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Toward the Deconstruction of Dyninst

Abstract
There are two problems that hinder the development of

binary tools: a lack of code sharing and a lack of portability.

Binary tools, whether static or dynamic, depend on similar

analysis and apply similar modification techniques. However,

implementations of these techniques are not shared between

tools, forcing a developer to reinvent the wheel rather than

leverage existing functionality. Tools are often limited to a

small range of platforms, preventing users from using existing

tools on new platforms.

This research describes the deconstruction of the Dyninst

dynamic instrumentation library. Dyninst possesses powerful

analysis and modification techniques, but these capabilities are

hidden underneath the instrumentation-focused API. We are

creating a suite of component libraries that will provide a plat-

form-independent interface to a core piece of Dyninst function-

ality. These libraries will allow other tool developers to access

the capabilities of Dyninst. In addition to a programmatic

interface, we are also creating representations for interchange

of data between tools. The deconstruction of Dyninst poses

several interesting challenges, including the design of general

interfaces between components that are also abstract and por-

table.

This paper lays out our approach to the deconstruction of

Dyninst and also describes the first of these components, the

SymtabAPI, a multi-platform library for parsing, modifying,

and exporting symbol tables in object files. We also present a

case study of the tool unstrip that regenerates missing or

incorrect symbol tables in binaries. Unstrip allows other anal-

ysis, reverse engineering, and debugging tools, which require

symbol information, to operate successfully on stripped bina-

ries.

1. INTRODUCTION
1

Binary code analysis and editing tools are becoming

increasingly common. These tools are used to provide

information about a binary program’s content and struc-

ture and to modify the program. Binary code analysis

and editing are used in a wide variety of applications,

including reverse engineering [6,17], cyber-forensics

[19,22], program tracing [1], debugging [30], program

testing [18,21,24], performance modeling [15,25], and

performance profiling [2,5,16]. However, developing a

binary tool is an expensive process, due to both the com-

plexity of operating directly on a binary and the myriad

number of platforms in common use.

Binary tools rely on two categories of operations:

analysis and modification. Analysis is used to derive

semantic meaning from the binary code ranging from

identifying basic blocks and functions to detailed data

flow analysis. Modification allows tools to inject new

code into a program or modify existing code. The com-

bination of analysis and modification provides a power-

ful synergy, in which analysis can reduce the amount of

required instrumentation, and modification can augment

the quality of analysis.

The DyninstAPI [4, 10] is a library that provides a

high-level, platform-independent interface to dynamic

binary analysis and modification. The goal of the Dynin-

stAPI is to simplify binary tool development. Three fac-

tors have contributed to the success of the DyninstAPI.

First, its combination of analysis and modification capa-

bilities. Dyninst performs extensive static analysis on

binaries, building up a complete representation that the

user can use to guide instrumentation. Second, its

abstract interface. The DyninstAPI poses instrumenta-

tion as inserting a snippet (an abstract, machine-indepen-

dent representation of the desired code) at a point in the

program. This simple interface enables a wide range of

complicated operations, including performance analysis,

memory tracing, and code coverage, to be performed

with minimal complexity of user code. Third, its porta-

bility to multiple platforms, including Linux, Windows,

AIX, and Solaris, and multiple architectures, including

IA-32, AMD-64, IA-64, POWER, and SPARC.

Portability and abstraction are powerful concepts

that allow a user to rapidly develop effective tools for a

variety of platforms. Due to the increasing number of

different computing systems, portability has become a

critical concern of the tool community. Abstraction in a

binary tool has two purposes. First, an abstract user
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interface hides much of the complexity of binary tool

building, enabling users to easily create straightforward

yet powerful tools. Second, pervasive use of abstract

internal interfaces is a key requirement for portability,

allowing platform-specific details to be encapsulated at

low levels.

While the DyninstAPI is portable and abstract, it is

not general. Dyninst has powerful analysis techniques,

but these techniques support our modification capability

rather than being presented on a standalone basis. Our

static analysis techniques include regenerating function

and control flow information from stripped binaries [9]

and heavily optimized code. Our process state examina-

tion algorithms allow us to safely instrument and control

multi-threaded code [31] and perform efficient stack

walking.

Previously, many of these analysis capabilities were

provided only in the context of instrumentation, and

were inaccessible to tools that only require analysis

capabilities. Recently there has been substantial interest

in accessing the individual capabilities of Dyninst in

support of new tool development. For example, a devel-

oper might want to statically parse and analyze a binary

without executing it, or may want to only perform stack

walking on a binary without inserting instrumentation.

These capabilities are currently hidden behind the public

Dyninst interface and have too many internal dependen-

cies for easy re-use outside of Dyninst.

This paper describes our effort to deconstruct the

monolithic Dyninst library into a suite of component

libraries. Each library will provide a platform-indepen-

dent interface to a core piece of Dyninst functionality,

allowing other tools to benefit from our efforts. Thekey

issue for this effort is to provide general interfaces while

maintaining portability and an abstract interface. Cur-

rently each component provides the necessary features

for Dyninst; we will generalize these interfaces to pro-

vide other tools with a comprehensive set of low-level,

portable libraries. In addition, there is a substantial engi-

neering effort required to cleanly isolate each component

of Dyninst.

This paper lays out our approach to the deconstruc-

tion of Dyninst and also describes the first of these com-

ponents, the SymtabAPI, a library for parsing symbol

tables and section information in object files. This

deconstruction has four benefits. First, users will be able

to incorporate these libraries in their tools, gaining

access to the desired capabilities of Dyninst. Second, all

analysis products will be exportable in a standardized

format to encourage interoperability between libraries

and tools. Third, deconstruction will make Dyninst itself

more flexible and modular. For example, it would be

Figure 1: The Deconstructed Dyninst Internal Components
Rectangles represent the proposed components: symbol table parsing, instruction decoding, code parsing and idiom detection, code generation,

instrumentation, stack walking, and process control; we have shown the initially supported platforms and formats for each component as well.

Ovals represent inputs to the system and products of the parsing and analysis libraries.
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possible to create a static binary rewriter by combining

the appropriate components. Finally, this deconstruction

will substantially improve our ability to test Dyninst for

correctness.

We also present a case study of the tool unstrip,

which regenerates missing or incorrect symbol informa-

tion in binaries. Adding symbol table information allows

reverse engineering and analysis with tools that would

otherwise be incapable of operating. Unstrip also pro-

vides an example of the power of the SymtabAPI: it con-

sists of 221 lines of code and was implemented in one

programmer-day.

Our work is proceeding in four stages. In the first

stage, we have identified the components that will form

the core libraries, as shown in Figure 1. Second, we will

refine and generalize these internal interfaces to be more

widely applicable. The capabilities of these internal

modules are currently targeted to the requirements of

Dyninst; we will develop the appropriate extensions nec-

essary for generalized use. Third, we will rebuild Dyn-

inst on top of the suite of components as an example

tool. Fourth, we will use these components to build new

tools, such as a multiplatform static rewriter.

The rest of this paper is organized as follows. In

Section 2 we discuss related work. In Sections 3 and 4

we discuss the design and interface of the SymtabAPI. In

Section 5 we describe unstrip, a tool for reconstructing

symbols tables from stripped binaries. This tool demon-

strates the synergy between the analysis capabilities of

Dyninst and symbol table creation capabilities of the

SymtabAPI. In the final section we provide a short sum-

mary of our work.

2. RELATED WORK

The components that are being created by decon-

structing the DyninstAPI cover two major areas: code

analysis and code modification. Both analysis and modi-

fication are critical requirements for binary tools, and

several projects have developed different analysis and

modification techniques.

The IDA Pro disassembler [11] provides strong

parsing and analysis capabilities, and shares several

characteristics with our disassembly and idiom detection

components. IDA Pro disambiguates code from data in

stripped binaries through a combination of a static call

graph traversal and pattern matching. However, IDA Pro

relies heavily on user intervention to produce accurate

results. Our algorithms are designed to have almost zero

false positive code identifications while minimizing false

negatives; these analyses are crucial to handling large

scale and high volumes of stripped binaries [9].

The GNU project provides the binutils [8] package

that provides a platform-independent interface to low-

level binary file operations. In particular, the libbfd

library provides symbol table and section parsing capa-

bilities. However, there are substantial differences in the

approach used by the SymtabAPI and libbfd. The libbfd

interface provides the user a set of data structures repre-

senting a subset of the information present in the object;

this subset is limited to data common between all file

formats supported by libbfd. The remaining information

is kept internal and cannot be accessed by the user. In

addition, any querying, processing, or updating of those

symbols must be done in user code. This approach is

effective for a compiler environment in which existing

symbols are copied, but less useful for binary tools that

require all available symbol table data. The SymtabAPI

provides a symbol type that is a superset and includes all

possible information. Furthermore, common operations,

such as searching and updating, are provided as library

functions.

The instrumentation techniques used by the Dynin-

stAPI are similar to those used by static binary rewriters,

such as the the ATOM [26], DIABLO [7], EEL [12],

Etch [23], and Vulcan [27] binary rewriters. However,

these rewriters either require substantial symbol infor-

mation about a binary or are limited to a particular plat-

form. The required information ranges from relocation

data [26] to completely managed code [7, 23, 27]. In

contrast, Dyninst uses opportunistic algorithms that can

take advantage of, but do not require, this information;

we can operate successfully on completely stripped

binaries with no symbol information. The EEL rewriter

does not require supplementary information, but oper-

ates only on SPARC binaries.

Dynamic instrumentation tools such as PIN [13],

Valgrind [20], DIOTA [14], and Dynamo [3] follow the

control flow of the program, analyzing and instrument-

ing basic blocks and instruction traces immediately prior

to their execution. This approach obviates the need for

static analysis and easily distinguishes executed code

from data. However, these tools do not provide detailed

binary analysis. In contrast, Dyninst provides the user

with detailed control flow information. This information

(e.g., functions, variables, and control flow graphs)

allows the user to gather the same information with less

instrumentation, leading to lower overall overhead. For

example, code coverage can be made more efficient by

incorporating dominator analysis [29].

3. SYMTABAPI

The first component of the deconstructed Dynin-

stAPI is the SymtabAPI, a library for parsing symbol

tables and object file headers. The design of the Sym-

tabAPI library leverages the experience we have gained

in the design, implementation, and use of the Dynin-
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stAPI. This includes the design concepts of portability

and abstraction. In addition, extensibility and generality

are critical requirements. Unlike the DyninstAPI, the

SymtabAPI will be incorporated into existing tools that

have pre-existing requirements; our design must be flexi-

ble enough to fulfill these requirements.

Abstraction: The SymtabAPI interface must be plat-

form-independent, providing an abstract view of binaries

and libraries across multiple platforms. An abstract

interface provides two benefits: it simplifies the develop-

ment of a tool since the complexity of a particular file

format is hidden, and it allows tools to be easily ported

between platforms.

Interactivity: The user must be able to use the library

incrementally, updating symbol information with the

results of further analysis or user input. Tools frequently

use more sophisticated analyses to augment the informa-

tion available from the binary directly; it should be pos-

sible to make this extra information available to the

SymtabAPI library. An example of this is a tool operat-

ing on a stripped binary. Although the symbols for the

majority of functions in the binary may be missing, they

can be determined via more sophisticated analysis. In

our model, the tool would then inform the SymtabAPI

library of the presence of these functions; this informa-

tion would be incorporated and available in the future. In

addition, it should be possible to emit this updated infor-

mation into a new symbol table stored in the binary for

future use by other tools.

Extensibility: The data structures used by the library

should be user extensible to contain extra data needed by

the tool builder. Non-extensible structures simply force

tools to copy information into their own internal struc-

tures, which is inefficient. Our approach allows tools to

extend the SymtabAPI structures to fit their own require-

ments.

Generality: The SymtabAPI interface should be able to

fulfill the requirements of a wide variety of tool designs.

In particular, we are interested in three aspects of binary

parsing. First, the SymtabAPI should be able to parse the

common ELF, PE, and XCOFF file formats. Second, the

library should be able to operate on binaries located

either on disk or in memory. Aspects of the binary may

be complete only after being loaded into memory (e.g.,

inter-library addresses on AIX), or a binary image may

exist only in memory (e.g., the vsyscall page on Linux).

Third, the library should operate both on executables

(a.out/.exe) and libraries (.so/.dll) interchangeably. Pro-

grams are becoming increasingly modular, and as a

result transparent operation on both the executable and

libraries is critical.

The SymtabAPI provides the following abstrac-

tions: symbols, modules, archives, relocations, and

exception blocks. Symbols identify functions and vari-

ables within the binary object. Modules represent a par-

ticular source file in cases where multiple files were

compiled into a single binary object; if this information

is not present, we use a single default module. Archives

represent a collection of binary objects stored in a single

file (e.g., a static archive). Relocations provide the nec-

essary information to move symbols within an object.

Exception blocks contain the information necessary for

run-time exception handling. Details of these abstrac-

tions are discussed in the next section.

Parsed information is kept in an internal store.

Information from the store is accessed through a query-

based interface; users provide the desired characteristics

to match (e.g., name, type, or address) and the library

returns all matching abstractions. These abstractions can

then be updated by the user and new queries performed;

any changes are merged back into the store and returned

in future lookups. In addition, entirely new abstractions

can be added to supplement the information derived

from the binary. Finally, the internal store can be

exported, either as a new symbol table or as a separate

file.

The query/update/export cycle provides a powerful

capability: the ability to regenerate an incomplete or

missing symbol table from information gathered via

analysis or user intervention. A tool could use heavy-

weight analysis to identify likely functions without

requiring symbol information [9]. These functions could

then be labelled with semantically meaningful names

through manual interaction. Finally, a new symbol table

would be emitted, including the missing function sym-

bols.

All SymtabAPI abstractions are designed to be

extensible, allowing users to annotate particular abstrac-

tions with tool-specific data. We believe that common

formats will emerge for these annotations, allowing tools

to share information. We intend to develop new section

types to store these additional annotations in the binary

itself.

The current implementation supports the ELF (IA-

32, IA-64, AMD-64, POWER, and SPARC), XCOFF

(POWER), and PE (Windows) object file formats. We

use a canonical format to internally represent the binary.

This format abstracts away platform-specific details,

leaving the interface to the SymtabAPI platform-inde-

pendent. The canonical format consists of three compo-

nents: a header block that contains general information

about the object (e.g., its name and location), a set of

symbol lists that index symbols within the object for fast

lookup, and a set of additional data that represents addi-

tional information that may be present in the object (e.g.,

relocations or exception information). Adding a new for-
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mat requires no changes to the interface and hence will

not affect any of the tools that use the SymtabAPI. In

addition, we provide an external name demangling inter-

face that allows the SymtabAPI to access a compiler-

specific demangling library.

This design fulfills our four requirements of abstrac-

tion, interactivity, extensibility, and generality. The Sym-

tabAPI provides abstractions that can be modified or

extended on-the-fly, allowing tools to supplement and

extend the symbol table information available. Our

abstract interface to symbol table parsing enables tools

to be easily ported to different file formats and architec-

tures, including new file formats. Anecdotally, adding

support for the POWER/ELF format used by Blue-

Gene/L required less than one hour of effort.

4. INTERFACE

This section presents a summary of the operations

supported by the API, details of the SymtabAPI interface

and some code snippets to show how the API is used.

The basic operations supported by the library are:

• Parsing the symbols in a binary, either on disk or in

memory - The binary object must be parsed before

further operations can be performed. Parsing maps a

provided file identifier to a SymtabAPI handle,

represented by a Dyn_Symtab object pointer. The

identifier can either be a full path name to a file on disk

or a pointer to the beginning of a file in memory.

Parsing creates object representations of all symbols,

relocations, and exception blocks in the object. The

address and size of all objects are derived directly from

the symbol table, as are mangled symbol names.

Demangled (pretty) and typed names are computed

through an external demangling interface; this

interface allows the SymtabAPI to leverage existing

demangling libraries (e.g., the GNU libiberty [8]).

• Querying for symbols - Queries can be made based on

name, symbol type (e.g., function or variable), or

address, and return a vector of Dyn_Symbol objects.

Figure 2 shows example source code for parsing a file

and finding all symbols named “main”.

• Updating existing symbol information - This is helpful

in making corrections to or adding aliases to already

existing symbols. The desired symbol is identified via

a query, and the appropriate object is modified directly.

Figure 4 shows an example of an update, with the user

adding an alias for function foo and correcting its size.

• Adding new symbols - The user can create new

symbols and add them to the existing symbol lists.

These new symbols are available for further data

queries. Figure 5 shows an example of adding a new

symbol. These symbols can either be derived from

binary analysis (e.g., of a stripped binary) or provided

directly by a user.

• Exporting symbols - The user can export the parsed

information, either saving data to a separate file or

emitting an entirely new symbol table. This capability

is useful in two ways. First, the saved data can be used

for off-line analysis of the binary. Second, emitting a

new symbol table will allow the SymtabAPI to

interoperate with other tools that use their own symbol

table parsing techniques. For example, a tool could

analyze a stripped binary and recreate the missing

symbol information; this information would then allow

other tools that depend on a symbol table to operate.

• Getting relocation/exception information - The user

can either request all relocation and exception data, or

query for particular data based on an address.

• Getting header information - Information about the

object file can be obtained by using the handle. This

information includes the name of the object, the

number of symbols in the object, or information about

sections (e.g., text or initialized data) within the object.

4.1. CLASS INTERFACE

The SymtabAPI follows the style of the Dynin-

stAPI, providing an object-based C++ interface. The pri-

mary classes are Dyn_Symtab, Dyn_Module,

Dyn_Symbol, and Dyn_Archive. In addition, we repre-

sent exception information in the Dyn_ExceptionBlock

class. We briefly describe each of these classes; com-

plete details of the API can be found in the SymtabAPI

Programmer’s Guide [28].

Dyn_Symtab: The Dyn_Symtab class represents a single

object and provides a handle to the information con-

tained in the object. This class contains all symbols and

additional file-level information (e.g., relocations or

exception tables). Access to this information is provided

through query methods of the class.

Dyn_Module: This class represents a single source file

in cases where the object was compiled from multiple

source files (and this information is present in the sym-

bol table). If this module information is not present, all

symbols are assigned to a default module. Modules pro-

vide a mechanism for distinguishing between multiple

symbols with identical names. This can occur if symbols

were unique within their respective source files, but not

in the binary (e.g., static functions in C). However, mod-

ule information is frequently discarded by the compiler

and its presence is not assumed.

Dyn_Symbol: This class represents a symbol in the

object file. Symbols commonly represent functions and

variables, although other information may also be

encoded in this fashion. This class contains the informa-

tion about the symbol, which includes its names (man-
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// Name the object file to be parsed:

std::string file = “libfoo.so”;

// Declare a pointer to an object of type Dyn_Symtab; this represents the file.

Dyn_Symtab *Obj = NULL;

// Parse the object file

if (!Dyn_Symtab::openFile(file, Obj)) {

// Error in parsing; the code can query the error and perform the necessary actions.

switch (Dyn_Symtab::getLastError())

...

}

// Create a vector to contain lookup results

std::vector<Dyn_Symbol *> syms;

// Search for all symbols with demangled name “main” and type any (ST_UNKNOWN)

Obj->findSymbolByType(syms, “main”, Dyn_Symbol::ST_UNKNOWN);

Figure 2: Example of code parsing and symbol lookup
A simple example of parsing and lookup. First, the object “libfoo.so” is parsed as a file on disk. The error handling code is omitted for simplicity.

Next, the resulting handle is used to find all symbols matching “main”; these symbols are added to the syms vector.

//Name the object file to be parsed

std::string file = “libfoo.a”

// Declare an pointer to an object of type Dyn_Archive. This represents the archive.

Dyn_Archive *archive = NULL;

//Declare an pointer to an object of type Dyn_Symtab. This represents the object.

Dyn_Symtab *Obj = NULL;

//Try to parse the archive file; error handling omitted for simplicity

Dyn_Archive::openArchive(file, archive);

// Get the Dyn_Symtab object for the desired object

archive->getMember(“bar.o”, Obj);

// Obj now contains a handle to the desired binary object “bar”

Figure 3: Example of parsing an archive file
This example shows how an object can be accessed from an archive in a two-step process. First, the archive libfoo.a is parsed off disk; this creates

an internal list of all objects within the archive. Next, the desired object “bar.o” is accessed.

// Obj represents a handle to a parsed object file.

std::vector <Dyn_Symbol *> syms;

// search for symbol of any type with demangled (pretty) name “main”.

if (Obj->findSymbolByType(syms, "main", Dyn_Symbol::ST_UNKNOWN)) {

// change the type of the found symbol (most of the attributes can be changed).

syms[0]->setType(Dyn_Symbol::ST_OBJECT);

// Add a new demangled (pretty) name to the found symbol.

syms[0]->addPrettyName("_main");

// These changes are automatically added to the data store; no further actions are

// required by the user.

}

Figure 4: Updating a symbol
Updating a symbol is a straight forward process. First, locate the desired symbol via the query interface. Next, update the desired data fields, which

can include the names, type, address, or size.

// Obj represents a handle to a parsed object file.

// Create an entirely new function symbol

Dyn_Symbol *newSym = new Dyn_Symbol("func1", // Name of the new symbol

“DEFAULT_MODULE”, // Its source module (default)

Dyn_Symbol::ST_FUNCTION, // Its type (function)

Dyn_Symbol::SL_GLOBAL, // Scoping (global)

123456); // And address (from start of text section)

// Add the newly created symbol to the data store; we omit error handling for clarity

Obj->addSymbol(newSym);

// The new symbol will be included in any future searches; assert this is true

assert(Obj->findSymbolByType(syms, "func1", Dyn_Symbol::ST_UNKNOWN) == true);

Figure 5: Adding a symbol
Adding a symbol is done directly. First, a new object representing the symbol is created. Next, the object is added to the handle corresponding to

the appropriate object. The new symbol becomes part of the data store and is included in future queries.
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gled, demangled (pretty), and the full typed prototype),

the offset within the file and the symbol size, the module

the symbol is associated with, and its type (e.g., function

or variable). In addition, this class provides methods to

update symbol information.

Dyn_Archive: This class represents an archive, a single

file that is a collection of several objects. Archives are a

common representation for static libraries. The XCOFF

format also allows archives to contain dynamic libraries.

The Dyn_Archive object provides a container for all of

the binary objects within the file, and individual

Dyn_Symtab handles can be accessed either by name or

as a group. An example of code for handling archives is

shown in Figure 3.

Dyn_ExceptionBlock: This class represents an excep-

tion block in the object. This class gives all the informa-

tion pertaining to that exception block such as the try

block start address and size and the catch block start

address.

In addition to the symbol information, files contain

additional data such as header information and reloca-

tion information. We are in the process of creating object

representations of this information.

5. UNSTRIP - A CASE STUDY

Executables and libraries may contain a symbol

table that identifies objects (e.g., functions, sections, and

variables) within the binary. However, much of this

information is not necessary for the proper execution of

a program. Stripped binaries have had varying amounts

of their symbol table removed; this may range from the

removal of symbols representing internal functions to

the removal of the entire table. This operation is per-

formed for reasons ranging from resisting analysis and

reverse engineering to reducing disk space requirements.

Common examples of stripped binaries include mali-

cious programs, proprietary programs, and system utili-

ties and libraries. In addition to removing symbol table

information, the information may be present but incor-

rect; this often occurs due to compiler bugs.

The information present in the symbol table is use-

ful both for analysts and automated analysis techniques.

Analysts benefit from the names given to functions and

variables within the program; a common obfuscation

technique is to render these names meaningless [cite].

Tools often require symbol table information to identify

the locations of functions within the binary; without this

information, the capabilities of the tools are limited

[cite].

As an example of the power and flexibility of the

SymtabAPI, we have created a tool, called unstrip, that

regenerates removed symbol table information in bina-

ries. It does so by combining our stripped binary parsing

techniques[9] with the symbol table creation capabilities

of the SymtabAPI. By building on the pre-existing capa-

bilities of the DyninstAPI, we were able to write unstrip

in one programmer-day; the tool consists of 221 lines of

code.

5.1. KEY FACTORS

Implementing unstrip was a simple process because

we were able to leverage both the symbol table editing

capabilities of the SymtabAPI and the analysis capabili-

ties of the DyninstAPI. In particular, the following key

factors were critical to the effort:

• Interactivity - SymtabAPI provides a powerful

functionality to users whereby they can incrementally

update existing symbol information or add new

symbols found as part of analysis to the library. For

unstrip, we were able to create and add new symbols

as they were found by analysis. The tool is completely

automated, and names functions by the address of their

entry point. It would be straightforward to create an

interactive version that allowed a user to provide their

own additional names for functions.

• Exportability - While several tools are capable of

extracting function information from stripped binaries,

to our knowledge there are no tools that can produce a

new binary that includes this information for use by

other tools. We perform this operation by using the

SymtabAPI’s capability to generate a new symbol

table; this new symbol table is then included in the

final binary.

• Sophisticated Analysis - The DyninstAPI performs

sophisticated binary analysis to enable its dynamic

instrumentation techniques [9]. These techniques

identify functions within stripped binaries by

combining static control flow analysis and heuristic

function identification methods. A critical part of the

deconstruction effort is to separate these analysis

techniques into a separate library. The unstrip tool

currently uses the public DyninstAPI interface,

although future versions will use the code analysis

library directly.

5.2. METHOD

The unstrip tool operates in the following phases:

1) Start the stripped binary under Dyninst. As part

of its start-up phase, the DyninstAPI parses and

analyzes a binary to build control flow graphs of all

functions in the program. If we detect gaps in the

parsed areas of the binary, we apply a variety of

heuristic techniques to determine if functions reside

within these gaps; if so, we add the newly parsed

areas to the list of known functions.
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2) Extract function information from Dyninst via

the public API.

3) Create new symbols for all discovered functions,

e.g. “func0x1000”. We prepend a unique identifier

to the entry address of the function to ensure that no

symbols share a common name.

4) Insert this information back into the SymtabAPI.

5) Cause the SymtabAPI to generate a new binary

that includes these symbols.

The unstrip tool can regenerate symbol table infor-

mation for any format supported by the SymtabAPI,

including ELF and XCOFF; support for writing the PE

format used by Windows is under active development. It

runs on any platform supported by the DyninstAPI,

including Linux (IA-32 and IA-64), AIX (POWER),

Solaris (SPARC), and Windows (IA-32).

5.3. DISCUSSION

The code necessary for extracting function informa-

tion from Dyninst took half a programmer-day to write

and consisted of under 50 lines of code; the code neces-

sary to create symbols and generate a new symbol table

took an additional half programmer-day and brings the

total lines of code to 221.

A key to the success of the DyninstAPI is its

abstract, platform-independent interface. The unstrip

tool leverages this interface; the operations performed by

unstrip appear straightforward because the complexity

has been hidden in the DyninstAPI and SymtabAPI.

6. CONCLUSIONS

The broad goal of this work is to deconstruct the

Dyninst library into a suite of component libraries that

provide program analysis and instrumentation capabili-

ties for tool builders. Each library will provide a plat-

form-independent interface to a specific tool need, such

as parsing a binary. We have provided a general over-

view of this deconstruction and described the first of

these libraries, the SymtabAPI symbol table parsing

library. The SymtabAPI library provides an abstract,

interactive symbol table parsing and update capability.

The 1.0 version of the SymtabAPI library has been

released with the version 5.1 release of Dyninst, and will

assist in the creation and porting of binary tools. We also

describe the tool unstrip, which regenerates stripped

symbol tables. The unstrip tool allows tools which

require symbol table information to be applied to

stripped binaries.

Our ongoing work consists of extending the Sym-

tabAPI, and developing interfaces for remaining compo-

nents of Dyninst. We expect this effort to provide

significant benefits to the tool community in the form of

making tools more portable, encouraging common data

interchange formats, and increasing code reuse.

The SymtabAPI 1.0 library can be found at

http://www.paradyn.org/html/symtab1.0-features.html.
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