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1. Introduction

Executable binary code is the authoritative source of

information about program content and behavior. The

compile, link, and optimize steps can cause a program’s

detailed execution behavior to differ substantially from its

source code. Binary code analysis is used to provide infor-

mation about a program’s content and structure, and is

therefore a foundation of many applications, including

binary modification[3,12,22,31], binary translation[5,29],

binary matching[30], performance profiling[13,16,18],

debugging, extraction of parameters for performance mod-

eling, computer security[7,8] and forensics[23,26]. Ide-

ally, binary analysis should produce information about the

content of the program’s code (instructions, basic blocks,

functions, and modules), structure (control and data flow),

and data structures (global and stack variables). The qual-

ity and availability of this information affects applications

that rely on binary analysis.

This paper addresses the problem of using static binary

analysis to extract structural information from stripped

binary code. Stripped binaries are executables that lack

information about the locations, sizes, and layout of func-

tions and objects. This information is typically contained

in compiler generated symbol tables. Analysts, however,

are often confronted with stripped binaries. Commercial

software is usually stripped to deter reverse engineering

and unlicensed use. Malicious code is stripped to resist

analysis. System libraries and utilities are often stripped to

reduce disk space requirements. Occasionally, even avail-

able symbol tables need to be ignored because they con-

tain incorrect or misleading information.

This structural information consists of both inter- and

intra-procedural control flow in addition to the start

addresses of functions, function ranges, basic blocks, entry

and exit points. Our approach to extracting structural

information builds on control flow extraction and function

identification techniques that have been employed in pre-

vious work. In particular our work builds on techniques

used by LEEL[31] and RAD[22], which both use breadth

first static call graph and control flow graph traversal to

discover and classify code. Both RAD and LEEL begin at

a program’s entry point and traverse the static call graph to

find function entry points. RAD additionally uses pattern

matching against standard function preambles to discover

functions in sections of the code space that are not reach-

able by static call instructions in previously seen code. For

functions without static references or recognizable pream-

bles, RAD uses an optimistic identification strategy.

This paper makes the following contributions:

• Augments existing binary parsing methods with an

extended function model that more realistically

describes the structure of modern code and additional

assurance checks to boost confidence in the analysis.

• Presents tests and evaluation results on a large set of

real programs.

• Reports our experiences dealing with peculiarities of

production code.

One of the first tasks in designing a binary parser that

identifies functions is defining an appropriate function

model. Previous function models represent code that com-

plies with traditional code conventions; for example, func-

tions must have single entry points and contiguous code

ranges. Our code analyzer uses a multiple entry control

flow graph model that treats all code connected by intra-

procedural control flow as part of the same function. This

model was chosen for its ability to accurately represent

unconventional structures that are becoming increasingly

common in modern code. Our model can also, without

alteration, represent code both before and after modifica-

tion such as instrumentation.

Our analysis techniques were implemented in Dyninst

[3], a run-time binary modification tool used in a wide

variety of research and commercial environments. Since

Dyninst is multi-platform (operates on multiple operating

systems and architectures) we created a generic frame-

work for stripped code analysis. Our framework has a

modular design with replaceable and interchangeable

components making it independent of the operating sys-

tem, file format, and machine architecture.

The evaluation of our implementation is split into three

categories:

• Comparison of our parsing of stripped binaries with

the information provided by the compiler’s symbol

table.



• Comparison of our parsing of stripped binaries with

other tools.

• How well we can instrument a stripped binary based

on our parse results.

Our comparisons against source code reveal that, in

general, the functions that we recover correspond well to

the source. However, in some cases compiler optimiza-

tions, such as dead code removal and inlining, can cause

significant differences between the binary analysis results

and the source.

Compiler generated symbol tables provide a (some-

times reasonable) approximate account of the number of

functions in a binary and their locations. Initial results

from automated assessments on roughly 500 test programs

indicate that we recover, on average, better than 95% of

the functions in stripped executables.

We compared our analysis to IDAPro [10], a popular

commercial disassembler. Our parser usually recovers

more function information than IDAPro, and in several

cases, substantially more.

Instrumentation tests use our analysis results to insert

entry and exit instrumentation into the functions in our test

programs. The assessment rules were simple: abnormal

termination indicates failure and normal termination indi-

cates success. We were able to successfully instrument

better than 87% of the stripped test programs and better

than 99% of the unstripped ones. Note that most of the

failures are due to difficulties in instrumenting the code

rather than limitations of the analysis.

Our test experiences, along with feedback from Dyn-

inst users, gave us insights into the technical issues

involved in implementing robust stripped code analysis to

meet the needs of a general purpose binary editor. We

report some of these insights.

2. Related Work

This paper, and the related work we discuss focus on

reconstruction of structural information using static binary

analysis. There are several categories of tools that perform

static binary analysis to obtain structural information

about binary code including disassemblers, binary rewrit-

ers, decompilers and binary translators. Since the tools in

each category tend to have similar requirements or employ

similar techniques, we partition our discussion of related

work according to application category.

While static analysis is commonly used, some tools use

an alternative method called dynamic code analysis where

structural information such inter-procedural control flow

and call graph is determined at run time. Dynamo[1],

DynamoRio[2], DIOTA[15], Self-Propelled Instrumenta-

tion [18], and PIN[24] are program optimization tools that

use dynamic code analysis. Other tools, IDTrace [21], for

example, use both static and dynamic analysis. The

dynamic phase is used to correct errors resulting from

static analysis and to analyze code not detectable stati-

cally.

Disassemblers

Disassemblers convert binary code to symbolic assem-

bly language representations. A primary function of disas-

semblers is to visually present these assembly language

representations of binary code to human analysts. To aid

the analyst by organizing information, some disassemblers

present control flow information or attempt to partition

programs into functions. IDA-Pro [10], arguably the best

commercial disassembly tool, does both. IDA-Pro uses a

depth first call graph traversal to determine function start

addresses and intra-procedural control flow analysis to

determine function ranges. IDA-Pro, however, does not

provide support for non contiguous functions and does not

identify functions that are only reached via indirect calls

(both constructs are common in production code). An

another approach used by some tools is to partition a

binary into functions by recognizing function prologues

[20]. This method has the advantage of being simple and

fast. However, it often creates a coarse grained or inaccu-

rate function structure if functions have non-standard pro-

logues or if there is data interspersed in the code.

Producing correct disassembly is often challenging due

variable length instruction sets, data mixed with code,

indirect control flow, and deliberate code obfuscation.

Scharwz et al combined linear sweep disassembly and

recursive traversal to create a hybrid disassembly algo-

rithm[27]. Their work is based on the idea that if both lin-

ear sweep and recursive traversal disassembly agree then a

disassembly is likely to be correct. Orso, et. al developed a

disassembly method for use on obfuscated code [11] in

response to a static code obfuscator developed by Linn and

Debray [14]. Their method uses CFG checks to verify dis-

assembly correctness; e.g., branches to the middle of an

instruction indicate an error. These disassembly checks

used by both methods form the core of a set of safety

checks we use for our speculative function discovery.

Binary Modification

Binary modifiers are tools that rewrite code either stati-

cally or at run time. Major uses of binary modification

include post compilation optimization, instrumentation,

and profiling. Most binary modification tools rely on the

presence of symbol table and debugging information.

Some tools, however, are able to reconstruct some struc-

tural information and therefore operate on stripped binary

code. EEL operates on SPARC binaries[12]. The two main

disadvantages of the EEL approach are that it is not well

suited to variable length instruction set architectures and

that it does not identify functions that are reachable only

through an indirect control transfer. The first of these dis-

advantages is addressed by LEEL [31], an EEL-based



binary editing tool designed for Linux on Intel’s IA32

architecture. Beginning at the program’s entry point,

LEEL walks the static call flow graph to build the set of

call targets that correspond to function starting points.

Recursive disassembly at these points finds the code

blocks in each function and establishes the function’s size.

For gaps in the code space that are caused by the presence

of functions only reachable through indirect control flow

or by data bytes, LEEL provides two options. The first

option is conservative: do not analyze. The second option

is more aggressive: assume that the first byte of a gap is

the starting address of a function. These two options

present undesirable extremes. The first, while safer for

binary modification, provides low code coverage in bina-

ries where a high proportion of functions are reached only

though indirect calls and in binaries where indirect calls

form bridges to large sections of the call graph. The

approach taken by RAD [22] is similar to LEEL’s. RAD is

a binary editor that defends against stack based buffer

overflow attacks by instrumenting function entry and exit

points. RAD achieves better code coverage than LEEL’s

conservative option by matching byte sequences in gaps to

known function prologues. RAD’s approach will not

locate functions that have no static references and have no

known prologues. Both RAD and LEEL use a conven-

tional view of a function: i.e., a self-contained sequence of

code with a single entry point, at least one exit point, and

laid out in a contiguous area of memory. This view, while

generally applicable, is not adequate for all applications.

In binary code, functions sometimes have multiple entry

points and are spread across non-contiguous areas of the

executable. Our work is designed to extend the approaches

used by LEEL and RAD to improve code coverage and to

properly handle unconventional function structures.

LEEL and RAD are able to operate on stand-alone exe-

cutable code: i.e. no debugging information is needed.

Some other tools rely on the presence of symbol tables,

relocation tables, and other debugging information to per-

form similar analyses (code discovery, CFG creation).

Examples include Etch [25] and PLTO[28], which all

require relocation information.

3 Design

The compilation, optimization and linking steps often

create binaries that are structurally different from the cor-

responding source code. Therefore one of the first tasks in

designing a binary parser that identifies functions is defin-

ing an appropriate function model. Section 3.1 presents

the model that we use. The remaining parts of this section

describe our implementation.

3.1. Function Models

The function model determines the degree to which the

analysis output reflects the structure of the binary. For a

our implementation, we chose a multiple-entry control

flow graph model. Control flow graph models treat func-

tions as sets of basic blocks that form a control flow

graphs. CFG models are able to represent functions with

non contiguous code; basic blocks can be located any-

where in a program’s address space. Figure 1 shows three

control flow models: single entry, shared code, and multi-

ple entry. The single entry model is the simplest of the

three CFG models presented above. Each function in this

model has a has one entry block which dominates all other

blocks. The shared code model is a variant of the single

entry model that allows basic blocks to belong to multiple

functions. The multiple entry model treats all code con-

nected by intra-procedural control flow as part of the same

function.

Alternative models include the Prologue/Prologue and

Prologue/Exit models where functions are the regions

between known prologues or exits, and the Symbol Table

model which defines a function as a named start address

and size pair. These models were rejected since they do

not naturally describe binary level functions that have non

contiguous code ranges, multiple entry points, or shared

code blocks. In addition, the prologue models are vulnera-

ble to the presence of data in the code space and to unrec-

ognizable or missing prologues.

3.2. Implementation

Our parser was designed to be modular, with replace-

able and interchangeable components. These components

fall into three categories: file format reader, instruction

decoder, and code parser. In this section, we describe the

components along with our generic assembly language

interface that ties them together.

The Dyninst system also includes components for

dynamic code generator and process control, but these are

outside the scope of this paper.

File format reader

Our file format readers extract information from file

headers that describe the layout of the executable and con-

tain the addresses and sizes of interesting points and sec-

tions including the locations of text, data, symbol tables

(a) Single entry (b) Shared code (c) Multiple entry

Figure 1: Control Flow Models
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and the program’s entry point. In addition, the file format

readers use heuristics determine the address of the func-

tion main. Most programs, after executing initial start-up

code, transfer control to a function commonly called main.

It is often difficult, however, to use static control flow anal-

ysis to locate main. Locating main using heuristics, while

not strictly necessary, gives two benefits. First, labeling the

function main is useful for tools that expect to find it. Sec-

ondly, the program’s call graph is rooted at main. Finding

this root early tends to reduce the parser’s reliance on

speculative function discovery techniques.

We provide format readers for ELF [6], COFF [19],

XCOFF [32], and PE [19].

Instruction decoder

The instruction decoder plays two roles. One is a disas-

semblers; it interprets byte streams as machine instruc-

tions. The other role is to extract semantic information

from the instructions and implement the architecture

dependent routines that are accessed through the generic

assembly language interface.

We currently provide stripped code parsers for the Intel

IA32, AMD 64, and IBM Power architectures.

Generic Assembly Language interface

The generic assembly language interface exports a uni-

form assembly language to the parser independent of the

underlying architecture. The AAL’s object model allows

description of generic operations. Each instruction is

treated as an object that exports the following methods and

operators: isCondBranch, isUncondBranch, isIndirBranch,

isCall, isReturn, getBranchTarget, getMultiBranchTargets,

isPrologue, isIllegal, --, ++, and size. All parsing operations

that reference machine instructions use this interface.

Parser

Control flow discovery and function identification is

done by the parser which accesses the program’s instruc-

tion stream via the generic assembly language interface.

The generic assembly language interface enables us to use

a single parsing algorithm for multiple platforms. In the

best case, correct symbol tables and debugging informa-

tion will be available and we use symbol start addresses as

analysis points. In the worst case, however, the program’s

entry point (obtained by the file format reader) guarantees

a reliable starting point for analysis.

This initial set of starting addresses is used as input for

our parsing algorithm. Breadth-first call graph traversal

and recursive disassembly finds all code statically reach-

able from the reachable from the initial set of addresses.

Valid call targets addresses are named as functions then

disassembled to build control flow graphs. Additional call

targets discovered during CFG creation are added to the

list of call targets for analysis. CFG conflicts and illegal

instructions cause rejection of a function. When the algo-

rithm terminates, there may be gaps that are not analyzed

remaining in the text space due to the presence of data,

alignment padding, or functions that are never statically

referenced in previously visited code. We use two specula-

tive gap completion phases to analyze these gaps.

The first phase searches each gap for known function

prologues. At each potential code address, the parser cre-

ates an instruction and calls isPrologue. An architecture-

specific method in the decoder checks for instruction

sequences commonly used to implement prologues on

each platform. For example, a common prologue sequence

on IA32 is:

push ebp

mov esp, ebp

If isPrologue returns true, the corresponding address is

assumed to be the start of a function, and we invoke the

core algorithm to build the sub section of the program’s

call graph rooted at this function.

On completion of the first speculative discovery phase

completion phase, gaps may still be present in the text

space. These gaps may be due to functions that are called

indirectly and have no known prologue. We disassemble

these gaps using Orso et al’s speculative completion

method. Their method is to build control flow graphs start-

ing at each potential code address in a gap. CFG conflicts

prune the set of control flow graphs. For example, if

branches in a CFG target the apparent middle of another

instruction then that CFG is rejected. In addition, we add

the requirement that during this phase CFGs must contain

at least one non-terminal control transfer instruction. This

requirement reduces the number of false positives and

boosts confidence in the functions discovered.

Two issues need to be addressed to effectively follow

function local control transfers on production code. The

first is the analysis of indirect branches; i.e branches that

have targets determined at run time. Indirect branches are

commonly used to implement switch statements. Cifu-

entes and Van Emmeriks describe a machine and compiler

independent method of using program slicing and expres-

sion substitution to statically recover the targets of indirect

branches that use jump tables[4]. In practice, however,

simple machine and compiler dependent methods have

proved effective at recovering jump table values. Our

approach is to backtrack along the control paths leading to

the indirect branch to discover the instructions that set up

the jump table access. These instructions give the base

location and number of entries in a jump table.

The second issue is the identification of exit points. An

exit point that is identified as an intraprocedural transfer

will cause overestimation of function sizes. In addition to

return instruction detection, the instruction decoder imple-

ments platform specific tail-call detection. Also known

non-returning call instructions (for example calls to exit or



abort) are considered to be exit points. If a transfer is not

identified as an exit, it is assumed to be intra-procedural.

Our implementation was tested with the following

compilers: Microsoft’s Visual C++, GNU’s gcc, IBM’s

xlc, and Intel’s icc.

4. Evaluation

Proper evaluation of a stripped binary analysis tool is a

challenging process. Human inspection and verification is

useful for small sets of trivial test programs. For larger sets

of programs or larger, more sophisticated programs, how-

ever, human inspection is inappropriate. For our evaluation

we used automated comparisons against compiler gener-

ated symbols tables and automated instrumentation tests.

We also compared our function recovery rate to that of

IDAPro, a popular commercial disassembly tool.

Our evaluations were done primarily on Linux and

Microsoft Windows. For evaluations requiring large num-

bers of binaries, we used programs obtained from our

department’s standard bin directory (a very large collec-

tion of programs).

Comparison vs. symbol tables

We filtered the output from objdump to display unique

function addresses for each of 519 programs. We then

compared the number of functions we recovered to that

reported by objdump. Our results on the test binaries show

a 95.6% average recovery rate.

Comparison vs. IDAPro

Table 1 shows a comparison of our function recover

rate against IDAPro. The results show that in general our

stripped code analysis identifies more functions than

IDAPro. For the firefox binary, inspection suggests that

IDAPro is incorrectly identifying thousands of two

instruction sequences as functions. (they appear to be part

of dispatch tables).

Instrumentation tests

Using Dyninst we inserted function entry and exit point

instrumentation into 519 test binaries. Success means the

instrumented binary runs to completion without failure or

hanging. Results from these tests are report in Table 2.

5. Experiences

In this section, we describe our experiences with real

but unusual code patterns.

Pseudo call instructions

Not all call instructions are valid interprocedural trans-

fers. Calls that target the instruction immediately follow-

ing the call are often used by position independent code to

obtain the program counter. The targets of these instruc-

tions must not be used as function entries.

The targets of some call instructions are filled in a load

time. This means that the target value obtained by static

analysis of the binary is incorrect. In some cases this value

is obvious (target address 0, for example). In others the

target address is a junk value. We detect the first case when

we encounter calls, and rely on CFG and disassembly

checks to guard against the second case.

Exception handling code: unreachable blocks

C++ exceptions creates code blocks that appear to be

unreachable. Currently, our most reliable solution to this

problem is to extract exception information from compiler

generated exception tables.

Missing “main”

Binaries without an explicit main function illustrate the

need for speculative function discovery. Analysis of the

kwrite binary (part of the KDE tools) revealed that the exe-

cutable contained no main function. main was located in a

dynamically loaded library and accessed through the Pro-

cedure Linkage Table. None of the functions in the

stripped kwrite binary were statically reachable from the

program’s entry point.

Stripped Unstripped

Passed 454 87.5% 517 99.6%

Failed 65 12.5% 2 0.4%

Table 2: Success Rate of Instrumentation Tests

Binary Platform
IDA Dyninst

Number Percent Number

aim window 75 100.0% 75

alara linux 431 65.9% 654

bash linux 1,539 92.0% 1,655

bubba linux 53 96.4% 55

calc windows 168 99.4% 169

eon linux 616 53.2% 1,157

firefox* windows 34,064 116.0% 29,372

gimp linux 3,889 91.8% 4,237

kwrite linux 7 77.8% 9

notepad windows 84 98.8% 85

paradyn linux 4,506 35.7% 12,617

SecureCRT windows 4,139 97.8% 4,233

vcross linux 52 62.7% 83

X linux 3,991 92.7% 4,307

Table 1: Functions found using Dyninst and IDAPro

“Percent” measures the percentage of functions found by

IDAPro compared to the total found by Dyninst.



False positives

Speculative code discovery analyses data bytes. Data

bytes that are interpreted as terminal control flow instruc-

tions often give the appearance of single-basic-block func-

tions. For example, data bytes might be interpreted as the

following instruction sequence:

mov reg, mem

mov reg, mem

ret

To eliminate the occurrence of these false positives we

require that functions discovered during the speculative

discovery phase have two or more control flow instruc-

tions. This restriction, while improving reliability, reduces

coverage by excluding legitimate functions that fit this pat-

tern. We are currently evaluating alternatives to this strat-

egy. One potential direction is to use simple semantic

analysis to determine whether a single block function dis-

covered during speculative discovery should be accepted

or rejected.
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