, the filter selects the maximum

instrumentation cost value using only the most recent cost data available as

shown in Figure 5.3. Each filter running throughout MRNet’s overlay network

maintains a vector containing the most recent instrumentation cost value

received on its downstream connections (Figure 5.3a). When a performance data

and instrumentation cost sample arrives from a downstream process

(Figure 5.3b), the filter extracts the performance data sample and the instrumen-

tation cost value (Figure 5.3c). The filter bins the performance data as described

in Section 4.3.2, and updates its instrumentation cost vector so that the element

corresponding to the sample’s arrival connection contains the new cost value

(Figure 5.3d). If the newly-arrived performance data sample causes the filter to

produce an output performance data sample, it also determines the maximum

value of its instrumentation cost values and attaches it to the outgoing perfor-

mance data sample (Figure 5.3e). Using this approach, the front-end obtains a

timely approximation of the highest instrumentation cost among all application

processes.

5.2.2 Dynamic Instrumentation Scheduling Policy

The PDA’s problem of scheduling local and global instrumentation requests is

similar to (but more restricted than) the problem faced by the scheduler of a par-

allel system with two job classes. Like a parallel system scheduler, our instru-

mentation scheduler can use either fixed or dynamic partitioning of the available

capacity. Because fixed-partition policies guarantee a portion of the capacity for

114

each class, global instrumentation cannot starve local instrumentation and vice

versa. However, such policies can be inefficient; if the instrumentation cost for

one class is below its class’ capacity, instrumentation of the other class cannot

consume the unused capacity. Dynamically-partitioned scheduling policies avoid

this disadvantage of fixed-partition policies, but require coordination between

local and global search agents when adjusting the partition.

Many job scheduling policies for multiprogrammed parallel systems have been

proposed and studied; a recent survey by Feitelson [29] cites over six hundred

publications. Typically, only one job scheduler makes scheduling decisions for a

computing resource, and information about each requested job is available to the

scheduler (though it may not consider every request in each scheduling decision).

Distributed queues have been used for load balancing (e.g., [22,93]), but each of

the queues is associated with a single resource. In contrast, the Distributed Per-

formance Consultant’s global search agent and each local search agent make dis-

tributed scheduling decisions about the same resource, the instrumentation

capacity of the local application process.

Our prototype PDA instrumentation scheduler uses a dynamically-partitioned

policy with per-class soft and hard instrumentation cost limits. The combined

instrumentation cost threshold defines the available instrumentation capacity;

the soft limits partition this capacity. If a class’ instrumentation cost is below its

soft limit, our scheduler allows instrumentation of the other class to consume

some of the unused capacity. Hard cost limits ensure that instrumentation of one

class does not starve instrumentation of the other.

115

An example of our scheduler’s operation is shown in Figure 5.4. In the figure,

the local and global search agents each begin inserting instrumentation at time

T0. Both types of instrumentation are throttled at the soft limit at time T1. At

time T2 in the figure, global is removed that causes the global instrumentation

cost to fall below its soft limit. Because there are no pending global instrumenta-

tion requests, our scheduler allows local instrumentation to exceed the local

instrumentation soft limit. Local instrumentation is inserted until its cost

reaches the local instrumentation hard limit at time T3.

Our instrumentation scheduling policy trades the potential for unused search

capacity against the guarantee that a local search will not block the global search

Figure 5.4 Example of instrumentation scheduling by the Distributed Performance
Consultant. The figure shows the cost of instrumentation in a single application process over
time. The Distributed Performance Consultant begins to insert instrumentation at time T0. At
time T1, both local and global instrumentation are throttled by the soft instrumentation limit. At
time T2, the removal of global instrumentation causes the global instrumentation cost to fall
below its soft limit, and no global instrumentation is available to consume the unused
capacity. In response, local instrumentation is inserted to consume the unused capacity until
its cost reaches the local instrumentation hard limit at time T3.

Time
T0 T1 T2

Soft Limit

Global Hard Limit

Local Hard Limit

T3

Local Instrumentation Cost

Global Instrumentation Cost

116

and vice versa. Because the local and global search agents use the same search

refinement rules, we expect them to produce similar sequences of instrumenta-

tion requests. Therefore, once the overall search reaches steady state we expect

both local and global instrumentation to be throttled by the soft cost limits under

our instrumentation scheduling policy.

5.3 TDA Bottleneck Search Strategy

The PDA bottleneck search strategy (Section 5.1) yields the expected tool scal-

ability benefit, but at a cost in tool complexity due to the need to schedule and

track instrumentation cost for both global and local instrumentation

(Section 5.2). A truly distributed bottleneck search strategy (i.e., one with no cen-

tralized search component for global instrumentation) avoids the increased tool

complexity while retaining the scalability advantages of the partially distributed

strategy.

Because the TDA performs no explicit examination of the application’s global

behavior, it must provide insight about global behavior using local behavior infor-

mation. There are several possible approaches for providing this insight. The first

approach is to assume that the behavior across all application processes is so sim-

ilar that bottleneck search results taken from a limited number of processes is

representative of all the others. This approach fails if the chosen processes not

truly representative of the other processes. A better approach is to incorporate

information from all application processes into the approximation. With this

approach, the bottleneck search results can identify not only behavioral varia-

117

tions across all application processes, but also can identify how many and possi-

bly which processes exhibit each type of behavior. Information about each

application process must be included to ensure that the Distributed Performance

Consultant’s global bottleneck results truly represent the application’s global

behavior.

Our approach for incorporating local application behavior information from

each process is to use the Sub-Graph Folding Algorithm to produce a composite

search history sub-graph that approximates the application’s qualitative global

behavior. The SGFA places application processes into qualitative behavioral cate-

gories and presents one composite sub-graph of the overall search history graph

for each category. The SGFA retains information about the number of processes

in each category. By leveraging the SGFA, the Distributed Performance Consult-

ant can use the truly distributed search strategy without sacrificing insight into

global application behavior.

5.4 Evaluation

To evaluate the Distributed Performance Consultant, we modified the Para-

dyn performance tool to use either the CA, PDA, or TDA. We performed a scal-

ability study for the three approaches, comparing the computation and

communication load at the tool’s front-end, its back-ends, and the MRNet inter-

nal processes during a bottleneck search.

5.4.1 Experimental Environment

We implemented the Distributed Performance Consultant within Paradyn

118

version 4.1, modifying it to use either the CA, PDA, or TDA. To support the PDA,

we modified Paradyn to track the cost of global and local instrumentation sepa-

rately, and to implement an instrumentation scheduling policy that uses a simple

fixed-partitioning policy. To support the TDA, we implemented the Sub-Graph

Folding Algorithm using custom MRNet filters to support scalable presentation of

Distributed Performance Consultant results. We modified the Paradyn daemon to

be multi-threaded with a Local Data Manager thread, Local Performance Con-

sultant thread, and Local Communications Manager thread that interfaces with

MRNet. We also modified the tool to use one daemon process per application

node, as opposed to its previous approach of using one daemon process per appli-

cation process. Finally, to support running our experiments under a batch sched-

uling system, we modified the tool front-end to present a text-based user interface

instead of a graphical user interface and we hard-coded the tool to perform our

experiment when our batch jobs were run.

For all experiments, we used su3_rmd , a quantum chromodynamics applica-

tion produced by the MILC collaboration [73] to simulate pure lattice gauge the-

ory. The code is implemented in C and uses MPI for inter-process communication.

We used a weak scaling approach in our study.

Our experiments were run on the Multiprogrammatic Capability Cluster

(MCR) [61] at Lawrence Livermore National Laboratory. At the time the experi-

ments were performed, MCR contained 1152 nodes (1048 compute nodes) con-

nected with a Quadrics QsNet Elan3 interconnect. Each node had two 2.4 GHz

Pentium 4 Xeon processors and 4 GB RAM. Each node ran CHAOS 2.0 [32], a

119

Linux distribution derived from Red Hat Enterprise Linux 3 by LLNL. The MPI

implementation on MCR is provided by Quadrics, but is based on the MPICH [41]

1.2 distribution.

5.4.2 Experimental Results

The results of our scalability study are shown in Figures 5.5—5.7. We

requested batch job time limits for runs using the CA that were three times

longer than for runs using the PDA and TDA. Because CA runs with 64 applica-

tion processes failed to complete during their batch job’s allotted time limit, we

did not attempt runs using the CA with more than 64 processes. In contrast, we

performed experiments with the PDA and TDA for up to 1024 application pro-

cesses, limited by the available system size and not by resource saturation. We

used the SGFA to verify that the qualitative results produced by each search

strategy provided comparable results.

For our experiments we used balanced MRNet topologies with a moderate fan-

out of eight. Because the number of data points in our scalability study would be

limited if we used only “complete” MRNet topologies (i.e., topologies that used the

same fan-out at each level in the process network), we also used topologies with

fan-outs of eight at all levels except for the processes directly connected to the

daemons. By using a smaller fan-out of two or four at this last level, we were able

to run experiments for numbers of application processes at each power of two

between 16 and 1024.

Figure 5.5 compares the computation load at the tool’s front-end, daemons,

120

and MRNet internal processes for each bottleneck search strategy under consid-

eration. Each chart in the figure shows the CPU utilization for each search strat-

egy across a range of process counts. We measured CPU utilization by sampling

the getrusage system call at one-second intervals in the front-end process, all

daemon processes, and all MRNet internal processes during the bottleneck

search. For each process, we computed the average CPU utilization over the dura-

(a) Front-End CPU Load (b) Daemon CPU Load

(c) MRNet Internal Process CPU Load

Figure 5.5 Computation load for the CA, PDA, and TDA . The CPU utilization is shown
for (a) the tool’s front-end, (b) tool daemons, and (c) MRNet internal processes. Runs using
the CA with more than 32 application processes did not complete during their batch job’s
allotted time limit. Note the Y-axis scale differs between plots.

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200

C
P

U
 U

til
iz

at
io

n
(p

er
ce

nt
)

Processes

CA
PDA
TDA

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200

C
P

U
 U

til
iz

at
io

n
(p

er
ce

nt
)

Processes

CA
PDA
TDA

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200

C
P

U
 U

til
iz

at
io

n
(p

er
ce

nt
)

Processes

CA
PDA
TDA

121

tion of the bottleneck search. The data point for a given search strategy and

application process count is the average across all processes of the same type

(front-end, daemon, or MRNet internal process) across all runs using the search

strategy on that number of application processes.

Our CPU load results show the expected scalability benefit of the TDA search

strategy and, to a lesser extent, the PDA search strategy. CA saturates the tool

front-end with relatively small numbers of application processes; back-pressure

causes the daemon CPU load to decrease. (The CPU load reported by getrusage

can be larger than 100% on multiprocessor hosts such as the nodes of the MCR

cluster.) In contrast, when using TDA the front-end CPU load remained below 5%

and relatively constant as we varied the number of application processes.

The average CPU load for daemons and MRNet internal processes also

remained below 5% in our experiments with the distributed search strategies. As

expected, the MRNet internal process CPU load under the PDA tends to be

slightly higher than the CPU load under the TDA because the internal processes

are aggregating global performance data under the PDA but not under the TDA.

However, our CPU load results also revealed unexpected behavior. First, the dae-

mon CPU load tends to be slightly lower under the PDA than the TDA. This

behavior may be the result of differences in the way that PDA searches and TDA

searches are performed by the daemons. Under the PDA, local sub-searches are

started only when the front-end refines a global experiment to a host-specific

experiment. If global experiments with hypotheses like ExcessiveSyncWaiting-

Time and ExcessiveIOBlockingTime are not refined, daemons are not involved in

122

evaluating the performance data for these hypotheses during a search under the

PDA. In contrast, under the TDA each daemon begins its search by creating host-

specific experiments for all hypotheses, and continues to evaluate performance

data for those experiments throughout its bottleneck search.

A second unexpected behavior exposed by our CPU load results is the dip in

the TDA daemon CPU load and corresponding spike in MRNet internal process

CPU load for 128 application processes. We observed that the daemon TDA load

curve follows a sawtooth pattern. The high points in the curve correspond to

MRNet topologies where the fan-out at the last level in the process network is

two, intermediate points where the last-level fan-out is four, and low points when

the last-level fan-out is eight. Whether the variations in CPU load are related to

the MRNet topology, and the nature of this relationship, remains an open ques-

tion.

Figures 5.6 and 5.7 compare the network I/O load at the tool’s front-end, back-

ends, and MRNet internal nodes for each of our three bottleneck search strate-

gies. We instrumented the MRNet library to collect the number of bytes read

(Figure 5.6) or written (Figure 5.7) on all MRNet socket connections. We modified

each Paradyn process to sample these counts at one-second intervals during a

bottleneck search. For each process, we computed the average read or write rate

during the bottleneck search. To obtain the chart values for a given search strat-

egy, we averaged the read or write rates for all processes of the same type (front-

end, daemon, or MRNet internal process) across all runs that used that search

strategy. Variability across runs was low.

123

Our MRNet I/O results show the scalability of the TDA. As expected, there

were no front-end writes nor daemon reads during the bottleneck search under

the TDA strategy. When there were reads and writes under the TDA, the data

rate was very low and remained nearly constant as we increased the number of

application processes. Our TDA I/O results also exhibit some variability that ech-

(a) Front-End Read Rate (b) Daemon Read Rate

(c) MRNet Internal Process Read Rate

Figure 5.6 MRNet read load for the CA, PDA, and TDA. The number of bytes read by
MRNet is shown (a) for the tool’s front-end, (b) tool daemons, and (c) MRNet internal
processes. Runs using the CA strategy with more than 32 application processes did not
complete during their batch job’s allotted time limit. The Y-axis is logarithmic in each plot.
There is no curve for the TDA search strategy in the daemon read rate plot because
daemons do not receive data across MRNet during a TDA search.

 1000

 10000

 100000

 1e+06

 1e+07

 0 200 400 600 800 1000 1200

R
ea

d
R

at
e

(b
yt

es
/s

ec
on

d)

Processes

CA
PDA
TDA

 100

 1000

 10000

 100000

 0 200 400 600 800 1000 1200

R
ea

d
R

at
e

(b
yt

es
/s

ec
on

d)

Processes

CA
PDA

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 200 400 600 800 1000 1200

R
ea

d
R

at
e

(b
yt

es
/s

ec
on

d)

Processes

CA
PDA
TDA

124

oes the variability in the TDA CPU load results. As with the CPU load, it remains

an open question whether and how the I/O fluctuation is related to the MRNet

topology we used.

5.5 Summary and Future Work

To address the problem of finding and diagnosing performance problems in

(a) Front-End Write Rate (b) Daemon Write Rate

(c) MRNet Internal Process Write Rate

Figure 5.7 MRNet write load for the CA, PDA, and TDA . The number of bytes written by
MRNet is shown for (a) the tool’s front-end, (b) tool daemons, and (c) MRNet internal
processes. Runs using the CA strategy with more than 32 application processes did not
complete during their batch job’s allotted time limit. The Y-axis is logarithmic in each plot.
There is no curve for the TDA search strategy in the front-end write rate plot because
daemons do not send data across MRNet during a TDA search.

 1000

 10000

 100000

 1e+06

 0 200 400 600 800 1000 1200

M
R

N
et

 W
rit

e
R

at
e

(b
yt

es
/s

ec
on

d)

Processes

CA
PDA

 100

 1000

 10000

 100000

 1e+06

 0 200 400 600 800 1000 1200

M
R

N
et

 W
rit

e
R

at
e

(b
yt

es
/s

ec
on

d)

Processes

CA
PDA
TDA

 100

 1000

 10000

 100000

 1e+06

 0 200 400 600 800 1000 1200

M
R

N
et

 W
rit

e
R

at
e

(b
yt

es
/s

ec
on

d)

Processes

CA
PDA
TDA

125

applications with a large number of processes, we developed, implemented, and

evaluated a performance diagnosis approach consisting of three parts. Our

approach incorporates an on-line, automated performance bottleneck search

strategy that distributes the portions of the sub-search that examine local appli-

cation behavior. For monitoring and controlling the dynamic instrumentation

generated during a bottleneck search, our approach also includes a model of the

cost of instrumentation in parallel computation that tracks cost information for

each application process and an approach for scheduling dynamic instrumenta-

tion requests generated by our bottleneck search. To reduce the complexity intro-

duced by the need to monitor and schedule dynamic instrumentation for explicit

examination of global application behavior, our approach includes a truly distrib-

uted search strategy that leverages the Sub-Graph Folding Algorithm to approxi-

mate the results of a global bottleneck search.

We implemented our performance diagnosis approach in Paradyn, naming the

enhanced performance diagnosis component the Distributed Performance Con-

sultant. In experiments with up to 1024 application processes, the Distributed

Performance Consultant placed less computation and communication load on the

tool’s front-end than Paradyn’s traditional centralized search strategy while

retaining low back-end loads. Even at the highest tested process count, with the

truly distributed approach the computation and communication loads on all tool

components showed excellent scalability with no sign of resource saturation.

There are several potential directions for future work based on the research

described in this chapter. The first is to understand the unexpected variation in

126

Distributed Performance Consultant computation and communication load as we

varied the number of application processes. It is an open question whether the

use of MRNet topologies without the same fan-out at each tree level accounts for

the load variations we observed.

Another research direction is to explore the sensitivity of SGFA to application

characteristics such as its use of adaptive mesh refinement and its sensitivity to

the thresholds used in a Distributed Performance Consultant search. Research in

these directions would help answer the open question whether information about

the qualitative behavioral categories exhibited by application processes (includ-

ing the number of processes in each category) provides a sufficient approximation

to qualitative bottleneck search results based on global performance data for a

wide range of parallel applications.

A third direction for potential future work involves the exploration of aspects

of instrumentation cost beyond its CPU cost. Our instrumentation cost model

tracks only the instrumentation’s CPU cost. However, instrumentation exacts a

cost in other forms such as memory cost and communication cost. Our instrumen-

tation cost model could be extended to keep a multi-dimensional cost value for

each application process. However, introducing multiple cost dimensions compli-

cates the comparison of cost values. For example, if the instrumentation cost for

one process has a higher CPU cost component but lower memory cost component

than the instrumentation cost for another process, it is not clear which process’

instrumentation cost is greater. The use of multi-dimensional instrumentation

cost values remains an open issue.

127

Chapter 6

Scalable Automated Performance Diagnosis for

Applications with Large Call Graphs

In this chapter, we address the problem of finding performance problems in

applications with a large number of functions and, hence, a large call graph. We

and others have shown the benefit of using application structural information

such as its call graph to find application bottlenecks [15,36,43,103]. However, a

search strategy guided solely by the application’s call graph (hereafter called the

call graph search strategy) suffers from two problems: it is inefficient for examin-

ing the behavior of applications with large or complex call graphs, and it can be

ineffective at finding application performance problems that are hidden by the

application’s call graph structure.

The first problem with the call graph search strategy is that it is inefficient for

examining application’s with large or complex call graphs. Many factors deter-

mine the depth and complexity of an application’s call graph, but certain pro-

gramming styles (e.g., object-oriented styles that favor the use of many simple

128

functions over the use of few complex ones) tend to produce applications with

such call graphs. High-level libraries that rely on lower-level libraries, such as a

radiation transport simulation library that uses a parallel solver library (that

itself relies on a parallel communication library and a linear algebra library),

may also contribute to increased call graph complexity. The call graph search

strategy refines its search step-by-step through the application’s call graph, an

expensive approach if the call graph is deep or includes many functions to exam-

ine at a given level within the call graph.

The second problem with the call graph search strategy is that it may not find

performance problems hidden by the application’s call graph structure. For exam-

ple, when searching for performance problems in an application whose call graph

is partially shown in Figure 6.1, after finding A to be a bottleneck, if the call

graph search strategy determines that none of B, C, and D are bottlenecks, it will

not examine E even though E may be a significant performance problem. This

scenario can occur when E is a utility function called from many places in an

Figure 6.1 Part of an application call graph showing a hidden performance
bottleneck. In the call graph, function A calls functions B, C, and D. Each of these functions
calls a utility function E. If none of the functions B, C, and D are found to be a performance
problem, the behavior of E will never be investigated by search strategies that rely strictly on
the application’s call graph to guide refinement. In contrast, if E is a performance problem, it
is likely to be found frequently in Deep Start’s stack samples so Deep Start will investigate its
behavior even if B, C, and D are not performance problems.

C EA

B

D

129

application, but none of the callers individually is a performance problem. Hall

presents a similar example to motivate his use of call path profile data in a man-

ual technique for finding application performance problems [43].

To address the two problems affecting the call graph search strategy, we devel-

oped Deep Start, a strategy for automatically finding performance problems in

applications with large and complex call graphs. Deep Start uses sampling to

augment an automated, dynamic-instrumentation-based search for application

bottlenecks. Deep Start substantially improves an automated performance diag-

nosis tool’s search effectiveness by locating performance problems more quickly

than straightforward search strategies guided only by the application’s call

graph. Existing automated performance diagnosis tools have used one approach

or the other; our work shows the benefit of using a hybrid approach. Further-

more, Deep Start can find problems that are hidden from these more straightfor-

ward search strategies. Our Deep Start research is complementary and

orthogonal to our other scalable performance diagnosis research.

This chapter presents the design, implementation, and evaluation of the Deep

Start search strategy. We begin with by presenting Deep Start’s design and

implementation within the Paradyn Performance Consultant (Section 6.1) fol-

lowed by the results of our Deep Start evaluation (Section 6.2). We conclude the

chapter with a summary of our Deep Start research and a discussion of potential

directions for future work (Section 6.3).

130

6.1 The Deep Start Search Strategy

The Deep Start bottleneck search strategy augments a call graph search strat-

egy with the examination of deep starters, functions likely to be close (in terms of

the search strategy) to functions exhibiting actual performance problems. Deep

Start uses call stack information, gathered opportunistically from normal bottle-

neck search activity, to identify deep starters. Once Deep Start has identified

deep starters, it extends the traditional call graph search to investigate the

behavior of deep starters with higher priority than its normal search.

Although Deep Start benefits greatly from sampling, we feel it is undesirable

to replace dynamic instrumentation entirely with sampling for performance data

collection. Some types of performance information are more difficult to collect

using sampling than instrumentation. For example, collecting inclusive CPU per-

formance data (CPU data for a function and all of its direct and indirect callees) is

possible using sampling, but it is complicated and expensive. Also, it is impossible

to collect accurate counts of program events using sampling. In contrast, dynamic

instrumentation is well suited for collecting inclusive performance data and accu-

rate event counts. Collecting inclusive performance data requires only instru-

mentation that samples a timer at function entry and exit and the calculation of

the difference between these two timer samples. Collecting accurate event counts

using dynamic instrumentation is as simple as inserting instrumentation to

increment a counter whenever the event occurs. In light of sampling’s limitations

for collecting some types of performance information, we feel it is not desirable to

replace dynamic instrumentation entirely with sampling.

131

6.1.1 Stack Sampling

Deep Start collects stack samples opportunistically as dynamic instrumenta-

tion is inserted and removed to support Deep Start’s search activity. In our imple-

mentation context, Paradyn daemons insert instrumentation code when

requested by some component of the Paradyn front-end process such as the PC or

Paradyn’s visualization manager. When a daemon inserts instrumentation code

into an application process, it must ensure that the process is not executing in

code that will be overwritten by the code patch. This safety requirement implies

that the daemon must consider not only the location where the process is execut-

ing, but also the locations to which control will return when the process completes

any function calls that are in progress. That is, the daemon must consider the

current program counter and the return addresses of all frames on the call stack.

The daemon performs its instrumentation safety check by pausing the process

and walking its call stack. To support Deep Start, each time a Paradyn daemon

performs a stack walk it saves the stack walk information and the ID of the pro-

cess whose stack was checked. Each daemon buffers the stack samples it collects,

and delivers them in a single batch in response to periodic requests from the PC.

6.1.2 Choosing Deep Starters

Deep Start uses the stack walk samples collected by Paradyn’s daemons to

choose deep starters. Deep Start selects deep starters whenever a search path is

first refined to examine specific application functions such as main . Once the

deep starter selection algorithm has been triggered for a search path, the selec-

132

tion algorithm is triggered in response to each subsequent refinment that extends

the path.

To select deep starters, Deep Start uses the stack sample information to main-

tain a data structure we call a function count graph. Nodes in this directed graph

represent functions of the application, while edges represent a call relationship

between two functions as dictated in the stack samples. For each function repre-

sented in the graph, the graph keeps a count of the number of times the function

was seen in the stack samples. For instance, if Deep Start collects the four stack

samples shown in Figure 6.2a (where x→y denotes that function x had called

function y at the time the stack was sampled), it builds the function count graph

shown in Figure 6.2b. In the figure, node labels indicate both the function and its

observed count.

One of the strengths of the PC is its ability to examine not only the behavior of

an application as a whole but also its behavior at per-host and per-process granu-

larity. This capability is invaluable for finding performance problems caused by

workload imbalance or faulty hardware. Deep Start enhances these finer-granu-

(a) (b)

Figure 6.2 Example of a Deep Start function count gr aph. Given a collection of stack
samples (a), Deep Start builds a function count graph (b) with nodes indicating function
and a count of times it occurred at that position in the stack samples.

A→B→C→D
A→E→C→D
A→F→D
A→F→G

A:4 E:1 C:2 D:3

B:1

F:2 G:1

133

larity searches with the selection of deep starters using global, per-host, and per-

process data. To support choosing deep starters using function count information

at varying granularities, Deep Start’s function count graph is slightly more com-

plicated than the graph shown in Figure 6.2. In the actual function count graph,

each node still represents a single function from the application but instead of a

single count per node, Deep Start maintains a tree of counts at each node as

shown in Figure 6.3. The root of a count-tree contains an overall count for its

associated function, counting the number of times the function was seen in all

stack samples. The nodes at the first level of this tree count the number of times

that the function was observed in the stack samples from specific hosts. The sec-

ond level of this tree counts of the number of times that the function was observed

Figure 6.3 Function count graph nodes with count-tre e. Unlike the simplified function
count graph shown in Figure 6.2, each node of Deep Start’s function count graph contains a
tree of counts for its function. This count-tree tracks the number of times the function was
observed in the stack samples at application, machine, and process granularity.

Global: 12

m01: 4
p4263: 2

m02: 3

m08: 1

p4264: 2

p217: 1

p224: 2

p1725: 1

Function: A

Counts:

Function: B
Counts:

Function: E
Counts:

Function: F
Counts:

134

in the stack samples of specific application processes. With count-trees, the PC

can restrict the stack samples it considers when choosing deep starters to make

per-host and per-process deep starter selections. For example, if a search path (a

sequence of PC experiments related by refinement; see Chapter 3) has been

refined to examine the behavior of a specific process p on a host h, when the PC

traverses the function count graph to select deep starters for this search path it

uses the count from the count-tree associated with process p on host h when com-

paring against the deep starter threshold.

Deep Start maintains its function count graph by obtaining call stack samples

from the Paradyn daemons and updating the structure and counts in the function

count graph based on the information in each stack sample. For each stack sam-

ple it receives, the PC processes the stack sample starting at the function on the

bottom of the call stack. For each function in a stack sample, the PC walks the

function count graph to increment the counts in the count-tree of the node associ-

ated with the function. While processing a stack sample, if no function count

graph node exists for the function under consideration, the PC creates a new node

for the function in the function count graph and initializes the counts in its count-

tree to one.

After the PC updates the function count graph, it traverses the graph to find

deep starters. Functions that execute frequently or that take a long time to exe-

cute are good candidates, so Deep Start looks for functions that occur frequently

in the stack samples. We choose those functions whose counts are higher than a

user-configurable threshold, where the threshold’s value represents a percentage

135

of the total number of stack samples in the function count graph. For most appli-

cations, the number of deep starters chosen increases as the threshold is

decreased. Setting the threshold too low may have a detrimental effect on the PC

search because it tends to increase the number of “false positives” (deep starters

that are not application bottlenecks). Based on our experience with the initial

implementation, we set the default deep starter threshold to be 60% of the num-

ber of stack samples in the function count graph. Furthermore, to focus the PC’s

attention on the functions that are likely to be closest to the application’s perfor-

mance bottlenecks, we choose as deep starters only the deepest (i.e., furthest from

the root) of the above-threshold functions in the function count graph.

6.1.3 Adding Deep Starters

Once a deep starter function is selected, Deep Start creates an experiment for

the deep starter and adds it to its bottleneck search. The experiment whose

refinement triggered the deep starter selection algorithm determines the nature

of the deep starter’s experiment. The deep starter experiment uses the same

hypothesis and focus as the triggering experiment, except that the portion of the

triggering experiment’s focus that specifies Code resources is replaced with the

deep starter function. For example, if the triggering experiment is

hypothesis: CPU bound

focus: < /code/om3.c/main, /Machine/c2-047/om3{1374} >

and the function time_step is chosen as a deep starter when the selection algo-

rithm is triggered, the deep starter experiment is

136

hypothesis: CPU bound

focus: < /code/om3.c/time_step, /Machine/c2-047/om3{1374} > .

The PC throttles the amount of active instrumentation according to a user-

configurable threshold to avoid having an excessive effect on the behavior of an

application. To support instrumentation throttling, the PC keeps a priority-

ordered queue of experiments that have been defined but are not yet being evalu-

ated. In the Deep Start search strategy, the PC defines deep starter experiments

with a higher priority than is used for the experiments generated by normal PC

search activity. Since priorities are inherited as the PC refines its search, the sub-

search rooted at the deep starter experiment retains precedence over any experi-

ments generated by the normal operation of the PC. Hence, using high priority

for deep starter experiments causes the PC to focus its attention in the search

space near the deep starters. Since these functions are likely to be near the actual

bottlenecks of the application, the PC is likely to find bottlenecks more quickly

than with a strict top-down search of its search space.

One of the comforting properties of Paradyn’s search history graph

(Figure 1.2) is that the search reflects the application’s call graph structure when

the PC is investigating the application’s Code resources. To retain this property

with the Deep Start search strategy, when adding a deep starter experiment the

PC adds as many experiments as necessary to connect the deep starter experi-

ment to some other experiment that is already present in the search history

graph. An example of connecting experiments is shown in the search history

graph in Figure 6.4. In the search shown in the figure, the PC added connecting

137

experiments for a_anneal , a_neighbor , and p_isvalid when adding the deep

starter experiment for p_makeMG.

6.2 Deep Start Evaluation

To evaluate Deep Start, we modified the PC to search using both the Deep

Start strategy and its current call graph-based search strategy. We compared the

behavior of the Deep Start strategy and the current strategy while searching for

performance problems in several scientific applications.

6.2.1 Experimental Environment

We performed our experiments on two sequential and two MPI-based parallel

scientific applications (see Table 6.1). The MPI applications were built using ver-

sion 1.2.2 of the MPICH [41] MPI implementation. We modified the PC within

Figure 6.4 Deep starter and connecting experiments i n the Search History Graph
display. In this example, p_makeMG is the deep starter; a_anneal, a_neighbor, and
p_isvalid are experiments that connect the deep starter to the normal PC search activity.

138

the Paradyn version 3.2 software base to search using either the Deep Start

search strategy or its current call graph-based search strategy. To support the

comparison of searches performed using different search strategies, we also mod-

ified Paradyn’s search history graph export facility to export complete informa-

tion about a search’s refinement structure.

For all experiments, we ran the Paradyn front-end process on a lightly-loaded

Sun Microsystems Ultra 10 system with a 440 MHz UltraSPARC IIi processor

and 256 MB RAM. We ran the sequential applications on another Sun Ultra 10

system on the same LAN. We ran the MPI applications on eight nodes of a dedi-

cated Linux cluster. Each node contains a 600 MHz Pentium III processor with

256 KB L2 cache and 128 MB RAM, and runs Linux kernel version 2.2.19. The

cluster’s nodes are connected by a 100 Mb/s Ethernet switch.

Name Version Type Language Domain Size

DRACO 6.0 Sequential Fortran 90 Hydrodynamic
simulation

68981 lines
18632 KB
398 functions

ALARA 2.4.4 Sequential C++ Induced radioac-
tivity analysis

19576 lines
2911 KB
720 functions

om3 1.5 Parallel (MPI) C Global ocean cli-
mate simulation

2674 lines
385 KB
36 functions

su3_rmd 6 Parallel (MPI) C Quantum chromo-
dynamics pure
gauge lattice the-
ory simulation

35845 lines
511 KB
189 functions

Table 6.1: Characteristics of the applications used to evaluate Deep Start.

139

6.2.2 Experimental Methodology

Our experiments consisted of several trials with each application. Each trial

consisted of five runs of the application. During each run we used the PC to

search for application problems. The same search strategy was used for each run

of a trial. During each run, we began the PC search once the application finished

its initialization phase so that the PC search investigated the behavior of the

application’s computation phase. Once the PC search reached a steady state, such

that it was not activating any new experiments, we exported the search history

graph for post mortem analysis.

6.2.3 Experimental Results

We began by investigating the sensitivity of the Deep Start search strategy to

changes in the deep starter threshold (see Section 6.1.2). We performed experi-

ments using a range of deep starter thresholds on one sequential application and

one parallel application. Based on the results of these experiments, we selected a

single deep starter threshold for use in our remaining experiments. We then com-

pared the performance of the Deep Start and call graph search strategies for each

of our test applications.

In our analysis, we often wanted to determine which of two searches showed a

better result. To determine whether one run’s search is better than another, we

borrow the concept of utility from microeconomics’ consumer choice theory [82].

Utility provides a formal mechanism to compare a person’s preferences in various

situations; in our case, we wish to reflect a tool user’s preferences for obtaining

140

timely results from the tool. To quantify the results of a search, we postulate a

utility function that captures a user’s preference for obtaining results from the

tool, weight the observed search results by the utility function, and sum the

weighted results to obtain a single value we call a utility sum that describes the

observed search results. To capture the idea that users prefer results given ear-

lier in the search, the appropriate utility function is one that is a decreasing func-

tion of time. For our analysis, we chose the linear function . This utility

function always produces weighted sums with negative values; to make our

results easier to understand, we use the absolute value of a search’s weighted

sum as its utility sum. Hence, the best search result from a collection of search

results is the one with the smallest utility sum.

While we evaluated Deep Start, we observed that the PC had difficulty per-

forming a bottleneck search with one of our test applications. The application,

su3_rmd, performs frequent gather operations. Instead of using a collective com-

munication operation provided by MPI, su3_rmd implements gather operations

using a sequence of point-to-point message transfers. To distinguish between the

messages of distinct gather operations, su3_rmd uses a unique message tag for

the messages involved with each gather operation. Paradyn dynamically recog-

nizes when new message tags (and MPI communicators) are used, so that they

can be considered in a bottleneck search. However, su3_rmd performs gather

operations so frequently that Paradyn’s ability to recognize and incorporate the

new message tags was overwhelmed. Furthermore, it is not profitable for the PC

to refine its search for each gather operation’s message tag; by the time the PC

U t() t–=

141

defines and activates an experiment for a given message tag, the gather operation

is usually complete so Paradyn will never see the message tag being used. To deal

applications that use resources ephemerally, we implemented a resource discov-

ery control mechanism in Paradyn that ignores the discovery of new resources if

their observed discovery rate becomes too high.

6.2.4 Deep Starter Threshold Sensitivity

To investigate Deep Start’s sensitivity to changes in the deep starter thresh-

old, we performed trials with the ALARA sequential application and the om3 par-

allel application using thresholds of 0.2 (i.e., 20% of the collected stack samples),

0.4, 0.6, and 0.8. Table 6.2 summarizes these experiments. In the table, an appli-

cation’s total known bottleneck count is the number of distinct bottlenecks found

across all runs of the PC on that application, regardless of the search strategy or

the deep starter threshold used in the runs. The table shows the number of PC

experiments attempted during a Deep Start bottleneck search (averaged across

the five trial runs that used the same deep starter threshold), the average num-

ber of bottlenecks found as both an absolute count and as a percentage of the total

known bottlenecks for the application, and the average utility sum (see

Section 6.2.3) for each tested deep starter threshold. Based on the results shown

in the table, we report results from experiments using a 0.2 deep starter thresh-

old. For both om3 and ALARA, this threshold yielded the best average utility sum

across all runs in a trial and the most bottlenecks found compared to the other

thresholds tested.

142

Application
Total

Known
Bottlenecks

Deep
Starter

Threshold

Average
Number of

Experiments
Attempted

Average Number
of Bottlenecks

Found

Average
Utility
Sum

ALARA 46 0.8
0.6
0.4
0.2

174.0
172.6
173.4
171.4

39.8 (86.5%)
40.2 (87.4%)
39.8 (86.5%)
39.6 (86.1%)

158.7
140.6
134.1
133.6

om3 145 0.8
0.6
0.4
0.2

260.2
260.8
265.0
269.0

140.2 (96.7%)
139.6 (96.3%)
142.0 (97.9%)
142.2 (98.1%)

154.1
132.9
131.2
124.5

Table 6.2: Summary of deep starter threshold sensit ivity experiments. Total Known Bot-
tlenecks is the number of unique bottlenecks observed during any search on the application,
regardless of search type and deep starter threshold. A Utility Sum (see Section 6.2.3) is a
measure of the quality of a search; smaller utility sums are better. Results are averaged over
five runs with the same deep starter threshold.

Application
Total

Known
Bottlenecks

Search Type
Average

Experiments
Attempted

Average
Bottlenecks

Found

Average
Utility
Sum

ALARA 46 Call Graph
Deep Start

174.0
173.4

39.4 (86%)
89.8 (87%)

191.9
134.1

DRACO 18 Call Graph
Deep Start

105.0
105.0

18.0 (100%)
18.0 (100%)

152.7
75.2

om3 145 Call Graph
Deep Start

261.6
269.0

141.8 (98%)
142.2 (98%)

158.1
124.5

su3_rmd 85 Call Graph
Deep Start

260.0
261.4

75.6 (89%)
82.2 (97%)

141.8
114.3

Table 6.3: Summary of Deep Start/Call Graph compari son experiments. Total Known Bot-
tlenecks is the number of unique bottlenecks observed during any search on the application,
regardless of search type and deep starter threshold. A Utility Sum (see Section 6.2.3) is a
measure of the quality of a search; smaller utility sums are better. Results are averaged over
five runs with the same deep starter threshold.

143

6.2.5 Comparison of the Deep Start and Call Graph Searches

In general, Deep Start found more bottlenecks than the PC’s call graph-based

search strategy. Table 6.3 summarizes the Deep Start and the call graph searches

for each of our test applications. Although Deep Start tended to perform more

experiments than the call graph search strategy, in cases where neither Deep

Start nor the call graph strategy found all of an application’s known bottlenecks,

the Deep Start strategy found more bottlenecks than the call graph strategy.

Deep Start also produced results more quickly than the call graph search

strategy. Figure 6.5 shows search profiles comparing the results produced by

Deep Start and the call graph strategy for each of our test applications. Each

chart in the figure shows the profile of a Deep Start search and a call graph

search for one of our test applications. This type of chart relates the bottlenecks

found by a search strategy with the time they were found. In this type of chart, a

steeper curve is better because it indicates that bottlenecks were found earlier

and more rapidly in a search. In the figure, each profile represents the average

time across the five runs of a trial to find a specific percentage of the application’s

total known bottlenecks. Each profile also includes range bars to indicate the best

and worst time taken to find each percentage of the total known bottlenecks. For

all of our test applications and nearly all percentages considered, Deep Start

found the percentage of the total known bottlenecks more quickly than the call

graph search strategy, and found all of its search’s bottlenecks an average of 10%

to 61% faster.

144

6.3 Summary and Future Work

Deep Start is a novel strategy for automatically finding application perfor-

mance problems that combines call stack sampling with dynamic-instrumenta-

tion-based search. During a bottleneck search, Deep Start collects samples from

the call stacks of each application process, analyzes the samples to determine

(a) (b)

(c) (d)

Figure 6.5 Profiles for Deep Start and call graph se arches. Search profiles are shown
for two sequential applications, ALARA (a) and DRACO (b), and two MPI-based parallel
applications, om3 (c) and su3_rmd (d). Each curve represents the average time taken over
five runs to find a specific percentage of the application’s total known bottlenecks. The range
bars indicate the best and worst time taken to find each percentage of the known bottlenecks
across the five runs.

0 50 100 150 200 250 300 350

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

B
ot

tl
en

ec
ks

 F
ou

nd
 (

%
)

Deep Start 0.2
Callgraph

0 50 100 150 200 250 300

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

B
ot

tl
en

ec
ks

 F
ou

nd
 (

%
)

Deep Start 0.2
Callgraph

0 50 100 150 200 250

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

B
ot

tl
en

ec
ks

 F
ou

nd
 (

%
)

Deep Start 0.2
Callgraph

0 50 100 150 200 250

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

B
ot

tl
en

ec
ks

 F
ou

nd
 (

%
)

Deep Start 0.2
Callgraph

145

which functions are often executing, and then defines high-priority experiments

for those functions so that they are examined early in a search. Our evaluation

showed that Deep Start can find bottlenecks more quickly than a search strategy

guided solely by the structure of an application’s call graph, and can find bottle-

necks hidden from the more straightforward search strategy.

There are several potential directions for future work based on our Deep Start

research. One such direction is to investigate whether the Deep Start approach is

beneficial for diagnosing performance problems other than CPU bottlenecks. In

its initial implementation, Deep Start looks for deep starters whenever it refines

its search through the application’s code, regardless of the hypothesis that is

being investigated. One open question is whether Deep Start’s current approach

to collecting and analyzing call stack samples provides any benefit for diagnosing

non-CPU-based potential performance problems such as whether an application

process is frequently blocked when communicating with other application pro-

cesses. Another open question is whether the use of semantic information about

the functions in the call stack samples can allow Deep Start to make better deep

starter selections when investigating non-CPU performance problems. For exam-

ple, when investigating synchronization bottlenecks, Deep Start may be able to

make better deep starter selections if it can recognize when synchronization func-

tions occur in the stack samples.

Another possible direction for research based on our Deep Start work involves

selecting deep starters based on sources of performance data other than the

application’s call stack when making deep starter selections. For example, when

146

investigating synchronization bottlenecks, it may be beneficial for Deep Start to

sample the network activity on the application process’ hosts; such data may be

available via a system function or a file in the hosts’ proc filesystem. When incor-

porating new sources of performance data, the cost of sampling the data is a key

consideration: one reason Deep Start’s call stack sampling is so appealing is

because of the incremental cost of obtaining the samples is small over the cost of

the PC’s normal search activity.

147

Chapter 7

Scalable Presentation of Performance

Bottleneck Search Results

Paradyn’s idiom of a hierarchy of application resources is being adopted by

other automated performance diagnosis tools, and several tools now provide hier-

archical visualizations of search-based performance diagnosis results similar to

the Performance Consultant’s Search History Graph display [77,96,103]. In the

Performance Consultant’s display, each node in the graph represents an experi-

ment performed during a bottleneck search and indicates whether the experiment

was true (i.e., the observed data for the experiment was above the threshold for its

hypothesis), false, or is still unknown. Figure 7.1 shows a portion of a search his-

tory graph as it would be shown in the Performance Consultant’s Search History

Graph display. The figure focuses on the part of the graph that shows the qualita-

tive behavior of four application processes, myapp{1272} , myapp{1273} ,

myapp{7624} , and myapp{7625} running on two hosts, c33.cs.wisc.edu and

c34.cs.wisc.edu . However, because the Search History Graph display shows

148

Figure 7.1 Part of a traditional Search History Grap h display. The traditional display in-
cludes individual results for each local sub-search. True experiments are shown as shaded
nodes.

Figure 7.2 Example Search History Graph display afte r applying the SGFA. Nodes
with “thermometer” gauges represent multiple experiments in the un-folded graph
(Figure 7.1). Each bar indicates what fraction of the experiments its node represents. The la-
bels “c*.cs.wisc.edu” and “myapp{*}” represent multiple host and process names in the un-
folded graph. True experiments are shown as shaded nodes.

CPUBound

TopLevelHypothesis

c33.cs.wisc.edu

main

A B

C

D

myapp{1272}

main

A B

C

myapp{1273}

main

A B

C

D

myapp{7624}

main

A B

C

D

c34.cs.wisc.edu

main

A B

C

D

myapp{7625}

D E

CPUBound

TopLevelHypothesis

c*.cs.wisc.edu

main

A B

C

D

myapp{*}

main

A B

C

D

D E

149

search results for individual application processes with one sub-graph per pro-

cess, the display does not scale.

To address the problem of non-scalable presentation of bottleneck search

results, we developed a new technique for producing scalable search result dis-

plays called the Sub-Graph Folding Algorithm (SGFA). Using ideas from scalable

performance visualization [18,56], experiment management for performance

tuning [53], and the PRISM parallel debugger [94], the SGFA combines sub-

graphs based on the qualitative behavior of hosts and processes into a composite

sub-graph. Sub-graphs indicating similar qualitative behavior are categorized

together in the composite sub-graph. We expect the number of such behavioral

categories to be small for most applications, allowing SGFA to produce search

result displays that are substantially more scalable than the traditional Search

History Graph display.

We describe the SGFA in Section 7.1. We present the results of our SGFA eval-

uation in Section 7.2. In experiments with 1024 application processes, our algo-

rithm converted search history graphs with an average of 30309 nodes into

graphs with an average of 44 nodes and a single composite sub-graph. We sum-

marize our SGFA research and discuss future work in Section 7.3.

7.1 The Sub-Graph Folding Algorithm

The SGFA produces scalable displays of bottleneck search results by folding

together sub-graphs that represent processes with similar qualitative behavior.

The reduction in graph complexity is determined by the number of qualitative

150

behavioral categories in the application (i.e., the number of radically different

sub-graphs in the search history graph). Our SGFA approach is based on the

hypothesis that the processes of a parallel application exhibit a small number of

qualitative behaviors. In earlier work [84,88], we used this hypothesis in an

approach for reducing the volume of performance data generated when monitor-

ing a large number of application processes. We do not assume the application

uses the same executable file for each of its processes (i.e., that it is an SPMD-

style application).

Processes with similar qualitative behavior are represented in the traditional

Search History Graph display as sub-graphs with similar shapes and node truth

values. The SGFA incrementally produces a composite sub-graph from the simi-

lar sub-graphs of the original graph. As each node is added to the original graph,

the SGFA traverses the node’s sub-graph in the original graph and the composite

sub-graph together. If an equivalent node is not already present in the composite

sub-graph, the SGFA adds the sub-graph rooted at that node in the original sub-

graph to the composite sub-graph. Figure 7.2 shows the result of applying the

SGFA to the search history graph from Figure 7.1. In the folded graph, the SGFA

has created a single composite sub-graph that represents all of the un-folded sub-

graphs. After the sub-graphs for the first three processes (from left to right in

Figure 7.1) are folded into the composite sub-graph, the composite sub-graph has

a leaf node labelled “D” for a function resource with a truth value of “false.” When

SGFA folds the final sub-graph into the composite sub-graph, it determines that

the node labelled “D” in the final sub-graph is not equivalent to the corresponding

151

node in the composite sub-graph because they have different truth values. It adds

another node labelled “D” with a truth value of “true” to the composite sub-graph.

When folding sub-graphs into a composite graph, SGFA must identify node

equivalence. SGFA considers several node characteristics when determining

whether two nodes are equivalent; the characteristics used depend on the types of

the nodes under consideration. For some types of nodes, such as those labelled

with host or process names, SGFA does not require node labels to be identical for

the nodes to be considered equivalent. For example, when comparing the nodes

labelled “myapp{1272} ” and “myapp{7624} ” in Figure 7.1, the SGFA uses exe-

cutable name but disregards process ID values when comparing the nodes

labelled “myapp{1272} ” and “myapp{7624} ” in Figure 7.1. On the other hand,

there are node types whose labels must be identical for the nodes to be considered

equivalent. This category of nodes includes nodes whose labels name resource

categories (e.g., Message) or specific application functions. The SGFA always con-

siders truth value when determining node equivalence.

Some nodes in a folded graph represent multiple experiments from the origi-

nal graph. In our presentation approach, each node in a folded sub-graph is

shown with a thermometer gauge to indicate the fraction of experiments it repre-

sents. For example, there are two nodes labelled “D” in Figure 7.2. The thermom-

eter gauge on the node representing experiments with a “false” truth value is

three-quarters shaded, indicating that the experiment on function D was false in

three of the four sub-graphs in the original graph. When equivalent nodes from

the original search have labels that are similar but not identical, SGFA uses wild

152

card labels in the folded graph. For example, the nodes labelled with host names

and process identifiers in Figure 7.1 are labelled “cs*.wisc.edu ” and

“myapp{*} ”, respectively, in the folded graph. SGFA uses a string generalization

algorithm like the longest common subsequence algorithm [46] to construct wild

card node labels.

For a visualization technique to be truly scalable, it must have not only a scal-

able on-screen presentation but also a scalable approach for building the on-

screen presentation. A centralized SGFA implementation is a poor match for pre-

senting the results from the Distributed Performance Consultant because the

centralized SGFA limits the scalability of the tool as a whole. A distributed SGFA

approach is needed to complement the scalability benefit of the Distributed Per-

formance Consultant.

For scalable construction of folded search history graphs, we designed and

implemented an MRNet-based SGFA approach that uses custom MRNet data

transformation filters (Chapter 4). A stateful SGFA filter running in the MRNet

overlay network maintains a folded sub-graph containing results of the local

search agents reachable by that MRNet process. When a filter’s folded graph

changes, for example to add a node or to change a node’s truth state, the filter

delivers a description of the change upstream. By induction, the filter running in

the tool’s front-end has the entire folded graph.

7.2 Evaluation

To evaluate the SGFA, we implemented it in a custom MRNet data transfor-

153

mation filter and used it in our Distributed Performance Consultant scalability

study (Section 5.4). We compared the complexity of the un-folded search history

graph produced by the Distributed Performance Consultant to the graph pro-

duced by the SGFA. We used the number of nodes in each search history graph as

the measure of its complexity.

The application we used for our study was su3_rmd , a quantum chromody-

namics code produced by the MILC collaboration [73] for simulating pure lattice

gauge theory. The code is written in C and uses MPI for communication. We used

a weak scaling approach in our study, and all experiments were performed on the

MCR Linux cluster [61] at Lawrence Livermore National Laboratory as part of

the Distributed Performance Consultant scalability study (Section 5.4).

The results of our comparison are shown in Figure 7.3. The chart compares

the complexity of the un-folded search history graphs produced by the Distrib-

uted Performance Consultant’s truly distributed bottleneck search strategy with

the complexity of the corresponding SGFA-produced graphs.

In our study, the number of nodes in the un-folded graph grew linearly with

the number of application processes. This is expected because the un-folded

search history graph includes a complete sub-graph for each application process

and each sub-graph has approximately the same complexity. In contrast, the com-

plexity of the SGFA-produced graphs remained nearly constant as we varied the

number of application processes. Each of the SGFA graphs contained a single

composite sub-graph.

154

7.3 Summary

The Sub-Graph Folding Algorithm produces scalable visualizations of bottle-

neck search results. The SGFA incrementally folds sub-graphs that show similar

qualitative process behavior into a composite sub-graph. Because we expect the

number of qualitative behavioral categories to be small, the SGFA approach can

Figure 7.3 The effect of SGFA on search history grap h complexity. The chart compares
the number of nodes in the un-folded search history graph with the graph produced by the SGFA.
The un-folded search history graph was produced using the Distributed Performance
Consultant’s truly distributed search strategy. Because the un-folded graph contains a results
sub-graph for each application process, the number of nodes in the un-folded graph increases
by approximately thirty nodes per process as the number of processes is increased. (The chart’s
y-axis is logarithmic.) The number of nodes in the folded graph remains roughly constant as the
number of processes is varied.

 10

 100

 1000

 10000

 100000

 0 200 400 600 800 1000 1200

N
um

be
r

of
 N

od
es

Processes

Unfolded SHG
Folded SHG

155

produce displays that scale better than the traditional Search History Graph dis-

play.

There are a few potential directions for future work based on our SGFA

research. The first is to investigate the algorithm’s sensitivity to the Performance

Consultant’s experiment thresholds. These thresholds affect the per-host and per-

process sub-graph shape and node truth values, so they may have an effect on the

graph complexity reduction possible with SGFA.

Another direction for further SGFA research is to study the computation and

communication load in our initial MRNet-based SGFA approach to improve its

scalability. For simplicity, our initial implementation transfers complete folded

graphs between MRNet SGFA filters. When a filter receives a new folded graph

from a downstream connection, the filter constructs its folded graph from scratch

using the latest graphs from all downstream connections. The communication

load of our approach may be reduced if a filter transfers only information about

the graph changes to its upstream parent when the filter’s folded graph changes.

Also, our approach’s computation load may be reduced if a filter, upon receiving

graph change information from downstream, applies the changes to its own

folded graph without necessarily re-folding its entire graph. Without a better

understanding of the computation and communication behavior of our implemen-

tation, it is unclear whether these optimizations are necessary or how much scal-

ability benefit they will provide.

156

Chapter 8

Conclusion

Our goal for this research was to enable performance diagnosis of applications

with a large number of processes and a large number of functions. We have iden-

tified the barriers that keep existing performance diagnosis techniques from sup-

porting such large-scale applications and devised techniques for overcoming the

scalability barriers. In this chapter, we review the contributions of our research

and discuss potential directions for future work.

8.1 Contributions

Our research shows that on-line, automated performance diagnosis tools can

investigate the behavior of each application process for applications with thou-

sands of processes and a large number of functions.

The challenge for our research was to overcome three barriers to tool scalabil-

ity: the management of a potentially large volume of performance data, communi-

cation between a large number of distributed components, and presentation of

performance diagnosis results for a large number of application components. The

157

first two barriers comprise the problem of monitoring and controlling a large

number of components.

Our approach for addressing this challenge had four parts:

• Scalable parallel tool communication and data aggregation. We pre-

sented the concept of Multicast/Reduction Overlay Networks (MRONs). We

also introduced MRNet, our MRON implementation that uses a hierarchy of

processes to provide scalable communication and data reduction services. We

explored a wide variety of traditional and non-traditional data reductions

when using MRNet in the Paradyn performance tool.

• Finding performance problems in applications with a large number

of processes. We presented a new performance diagnosis approach using an

on-line automated bottleneck search strategy that distributes decisions

regarding local application behavior. To support the distributed bottleneck

search that retains a centralized sub-search of global application behavior, the

approach includes a model for tracking the cost of the search’s instrumenta-

tion and a policy for scheduling instrumentation generated by the distributed

components that implement a search. We also presented a truly distributed

bottleneck search that eliminates the complexity of the augmented instrumen-

tation cost model and instrumentation scheduling policy.

• Finding performance problems in applications with a large number

of functions. Deep Start augments an instrumentation-based bottleneck

search strategy with stack sample information gathered opportunistically

during normal search activity. Deep Start finds bottlenecks more quickly than

158

search strategies guided only by the application’s call graph, and can find bot-

tlenecks hidden from more these more straightforward search strategies.

• Presenting the results of bottleneck searches of applications with a

large number of processes. The Sub-Graph Folding Algorithm dynamically

categorizes application processes by their qualitative behavior. For each cate-

gory, the SGFA produces a composite sub-graph that indicates the behavior of

all processes in the category. We expect most applications to exhibit a small

number of behavioral categories, allowing the SGFA to produce displays that

are more scalable than traditional search history graph displays that show

search results for each application process.

Although our research was performed in the context of Paradyn and its Perfor-

mance Consultant, with varying degrees of adaptation our techniques can be gen-

eralized for use in a broader class of parallel tools. MRNet is designed to enable

scalable communication and data processing in all types of parallel tools. As auto-

mated search is adopted by other tools as a technique for finding application per-

formance problems, the techniques used in the Distributed Performance

Consultant, Deep Start, and the Sub-Graph Folding Algorithm can be used in

this wider collection of tools.

8.2 Directions for Future Research

We presented several directions for future research in each of this disserta-

tion’s main chapters. We highlight two directions involving Multicast/Reduction

Overlay Networks and the Distributed Performance Consultant that we feel are

159

especially important.

MRONs and the MRON approach implemented in MRNet provide the basis

for a few important lines of inquiry. First, although our MRNet work focused on

scalability, reliability and resiliency are also important for tools that involve a

large number of back-end processes. Research investigating these MRNet charac-

teristics is currently in progress. Second, tailoring MRNet process layouts to the

tool’s requirements and the underlying system’s capabilities remains largely

unexplored. Open questions include how sensitive tools are to small differences in

the overlay network’s process layout, the use of unbalanced versus balanced tree

layouts, and how to automatically tailor the process layout (perhaps by adapting

to the tool’s observed behavior). These MRNet-related research directions are

especially important given MRNet’s applicability to a broad class of parallel tools.

The Distributed Performance Consultant and SGFA also provide interesting

directions for future research. The feasibility of using the SGFA to approximate

an explicit investigation of global application behavior remains largely unex-

plored. Open questions include how sensitive the SGFA is to application charac-

teristics such as its use of adaptive mesh refinement and how sensitive it is to the

thresholds used during a Distributed Performance Consultant bottleneck search.

Research along these directions is crucial for evaluating whether the SGFA’s

behavioral categories provide a sufficient approximation to the global bottleneck

search results to support effective parallel application tuning.

160

References

[1] N.R. Adiga, G. Almasi, G.S. Almasi, Y. Aridor, R. Barik, et al (110 addi-
tional authors), “An Overview of the BlueGene/L Supercomputer”, SC
2002, Baltimore, Maryland, November 2002.

[2] A. Alexandrov, M.F. Ionescu, K.E. Schauser, and C. Scheiman, “LogGP:
Incorporating Long Messages into the LogP Model”, Journal of Parallel
and Distributed Computing 44, 1, July 1997, pp. 71–79.

[3] J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S.-T.A.
Leung, R.L. Sites, M.T. Vandevoorde, C.A. Waldspurger, and W.E. Weihl,
“Continuous Profiling: Where Have All the Cycles Gone?”, ACM Transac-
tions on Computing Systems 15, 4, November 1997, pp. 357–390.

[4] T.E. Anderson and E.D. Lazowska, “Quartz: a Tool for Tuning Parallel Pro-
gram Performance”, ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, Boulder, Colorado, May 1990, pp. 115–125.

[5] APART Working Group on Automatic Performance Analysis: Resources
and Tools, http://www.gz-juelich.de/apart/, April 2004.

[6] R.H. Arpaci, A.C. Dusseau, A.M. Vahdat, L.T. Liu, T.E. Anderson, and D.A.
Patterson, “The Interaction of Parallel and Sequential Workloads on a Net-
work of Workstations”, 1995 ACM Conference on Measurement and Model-
ing of Computer Systems (SIGMETRICS 1995), Ottawa, Canada, May
1995, pp. 267–278.

[7] A.C. Arpaci-Dusseau, “Implicit Coscheduling: Coordinated Scheduling
with Implicit Information in Distributed Systems”, ACM Transactions on
Computer Systems 19, 3, August 2001, pp. 283–331.

[8] S.M. Balle, Personal communication, November 2002–November 2003.

[9] S.M. Balle, B.R. Brett, C.-P. Chen, and D. LaFrance-Linden, “A New
Approach to Parallel Debugger Architecture”, Sixth International Confer-
ence PARA 2002, Espoo, Finland, June 2002. Published as Lecture Notes in
Computer Science 2367, J. Fagerholm, J. Haataja, J. Järvinen, M. Lyly, and
P. Raback (Eds), Springer-Verlag, Heidelberg, June 2002, pp. 139–149.

161

[10] S. Benkner, “VFC: the Vienna Fortran Compiler”, Scientific Computing 7,
1, 1999, pp. 67–81.

[11] P. Berman and J. Garay, “Cloture Voting: (n=4)-Resilient Distributed Con-
sensus in t + 1 Rounds”, Mathematical Systems Theory 26, 1, 1993, pp. 3–
20.

[12] M. Bernaschi and G. Iannello, “Collective Communication Operations:
Experimental Results vs. Theory”, Concurrency: Practice and Experience
10, 5, April 1998, pp. 359–386.

[13] R. Brightwell, L.A. Fisk, D.S. Greenberg, T. Hudson, M. Levenhagen, A.B.
Maccabe, and R. Riesen, “Massively Parallel Computing Using Commodity
Components”, Parallel Computing 26, 2–3, February 2000, pp. 243–266.

[14] P.N. Brown, R.D. Falgout, and J.E. Jones, “Semicoarsening Multigrid on
Distributed Memory Machines”, SIAM Journal on Scientific Computing
21, 5, 2000, pp. 1823–1834.

[15] H.W. Cain, B.P. Miller, and B.J.N. Wylie, “A Callgraph-Based Search Strat-
egy for Automated Performance Diagnosis”, Sixth International European
Conference on Parallel Computing (Euro-Par 2000), Münich, Germany,
August 2000. Published as Lecture Notes in Computer Science 1900, A.
Bode, T. Ludwig, W. Karl, R. Wismüller (Eds), Springer-Verlag, Heidelberg,
August/September 2000, pp. 108–122.

[16] B.A. Coan and J.L. Welch, “Modular Construction of an Efficient 1-Bit Byz-
antine Agreement Protocol”, Mathematical Systems Theory 26, 1, 1993,
pp. 131–154.

[17] Compaq Corporation, “21264/EV68A Microprocessor Hardware Reference
Manual”, Part Number DS-0038A-TE, 2000.

[18] A.L. Couch, “Categories and Context in Scalable Execution Visualization”,
Journal of Parallel and Distributed Computing 18, 2, June 1993, pp. 195–
204.

[19] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, E. Santos, K.E. Schauser,
R. Subramonian, and T. von Eicken, “LogP: A Practical Model of Parallel
Computation”, Communications of the ACM 39, 11, November 1996, pp.
78–85.

[20] J. Dean, J.E. Hicks, C.A. Waldspurger, W.E. Weihl, G. Chrysos, “ProfileMe:
Hardware Support for Instruction-Level Profiling on Out-of-Order Proces-
sors”, 30th Annual IEEE/ACM International Symposium on Microarchi-

162

tecture (MICRO-30), Research Triangle Park, North Carolina, December
1997, pp. 292–302.

[21] S.E. Deering and D.R. Cheriton, “Multicast Routing in Datagram Internet-
works and Extended LANs”, IEEE/ACM Transactions on Networking 8, 2,
May 1990, pp. 85–110.

[22] D.L. Eager, E.D. Lazowska, and J. Zahorjan, “Adaptive Load Sharing in
Homogeneous Distributed Systems”, IEEE Transactions on Software Engi-
neering 12, 5, May 1986, pp. 662–675.

[23] G. Eisenhauer and L.K. Daley, “Fast Heterogeneous Binary Data Inter-
change”, Ninth Heterogeneous Computing Workshop (HCW 2000), Cancun,
Mexico, May 2000, pp. 90–101.

[24] A. Espinosa, T. Margalef, and E. Luque, “Automatic Performance Evalua-
tion of Parallel Programs”, Sixth Euromicro Workshop on Parallel and Dis-
tributed Processing (PDP ’98), Madrid, Spain, January 1998, pp. 43–49.

[25] Etnus, Inc., “TotalView”, http://www.etnus.com/Products/TotalView/, 2004.

[26] D.A. Evensky, Personal communication, November 2001.

[27] D.A. Evensky, A.C. Gentile, L.J. Camp, and R.C. Armstrong, “Lilith: Scal-
able Execution of User Code for Distributed Computing”, Sixth IEEE Inter-
national Symposium on High Performance Distributed Computing (HPDC
’97), Portland, Oregon, August 1997, pp. 306–314.

[28] T. Fahringer, M. Gerndt, G. Riley, and J.L. Träff, “Specification of Perfor-
mance Problems in MPI Programs with ASL”, 2000 International Confer-
ence on Parallel Processing (ICPP’00), Toronto, Canada, August 2000,
pp.51–58.

[29] D.G. Feitelson, “Job Scheduling in Multiprogrammed Parallel Systems”,
IBM Research Technical Report RC 19790 (87657), second revision, August
1997.

[30] I. Foster, C. Kesselman (Eds.), “The Grid: Blueprint for a New Computing
Infrastructure”, (2nd Ed.) Morgan Kaufmann, San Francisco, November
2003.

[31] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke, “The Physiology of the
Grid: an Open Grid Services Architecture for Distributed Systems Integra-
tion”, Draft, Global Grid Forum Open Grid Services Architecture Working

163

Group, May 2003. Available from https://forge.gridforum.org/projects/ogsa-
wg/document/The_Physiology_of_the_Grid/en/1/.

[32] J.E. Garlick and C.M. Dunlap, “Building CHAOS: an Operating Environ-
ment for Livermore Linux Clusters”, Lawrence Livermore National Labo-
ratory Technical Report UCRL-ID-151968, February 2002.

[33] A.S. Grimshaw, A.J. Ferrari, G. Lindahl, and K. Holcomb, “Wide-Area Com-
puting: Resource Sharing on a Large Scale”, IEEE Computer 32, 5, May
1999, pp. 29–37.

[34] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sun-
deram, “PVM: Parallel Virtual Machine—A User’s Guide and Tutorial for
Network Parallel Computing”, MIT Press, 1994.

[35] H.M. Gerndt and A. Krumme, “A Rule-Based Approach for Automatic Bot-
tleneck Detection in Programs with Shared Virtual Memory Systems”, Sec-
ond International Workshop on High-Level Programming Models and
Supportive Environments, Geneva, Switzerland, April 1997.

[36] M .Gerndt, A. Schmidt, M. Schulz, and R. Wismüller, “Performance Analy-
sis for Teraflop Computers: a Distributed Automatic Approach”, Tenth
Euromicro Workshop on Parallel, Distributed, and Network-based Process-
ing (PDP 2002), Canary Islands, Spain, January 2002, pp. 23–30.

[37] Global Grid Forum Open Grid Services Architecture Working Group,
“Open Grid Services Architecture”, https://forge.gridforum.org/-
projects/ogsa-wg/, February 2004.

[38] S.L. Graham, P.B. Kessler, and M.K. McKusick, “Gprof: a Call Graph Exe-
cution Profiler”, SIGPLAN 1982 Symposium on Compiler Construction,
Boston, Massachusetts, June 1982. Published as SIGPLAN Notices 17, 6,
ACM Press, June 1982, pp. 120–126.

[39] G. Graefe, “Query Evaluation Techniques for Large Databases”, ACM Com-
puting Surveys 25, 2, June 1993, pp. 73–170.

[40] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, and H. Pirahesh, “Data Cube: a Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals”, Data Mining and
Knowledge Discovery 1, 1, April 1997, pp. 29–53.

[41] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-Performance, Porta-
ble Implementation of the MPI Message Passing Interface Standard”,
Argonne National Laboratory Report MCS-P567-0296, February 1996.

164

[42] W. Gu, G. Eisenhauer, K. Schwan, and J. Vetter, “Falcon: On-line Monitor-
ing for Steering Parallel Programs”, Concurrency: Practice and Experience
10, 9, August 1998, pp. 699–736.

[43] R.J. Hall, “Call Path Refinement Profiles”, IEEE Transactions on Software
Engineering 21, 6, June 1995, pp. 481–496.

[44] M.T. Heath and J.A. Etheridge, “Visualizing the Performance of Parallel
Programs”, IEEE Software 8, 5, September 1991, pp. 29–39.

[45] B.R. Helm, A.D. Malony, and S.F. Fickas, “Capturing and Automating Per-
formance Diagnosis: the Poirot Approach”, 1995 International Parallel Pro-
cessing Symposium (IPPS ’95), Santa Barbara, California, April 1995, pp.
606–613.

[46] D.S. Hirschberg, “Algorithms for the Longest Common Subsequence Prob-
lem”, Journal of the ACM 24, 4, October 1977, pp. 664–675.

[47] J.K. Hollingsworth and B.P. Miller, “An Adaptive Cost Model for Parallel
Program Instrumentation”, Second International European Conference on
Parallel Computing (Euro-Par ’96), Lyon, France, August 1996. Published
as Lecture Notes in Computer Science 1123, L Bougé, P. Fraigniaud, A.
Mignotte, Y. Robert (Eds.), Springer, pp. 88–97.

[48] J.K. Hollingsworth, R.B. Irvin, and B.P. Miller, “The Integration of Applica-
tion and System Based Metrics in a Parallel Program Performance Tool”,
Third ACM SIGPLAN Symposium on Principals & Practice of Parallel Pro-
gramming (PPoPP 1991), Williamsburg, Virginia, April 1991, pp. 189–200.

[49] J.K. Hollingsworth, B.P. Miller, and J. Cargille, “Dynamic Program Instru-
mentation for Scalable Parallel Tools”, 1994 Scalable High Performance
Computing Conference (SHPCC ’94), Knoxville, Tennessee, pp. 841–850,
May 1994.

[50] J.K. Hollingsworth, B.P. Miller, M.J.R. Goncalves, O. Naim, Z. Xu, and L.
Zheng, “MDL: A Language and Compiler for Dynamic Program Instrumen-
tation”, International Conference on Parallel Architectures and Compila-
tion Techniques (PACT’97), San Francisco, California, November 1997, pp.
201–213.

[51] R. Hood, “The p2d2 Project: Building a Portable Distributed Debugger”,
1996 SIGMETRICS Symposium on Parallel and Distributed Tools
(SPDT ’96), Philadelphia, Pennsylvania, May 1996, pp. 127–136.

165

[52] International Business Machines Corp., “Parallel Environment for AIX:
Operations and Use, Volume 1”, Document number SA22-7425-01, Decem-
ber 2001.

[53] K.L. Karavanic and B.P. Miller, “Experiment Management Support for Per-
formance Tuning”, SC99, Portland, Oregon, November 1999.

[54] R.E. Kessler, M.D. Hill, and D.A. Wood, “A Comparison of Trace-Sampling
Techniques for Multi-Megabyte Caches”, IEEE Transactions on Computers
43, 6, June 1994, pp. 664–675.

[55] T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, and R.A.F. Bhoedjang,
“MagPIe: MPI’s Collective Communication Operations for Clustered Wide
Area Systems”, Seventh ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Atlanta, Georgia, May 1999, pp. 131–
140.

[56] D. Kimelman, B. Leban, T. Roth, and D. Zernik, “Reduction of Visual Com-
plexity in Dynamic Graphs”, Graph Drawing ’94: DIMACS International
Workshop (GD ’94), Princeton, New Jersey, October 1994. Published as Lec-
ture Notes in Computer Science 894, R. Tamassia and I.G. Tollis (Eds.),
Springer-Verlag, Heidelberg, 1994, pp. 218–225.

[57] J. Kohn and W. Williams, “ATExpert”, Journal of Parallel and Distributed
Computing 18, 2, June 1993, pp. 205–222.

[58] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem”,
ACM Transactions on Programming Languages and Systems 4, 3, July
1982, pp. 382–401.

[59] Lawrence Livermore National Laboratory, “ASCI Blue Pacific”,
http://www.llnl.gov/asci/platforms/bluepac/, February 2003.

[60] Lawrence Livermore National Laboratory, “ASCI Purple”,
http://www.llnl.gov/asci/purple/, May 2004.

[61] Lawrence Livermore National Laboratory, “M&IC Capability Cluster”,
http://www.llnl.gov/linux/mcr/, April 2005.

[62] S.T. Leutenegger and M.K. Vernon, “The Performance of Multiprogrammed
Multiprocessor Scheduling Policies”, 1990 ACM Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS 1990), Boulder,
Colorado, May 1990, pp. 226–236.

166

[63] Los Alamos National Laboratory, “The Pink Page”,
http://www.lanl.gov/projects/pink/, 2004.

[64] N.A. Lynch, M. Fischer, and R.J. Fowler, “A Simple and Efficient Byzantine
Generals Algorithm”, Second Symposium on Reliability in Distributed
Software and Database Systems, July 1982, pp.46–52.

[65] B. Lyon, “Sun External Data Representation Specification”, Sun Microsys-
tems, Inc. Technical Report, 1985.

[66] S. Madden, M.J. Franklin, J.M Hellerstein, and W. Hong, “TAG: a Tiny
Aggregation Service for Ad-Hoc Sensor Networks. Fifth Symposium on
Operating Systems Design and Implementation (OSDI 2002), Boston, Mas-
sachusetts, December, 2002.

[67] A.D. Malony, D.H. Hammerslag, and D.J. Jablonowski, “Traceview: a Trace
Visualization Tool”, IEEE Software 8, 5, September 1991, pp. 19–28.

[68] A.D. Malony and D.A. Reed, “Models for Performance Perturbation Analy-
sis”, ACM/ONR Workshop on Parallel and Distributed Debugging, Santa
Cruz, California, May 1991, pp. 15–25.

[69] M.L. Massie, B.N. Chun, and D.E. Culler, “The Ganglia Distributed Moni-
toring System: Design, Implementation, and Experience”, University of
California, Berkeley Technical Report, http://ganglia.source-
forge.net/talks/parallel_computing/ganglia-twocol.pdf, February 2003.

[70] W. Meira Jr., T.J. LeBlanc, and A. Poulos, “Waiting Time Analysis and Per-
formance Visualization in Carnival”, SIGMETRICS Symposium on Paral-
lel and Distributed Tools (SPDT ’96), Philadelphia, Pennsylvania, May
1996, pp. 1–10.

[71] Message Passing Interface Forum, “MPI: a Message Passing Interface
Standard”, International Journal of Supercomputing Applications 8, 3/4,
Fall/Winter 1994.

[72] Message Passing Interface Forum, “MPI-2: A Message-Passing Interface
Standard”, International Journal of Supercomputer Applications and High
Performance Computing 12, 1/2, 1998.

[73] The MIMD Lattice Computation (MILC) Collaboration, http://physics.indi-
ana.edu/~sg/milc.html.

[74] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin,
K.L. Karavanic, K. Kunchithapadam, and T. Newhall, “The Paradyn Paral-

167

lel Performance Measurement Tool”, IEEE Computer, 28, 11, November
1995, pp. 37–46.

[75] B.P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S.-S. Lim, and T.
Torzewski, “IPS-2: the Second Generation of a Parallel Program Measure-
ment System”, IEEE Transactions on Computing 1, 2, April 1990, pp. 206–
217.

[76] B. Mohr, A.D. Malony, and J.E. Cuny, “TAU: Tuning and Analysis Utilities
for Portable Parallel Programming”, In Parallel Programming using C++,
G. Wilson, Ed., MIT Press, Cambridge, Massachusetts, 1996.

[77] B. Mohr and F. Wolf, “KOJAK: A Tool Set for Automatic Performance Anal-
ysis of Parallel Applications”, Ninth International Euro-Par Conference
(Euro-Par 2003), Klagenfurt, Austria, August 2003, published as Lecture
Notes in Computer Science 2790, H. Kosch, L. Böszörményi, and H. Hell-
wagner (Eds.), Springer-Verlag, Heidelberg, pp. 1301–1304.

[78] A. Morajko, “Dynamic Tuning of Parallel/Distributed Applications”, Doc-
toral dissertation, Universitat Autonoma de Barcelona, Barcelona, Spain,
December 2003.

[79] N. Mukherjee, G.D. Riley, and J.R. Gurd, “FINESSE: a Prototype Feed-
back-Guided Performance Enhancement System”, Eighth Euromicro Work-
shop on Parallel and Distributed Processing (PDP 2000), Rhodes, Greece,
January 2000.

[80] W.E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach, “VAM-
PIR: Visualization and Analysis of MPI Resources”, Supercomputer 63 12,
1, 1996, pp. 69–80.

[81] F. Petrini, D.J. Kerbyson, and S. Pakin, “The Case of the Missing Super-
computer Performance: Achieving Optimal Performance on the 8,192 Pro-
cessors of ASCI Q”, SC2003, Phoenix, Arizona, November 2003.

[82] R.S. Pindyck and D.L. Rubinfeld, “Microeconomics”, Prentice Hall, Upper
Saddle River, New Jersey, 2000.

[83] D.A. Reed, R.A. Aydt, R.J. Noe, P.C. Roth, K.A. Shields, B.W. Schwartz, and
L.F. Tavera, “Scalable Performance Analysis: the Pablo Performance Anal-
ysis Environment”, Scalable Parallel Libraries Conference (SPLC 1993),
Mississippi State, Mississippi, October 1993, pp. 104–113.

[84] D.A. Reed, O.Y. Nickolayev, and P.C. Roth, “Real-Time Statistical Cluster-
ing for Event Trace Reduction”, International Journal of Supercomputing

168

Applications and High-Performance Computing 11, 2, Summer 1997, pp.
144–159.

[85] R.L. Ribler, H. Simitci, and D.A. Reed, “The Autopilot Performance-
Directed Adaptive Control System”, Future Generation Computer Systems
18, 1, September 2001, pp. 175–187.

[86] E. Rich and K. Knight, “Artificial intelligence”, McGraw-Hill, New York,
1991.

[87] R. Riesen, R. Brightwell, L.A. Fisk, T. Hudson, J. Otto, and A.B. Maccabe,
“Cplant”, Second Extreme Linux Workshop at the 1999 USENIX Annual
Technical Conference, Monterrey, California, June 1999.

[88] P.C. Roth, “ETRUSCA: Event Trace Reduction Using Statistical Data Clus-
tering Analysis”, Master’s Thesis, Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign, May 1996.

[89] P.C. Roth, D.C. Arnold, and B.P. Miller, “MRNet: a Software-Based Multi-
cast/Reduction Network for Scalable Tools”, SC 2003, Phoenix, Arizona,
November 2003.

[90] P.C. Roth and B.P. Miller, “Deep Start: a Hybrid Strategy for Automated
Performance Problem Searches”, Concurrency and Computation: Practice
and Experience 15, 11–12, September 2003, pp. 1027–1046. Also appeared
in shorter form in Eighth International Euro-Par Conference (Euro-Par
2002), Paderborn, Germany, August 2002, published as Lecture Notes in
Computer Science 2400, B. Monien and R. Feldmann (Eds.), Springer-Ver-
lag, Heidelberg, pp. 86–96.

[91] A. Shatdal and J.F. Naughton, “Adaptive Parallel Aggregation Algorithms”,
ACM SIGMOD Record 24, 2, May 1995, pp. 104–114.

[92] T. Sheehan, A. Malony, and S. Shende, “A Runtime Monitoring Framework
for the TAU Profiling System”, Third International Symposium on Com-
puting in Object-Oriented Parallel Environments (ISCOPE’99). Published
as Lecture Notes in Computer Science 1732, Springer-Verlag, Heidelberg,
December 1999, pp. 170–181.

[93] N.G. Shivaratri, P. Krueger, and M. Singhal, “Load Distributing for Locally
Distributed Systems”, IEEE Computer 25, 12, December 1992, pp. 33–44.

[94] S. Sistare, D. Allen, R. Bowker, K. Jourenais, J. Simons, and R. Title, “A
Scalable Debugger for Massively Parallel Message-Passing Programs”,
IEEE Parallel & Distributed Technology 1, 2, Summer 1994, pp. 50–56.

169

[95] S. Sistare, E. Dorenkamp, N. Nevin, and E. Loh, “MPI Support in the
Prism Programming Environment”, 1999 ACM/IEEE Conference on
Supercomputing (SC1999), Portland, Oregon, November 1999.

[96] F. Song and F. Wolf, “CUBE User Manual”, ICL Technical Report ICL-UT-
04-01, University of Tennessee, February 2004.

[97] M.J. Sottile and R.G. Minnich, “Supermon: a High-Speed Cluster Monitor-
ing System”, Cluster 2002, Chicago, Illinois, September 2002.

[98] J.T. Stasko and J. Muthukumarasamy, “Visualizing Program Executions on
Large Data Sets”, 1996 IEEE Symposium on Visual Languages, Boulder,
Colorado, September 1996, pp. 166–173.

[99] T.L. Sterling, J. Salmon, D.J. Becker, and D.F. Savarese, “How to Build a
Beowulf: a Guide to the Implementation and Application of PC Clusters”,
MIT Press, Cambridge, Massachusetts, 1999.

[100] C. Tapus, I-H. Chung, and J.K. Hollingsworth, “Active Harmony: Towards
Automated Performance Tuning”, SC 2002, Baltimore, Maryland, Novem-
ber 2002.

[101] K. Tani, “Status of the Earth Simulator System”, 16th International Super-
computer Conference, Heidelberg, Germany, June 2001.

[102] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wolski, and M.
Swany, “A Grid Monitoring Architecture”, Technical report GWD-Perf-16-3,
Global Grid Forum, August 2002. Available from http://www-
didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-Perf-16-3.pdf.

[103] H.-L. Truong and T. Fahringer, “SCALEA: a Performance Analysis Tool for
Parallel Programs”, Concurrency and Computation: Practice and Experi-
ence, 15, 11–12, September 2003, pp. 1001–1025. Also appeared in shorter
form in Eighth International Euro-Par Conference (Euro-Par 2002), Pader-
born, Germany, August 2002, published as Lecture Notes in Computer Sci-
ence 2400, B. Monien and R. Feldmann (Eds.), Springer-Verlag, Heidelberg,
pp. 75–85.

[104] H.-L. Truong and T. Fahringer, “SCALEA-G: a Unified Monitoring and Per-
formance Analysis System for the Grid”, Second European Across Grids
Conference, Nicosia, Cyprus, January 2004.

[105] S.S. Vadhiyar, G.E. Fagg, and J.J. Dongarra, “Automatically Tuned Collec-
tive Communications”, SC 2000, Dallas, Texas, November 2000.

170

[106] A. Waheed, D.T. Rover, and J.K. Hollingsworth, “Modeling and Evaluating
Design Alternatives for an On-Line Instrumentation System: A Case
Study”, IEEE Transactions on Software Engineering 24, 6, June 1998, pp.
451–470.

[107] W.-H. Wang and J.-L. Baer, “Efficient Trace-Driven Simulation Methods for
Cache Performance Analysis”, ACM Transactions on Computer Systems 9,
3, August 1991, pp.222–241, August 1991.

[108] W. Williams, T. Hoel, and D. Pase, “The MPP Apprentice™ Performance
Tool: Delivering the Performance of the Cray T3D®”, IFIP WG10.3 Work-
ing Conference on Programming Environments for Massively Parallel Dis-
tributed Systems, Monte Verità, Switzerland, April 1994, pp. 333–345.
Published as Programming Environments for Massively Parallel Distrib-
uted Systems, K.M. Decker and R.M. Rehmann (Eds.), Birkhäuser Verlag,
1994.

[109] J.C. Yan and S. Listgarten, “Intrusion Compensation for Performance Eval-
uation of Parallel Programs on a Multicomputer”, Sixth International Con-
ference on Parallel and Distributed Computing Systems (ISCA 1993),
Louisville, Kentucky, October 1993, pp. 427–431.

[110] J.C. Yan and S.R. Sarukkai, “Analyzing Parallel Performance Using Nor-
malized Performance Indices and Trace Transformation Techniques”, Par-
allel Computing 22, 9, November 1996, pp. 1215–1237.

[111] J. Yan, S. Sarukkai, and P. Mehra, “Performance Measurement, Visualiza-
tion and Modeling of Parallel and Distributed Programs Using the AIMS
Toolkit. Software: Practice and Experience 25, 4, April 1995, pp. 429–461.

[112] O. Zaki, E. Lusk, W. Gropp, and D. Swider, “Toward Scalable Performance
Visualization with Jumpshot”, High Performance Computing Applications
13, 2, Fall 1999, pp. 277–288.

