
MRNet Project
www.paradyn.org/mrnet

Paradyn Project
www.paradyn.org

Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685
paradyn@cs.wisc.edu

Paradyn Paral le l Performance Tools

Release 3.0.1
December 2010

MRNet API
Programmer’s Guide

Page 2
1. INTRODUCTION

MRNet is a customizable, high-throughput communication software system for parallel tools
and applications with a master/slave architecture. MRNet reduces the cost of these tools’ activities
by incorporating a tree-based overlay network (TBON) of processes between the tool’s front-end
and back-ends. MRNet uses the TBON to distribute many important tool communication and
computation activities, reducing analysis time and keeping tool front-end loads manageable.

MRNet-based tools send data between front-end and back-ends on logical flows of data called
streams. MRNet internal processes use filters to synchronize and aggregate data sent to the tool’s
front-end. Using filters to manipulate data in parallel as it passes through the network, MRNet can
efficiently compute averages, sums, and other more complex aggregations on back-end data.

Several features make MRNet especially well-suited as a general facility for building scalable
parallel tools:

• Flexible organization. MRNet does not dictate the organization of the TBON. MRNet process
organization is specified in a configuration file that can specify common network overlays like
k-ary and k-nomial trees, or custom layouts tailored to the system(s) running the tool. For
example, MRNet internal processes can be allocated to dedicated system nodes or co-located
with tool back-end and application processes.

• Scalable, flexible data aggregation. MRNet’s built-in filters provide efficient computation of
averages, sums, concatenation, and other common data reductions. Custom filters can be
loaded dynamically into the network to perform tool-specific aggregation operations.

• High-bandwidth communication. MRNet transfers data within the tool system using an effi-
cient, packed binary representation. Zero-copy data paths are used whenever possible to
reduce the cost of transferring data through internal processes.

• Scalable multicast. As the number of back-ends increases, serialization when sending control
requests limits the scalability of existing tools. MRNet supports efficient message multicast to
reduce the cost of issuing control requests from the tool front-end to its back-ends.

• Multiple concurrent data channels. MRNet supports multiple logical streams of data between
tool components. Data aggregation and message multicast takes place within the context of a
data stream, and multiple operations (both upward and downward) can be active simulta-
neously.
MRNet API Programmer’s Guide 1

Page 3
2. ABSTRACTIONS

The MRNet distribution has two main components: libmrnet, a library that is linked into a tool’s
front-end and back-end components, and mrnet_commnode, a program that runs on intermediate
nodes interposed between the application front-end and back-ends. libmrnet exports an API (see
“C++ API Reference” on page 8) that enables I/O interaction between the front-end and groups
of back-ends via MRNet. The primary purpose of mrnet_commnode is to distribute data process-
ing functionality across multiple computer hosts and to implement efficient and scalable group
communications. In addition, there is another component, libmrnet_lightweight, which
exports an API (see “C API Reference” on page 24) that enables I/O interaction between the
front-end and groups of "lightweight" back-ends via MRNet. The following sub-sections describe
the lower-level components of the MRNet API in more detail.

2.1 End-Points

An MRNet end-point represents a tool or application process. In particular, they represent the
back-end processes (i.e., leaf processes) in the tree overlay. The front-end can communicate in a
unicast or multicast fashion with one or more of these end-points as described below.

2.2 Communicators

MRNet uses communicators to represent groups of end-points. Like communicators in MPI,
MRNet communicators provide a handle that identifies a set of end-points for point-to-point, mul-
ticast or broadcast communications. MPI applications typically have a non-hierarchical layout of
potentially identical processes. In contrast, MRNet enforces a tree-like layout of all processes,
rooted at the front-end. Accordingly, MRNet communicators are created and managed by the
front-end, and communication is only allowed between a front-end and its back-ends. As such,
back-ends cannot interact with each other directly using the MRNet API.

2.3 Streams

A stream is a logical channel that connects the front-end to the end-points of a communicator.
All MRNet communication uses the stream abstraction. Streams carry data packets downstream,
from the front-end toward the back-ends, and upstream, from the back-ends toward the front-end.
Streams are expected to carry data of a specific type, allowing data aggregation operations to be
associated with a stream. The type is specified using a format string (see Appendix E: “Format
Strings” on page 42) similar to those used in C formatted I/O primitives (e.g., a packet whose
data is described by the format string "%d %d %f %s" contains two integers followed by a float
then a character string). MRNet expands the standard format string specification to allow for
description of arrays.

2.4 Filters

Data aggregation is the process of merging multiple input data packets and transforming them
into one or more output packets. Though it is not necessary for the aggregation to result in less or
even different data, aggregations that reduce or modify data values are most common. MRNet
uses data filters to aggregate data packets. Filters specify an operation to perform and the type of
MRNet API Programmer’s Guide 1

Page 4
the data expected on the bound stream. Filter instances are bound to a stream at stream creation.
MRNet uses two types of filters: synchronization filters and transformation filters. Synchroniza-
tion filters organize data packets from downstream nodes into synchronized waves of data pack-
ets, while transformation filters operate on the synchronized data packets yielding one or more
output packets. A distinction between synchronization and transformation filters is that synchroni-
zation filters are independent of the packet data type, but transformation filters operate on packets
of a specific type.

Synchronization filters operate on data flowing upstream in the network, receiving packets one
at a time and outputting packets only when the specified synchronization criteria has been met.
Synchronization filters provide a mechanism to deal with the asynchronous arrival of packets
from children nodes. The synchronizer collects packets and typically aligns them into waves,
passing an entire wave onward at the same time. Therefore, synchronization filters do no data
transformation and can operate on packets in a type-independent fashion. MRNet currently sup-
ports three synchronization modes:

• Wait For All: wait for a complete wave (i.e., a packet from every child node) before producing
output packets (SFILTER_WAITFORALL)

• Do Not Wait: output packets immediately (SFILTER_DONTWAIT)

• Timeout : output packets after ‘timeout’ milliseconds (SFILTER_TIMEOUT), or when a com-
plete wave has been accumulated. The timeout period begins upon receipt of the first packet
since the filter last produced output. The timeout value in milliseconds can be set using
Stream::set_FilterParameters. Note that this timeout value is used at each level of
the tree - a timeout value of 100ms combined with a tree of depth three should produce out-
puts at the front-end approximately 300ms after a packet is sent from a back-end. The default
timeout value is 0ms. If you use SFILTER_TIMEOUT without setting a non-zero timeout
value, it will behave similar to SFILTER_DONTWAIT.

Transformation filters can be used on both upstream and downstream data flows. Transforma-
tion filters input a group of synchronized packets, and combine data from multiple packets by per-
forming an aggregation that yields one or more new data packets. Data packets produced by a
transformation filter can be forwarded in either direction on a Stream by placing them in the
appropriate output set. Since transformation filters are expected to perform computational opera-
tions on data packets, there is a type requirement for the data packets to be passed to this type of
filter: the data format string of the stream’s packets and the filter must be the same. Transforma-
tion operations must be synchronous, but are able to maintain state from one execution to the next.
MRNet provides several transformation filters that should be of general use:

• Basic scalar operations on characters/integers/floats: minimum (TFILTER_MIN), maximum
(TFILTER_MAX), summation (TFILTER_SUM), average (TFILTER_AVG)

• Concatenation: operation that inputs n scalars and outputs a vector of length n of the same
base type (TFILTER_ARRAY_CONCAT)

Appendix D: “Adding New Filters” on page 40 describes facilities for adding new user-defined
transformation and synchronization filters.
MRNet API Programmer’s Guide 1

Page 5
3. A SIMPLE EXAMPLE

3.1 The MRNet Interface

A complete description of the MRNet API is in “C++ API Reference” on page 8 and “C
API Reference” on page 24. This section offers a brief overview only. Using libmrnet, a tool
can leverage a system of internal processes, instances of the mrnet_commnode program, as a com-
munication substrate. After instantiation of the MRNet network (discussed in “MRNet Instantia-
tion” on page 6), the front-end and back-end processes are connected by the internal processes.
The connection topology and host assignment of these processes is determined by a configuration
file, thus the geometry of MRNet’s process tree can be customized to suit the physical topology of
the underlying hardware resources. While MRNet can generate a variety of standard topologies,
users can easily specify their own topologies; see Appendix C: “Process-Tree Topologies” on
page 38 for further discussion.

The MRNet API contains Network, EndPoint, Communicator, and Stream objects that a tool’s
front-end and back-end use for communication. The Network object is used to instantiate the
MRNet network and access EndPoint objects that represent available tool back-ends. The Com-
municator object is a container for groups of end-points, and Stream objects are used to send data
to the EndPoints in a Communicator.

A simplified version of code from an example tool front-end is shown in Figure 1: MRNet
Front-End Sample Code. In the front-end code, after some variable definitions in lines 2-6, an
instance of the MRNet network is created on line 9 using the topology specified in topology_file.
In line 10, the newly created Network object is queried for an auto-generated broadcast communi-
cator that contains all available end-points. In line 11, this Communicator is used to establish a
Stream that will use a built-in filter that finds the summation of the data sent upstream. The front-
end then sends one or more initialization messages to the backends; in our example code on line
12, we broadcast an integer initializer on the new stream. The tag parameter is an application-spe-
cific value denoting the nature of the message being transmitted. After the send operation, the

1 front_end_main(...) {

2 Network * net;

3 Communicator * comm;

4 Stream * stream;

5 PacketPtr packet;

6 int tag = FirstApplicationTag;

7 float result;

8

9 net = Network::CreateNetworkFE(topology_file, backend_exe, argv);

10 comm = net->get_BroadcastCommunicator();

11 stream = net->new_Stream(comm, TFILTER_SUM, SFILTER_WAITFORALL);

12 stream->send(tag, "%d", SUM_INIT);

13 stream->recv(&tag, packet)

14 packet->unpack("%f", &result);

15 }

Figure 1: MRNet Front-End Sample Code
MRNet API Programmer’s Guide 1

Page 6
front-end performs a blocking stream receive at line 13. This call returns a tag and a packet.
Finally, line 14 calls unpack to deserialize the floating point value contained in packet.

Figure 2: MRNet Back-End Sample Code shows the code for the back-end that reciprocates
the actions of the front-end. Each tool back-end first connects to the MRNet network in line 5,
using the back-end version of the Network constructor that receives its arguments via the program
argument vector (argc/argv). While the front-end makes a stream-specific receive call, the back-
ends use a stream-anonymous network receive that returns the tag sent by the front-end, the
packet containing the actual data sent, and a stream object representing the stream that the front-
end has established. Finally, each back-end sends a scalar floating point value upstream toward
the front-end.

A complete example of MRNet code can be found below in Appendix B: “A Complete
Example: Integer Addition” on page 33.

3.2 MRNet Instantiation

While conceptually simple, creating and connecting the internal processes is complicated by
interactions with the various job scheduling systems. In the simplest environments, we can launch
jobs manually using facilities like rsh or ssh. In more complex environments, it is necessary to
submit all requests to a job management system. In this case, we are constrained by the operations
provided by the job manager (and these vary from system to system). We currently support two
modes of instantiating MRNet-based tools.

In the first mode of process instantiation, MRNet creates the internal and back-end processes,
using the specified MRNet topology configuration to determine the hosts on which the compo-
nents should be located. First, the front-end consults the configuration and uses a remote shell
program to create internal processes for the first level of the communication tree on the appropri-
ate hosts. Upon instantiation, the newly created processes establish a network connection to the
process that created it. The first activity on this connection is a message from parent to child con-
taining the portion of the configuration relevant to that child. The child then uses this information
to begin instantiation of the sub-tree rooted at that child. When a sub-tree has been established,
the root of that sub-tree sends a report to its parent containing the end-points accessible via that
sub-tree. Each internal node establishes its children processes and their respective connections

1 back_end_main(int argc, char** argv) {

2 Stream * stream;

3 PacketPtr packet;

4 int val, tag;

5 float random_float = (float) random();

6

7 Network * net = Network::CreateNetworkBE(argc,argv);

8 net->recv(&tag, packet, &stream);

9 packet->unpack("%d", &val);

10 if(val == SUM_INIT)

11 stream->send(tag, "%f", random_float);

12 }

Figure 2: MRNet Back-End Sample Code
MRNet API Programmer’s Guide 1

Page 7
sequentially. However, since the various processes are expected to run on different compute
nodes, sub-trees in different branches of the network are created concurrently, maximizing the
efficiency of network instantiation.

In the second mode of process instantiation, MRNet relies on a process management system
to create some of the MRNet processes. This mode accommodates tools that require their back-
ends to create, monitor, and control other processes. For example, IBM’s POE uses environment
variables to pass information, such as the process’ rank within the application’s global MPI com-
municator, to the MPI run-time library in each application process. In cases like this, MRNet can-
not provide back-end processes with the environment necessary to start MPI application
processes. As a result, MRNet creates its internal processes recursively as in the first instantiation
mode, but does not instantiate any back-end processes. MRNet then waits for the tool back-ends
to be started by the process management system to ensure they have the environment needed to
create application processes successfully. To allow back-ends to connect to the MRNet network,
information such as process host names and connection port numbers must be provided to the
back-ends. This information can be provided via the environment, using shared filesystems or
other information services as available on the target system. To collect the necessary information,
the front-end can use the MRNet API methods for discovering the network topology details. This
mode of process instantiation is referred to as “back-end attach mode”. We show how to construct
a tool that requires back-end attach in $MRNET_ROOT/Examples/NoBackEndInstantiation.
MRNet API Programmer’s Guide 1

Page 8
4. THE MRNET API

Standard MRNet relies on the back-end nodes supporting C++ libraries. However, we have also
created a lightweight backend library with a pure C interface. The instantiation process is the
same and both methods of process instantation are supported, although the API interface is
slightly different.

4.1 C++ API Reference

All classes are included in the MRN namespace. For this discussion, we do not explicitly
include reference to the namespace; for example, when we reference the class Network, we are
implying the class MRN::Network.

In MRNet, there are five top-level classes: Network, NetworkTopology, Communicator,
Stream, and Packet. The Network class primarily contains methods for instantiating and destroy-
ing MRNet process trees. The NetworkTopology class represents the interface for discovering
details about the topology of an instantiated network. Application back-ends are referred to as
end-points, and the Communicator class is used to reference a group of end-points. A communi-
cator is used to establish a Stream for unicast, multicast, or broadcast communications via the
MRNet infrastructure. The Packet class encapsulates the data packets that are sent on a stream.
The public members of these classes are detailed below.

4.1.1 Class Network

The corresponding lightweight backend API class is “Class Network” on page 24.

Network * Network::CreateNetworkFE(

const char * topology,

const char * backend_exe,

const char ** backend_argv,

const std::map< std::string, std::string>* attrs=NULL,

bool rank_backends = true,

bool using_memory_buffer = false);

The front-end constructor method that is used to instantiate the MRNet process tree. topol-
ogy is the path to a configuration file that describes the desired process tree topology.

backend_exe is the path to the executable to be used for the application’s back-end processes.
backend_argv is a null terminated list of arguments to pass to the back-end application upon
creation. If backend_exe is NULL, no back-end processes will be started, and the leaves of
the topology specified by topology will be instances of mrnet_commnode.

attrs is a pointer to a map of attribute-value string pairs. attrs allows front-ends to progra-
matically set the values to use for the MRNet and XPlat environment variables (see Table 3 on
page 45) -- MRNet will only query the environment for settings not given via attrs. On Cray
XT, when communication or back-end processes of the MRNet tree are to be co-located with
application processes, attrs must contain a string pair that maps the string “apid” to a valid
MRNet API Programmer’s Guide 1

Page 9
ALPS application id string, which is a unique identifier for an application process started
using ALPS aprun.

rank_backends indicates whether the back-end process ranks should begin at 0, similar to
MPI rank numbering, and defaults to true.

If using_memory_buffer is set to true (default is false), the topology parameter is actually
a pointer to a memory buffer containing the specification, rather than the name of a file.

When this function completes without error, all MRNet processes specified in the topology
will have been instantiated. You may use Network::has_error to check for successful com-
pletion. The explicit use of the Network constructor is now deprecated.

Network * Network::CreateNetworkBE(int argc, char ** argv);

The back-end constructor method that is used when the process is started due to a front-end
network instantiation. MRNet automatically passes the necessary information to the back-end
process using the program argument vector (argc/argv) by inserting it after the user-speci-
fied arguments. The explicit use of the Network constructor is now deprecated.

In the “back-end attach” mode of network instantiation, where the back-end is not launched
directly by MRNet, the back-end program must construct a suitable argument vector. Typi-
cally, the front-end program will obtain information about the leaf mrnet_commnode processes
using the NetworkTopology class, and pass this information to back-ends using external com-
munication channels (e.g., a shared file system). The back-ends choose a leaf process as a par-
ent, and use that parent’s host, port, and rank information to attach. Each back-end must
choose a unique value for its local rank; this value must be larger than any of the ranks of the
processes in the existing network. The following code shows how to construct a valid argu-
ment vector:

char parHostname[64], myHostname[64], parPort[6], parRank[6], myRank[6];

// fill parent data here using info from front-end

gethostname(myHostname, 64);

sprintf(myRank, “%d”, <unique rank>);

be_argc = 6;

char* be_argv[be_argc];

be_argv[0] = argv[0];

be_argv[1] = parHostname;

be_argv[2] = parPort;

be_argv[3] = parRank;

be_argv[4] = myHostname;

be_argv[5] = myRank;

void Network::~Network();

Network::~Network tears down the MRNet process tree when the Network object is deleted.
Note that Network::shutdown_Network is deprecated.
MRNet API Programmer’s Guide 1

Page 10
void Network::waitfor_ShutDown();

Network::waitfor_ShutDown can be used by back-ends to block until the network has been
shut down by the front-end.

bool Network::is_ShutDown();

Back-ends use this method to query if the network has been shut down; returns true if it has
been shut down, false otherwise.

bool Network::set_FailureRecovery(bool enable);

Network::set_FailureRecovery is used by a front-end to control whether internal commu-
nication processes and back-ends will automatically re-connect to a new parent when their
parent terminates unexpectedly. By default, failure recovery is enabled and processes will re-
connect. Call this method with enable set to false to turn off automatic failure recovery.
This method returns true if the setting has been applied successfully, false otherwise.

bool Network::has_Error();

Network::has_error returns true if an error has occured during the last call to a Network

method. Network::print_error can be used to print a message describing the exact error.

ErrorCode Network::get_Error();

Network::get_Error returns an ErrorCode for an error that occured during the last call to a
Network method. Network::get_ErrorStr can be used to retrieve a message string describ-
ing the error.

const char * Network::get_ErrorStr(ErrorCode code);

Network::get_ErrorStr returns a character string describing the error indicated by code.

void Network::print_error(const char * error_msg);

Network::print_error prints a message to stderr describing the last error encountered
during a Network method. It first prints the null-terminated string error_msg followed by a
colon, then the actual error message followed by a newline.

std::string Network::get_LocalHostName();

Network::get_LocalHostName returns the name of the host on which the local MRNet pro-
cess is running.

Port Network::get_LocalPort();

Network::get_LocalPort returns the listening port of the local MRNet process.

Rank Network::get_LocalRank();

Network::get_LocalRank returns the rank of the local MRNet process.
MRNet API Programmer’s Guide 1

Page 11
int Network::load_FilterFunc(const char * so_file, const char* func);

This method, used for loading new filter operations into the Network is conveniently similar to
the conventional dlopen facilities for opening a shared object and dynamically loading sym-
bols defined within.

so_file is the path to a shared object file that contains the filter function to be loaded and
func_name is the name of the function to be loaded.

On success, Network::load_FilterFunc returns the id of the newly loaded filter which may
be used in subsequent calls to Network::new_Stream. A value of -1 is returned on failure.

int Network::recv(

int * tag,

PacketPtr & packet,

Stream ** stream,

bool blocking = true);

Network::recv is used to invoke a stream-anonymous receive operation. Any packet avail-
able (i.e., addressed to any stream) will be returned (in roughly FIFO order).

otag will be filled in with the integer tag value that was passed by the corresponding
Stream::send operation. packet is the packet that was received. A pointer to the stream to
which the packet was addressed will be returned in stream.

blocking is used to signal whether this call should block or return if data is not immediately
available; it defaults to a blocking call.

A return value of -1 indicates that the Network has experienced a terminal failure, and further
attempts to send or receive data on the Network will fail. A return value of 0 indicates no
packets were available for a non-blocking receive, or a stream has been closed for a blocking
receive. The return value 1 indicates a packet has been received successfully.

int Network::send(

Rank be,

int tag,

const char * format_string, ...);

Network::send is used to singlecast a packet from the front-end to a specific back-end. be is
the rank of the back-end process. tag is an integer that identifies the data in the packet.
MRNet API Programmer’s Guide 1

Page 12
format_string is a format string describing the data in the packet (See Appendix E: “For-
mat Strings” on page 42 for a full description.)

A return value of -1 indicates that the Network has experienced a terminal failure, and further
attempts to send or receive data on the Network will fail. The return value 0 indicates a packet
has been sent successfully.

NOTE: tag must have a value greather than or equal to the constant FirstApplicationTag
defined by MRNet (#include "mrnet/Types.h"). Tag values less than FirstApplication-

Tag are reserved for internal MRNet use.

bool Network::enable_PerformanceData(

perfdata_metric_t metric,

perfdata_context_t context);

Network::enable_PerformanceData uses Stream::enable_PerformanceData to start the
recording of performance data of the specified metric type for the given context on all
streams. Returns true on success, false otherwise. Appendix F: “MRNet Stream Perfor-
mance Data” on page 43 describes the supported metric and context types. See
Stream::enable_PerformanceData for additional details.

bool Network::disable_PerformanceData(

perfdata_metric_t metric,

perfdata_context_t context);

Network::disable_PerformanceData stops the recording of performance data of the speci-
fied metric type for the given context on all streams. Returns true on success, false other-
wise. See Stream::disable_PerformanceData for additional details.

bool Network::collect_PerformanceData(

std::map< int, rank_perfdata_map > & results,

perfdata_metric_t metric,

perfdata_context_t context,

int aggr_filter_id = TFILTER_ARRAY_CONCAT);

Network::collect_PerformanceData collects the performance data of the specified metric

type for the given context on all streams. The performance data of each stream is passed
through the transformation filter identified by aggr_filter_id. The data for all streams is
stored within the map results, keyed by stream identifier. Returns true on success, false
otherwise. See Stream::collect_PerformanceData for additional details.

void Network::print_PerformanceData(

perfdata_metric_t metric,

perfdata_context_t context);

Network::enable_PerformanceData uses Stream::print_PerformanceData to print
recorded performance data of the specified metric type for the given context on all streams.
MRNet API Programmer’s Guide 1

Page 13
Data is printed to the MRNet log files. See Stream::print_PerformanceData for additional
details.

unsigned int Network::num_EventsPending();

Network::num_EventsPending returns the number of pending events available for retrieval
using Network::next_Event.

Event * Network::next_Event();

This method returns a pointer the next pending Event, or NULL if no events are available. Each
event has an associated EventClass, one of Event::DATA_EVENT, Event::TOPOLOGY_EVENT,
or Event::ERROR_EVENT, that can be queried using Event::get_Class. Similarly, each event
has an associated EventType that can be queried using Event::get_Type.

void Network::clear_Events();

This method clears all pending events.

bool Network::register_EventCallback(

EventClass eclass,

EventType etyp,

evt_cb_func cb_func,

void * cb_func_data,

bool onetime = false);

Network::register_EventCallback allows users to register a callback function to be called
when events are generated.

eclass should be set to one of Event::DATA_EVENT, Event::TOPOLOGY_EVENT, or
Event::ERROR_EVENT.

etyp should be set to either Event::EVENT_TYPE_ALL, to have the function called when any
event within the specified EventClass occurs, or one of the valid class-specific EventType

values (see the classes DataEvent, TopologyEvent, and ErrorEvent in “mrnet/Event.h”

for the class-specific types).

The type evt_cb_func is defined as ‘void (*evt_cb_fn)(Event* e, void* cb_data)’.
All user-defined callback functions must use the same function prototype. When an event
occurs, all callbacks registered for that type of event will be called. Each function is passed a
pointer to the Event, and the value of the auxiliary data pointer cb_func_data given at regis-
tration, which may be NULL.

onetime should be set to true if the function should be removed after it is called for the first
(and only) time. Note that onetime callbacks must be registered for a specific event type.
MRNet API Programmer’s Guide 1

Page 14
void Network::remove_EventCallback(

evt_cb_func cb_func,

EventClass eclass,

EventType etyp);

This method removes cb_func from the list of functions to be called for the specified Event-

Class and EventType. If eclass is given as Event::EVENT_CLASS_ALL, the function will be
removed for all events. etyp can be given as Event::EVENT_TYPE_ALL to remove the function
for all types of events in the given eclass.

void Network::remove_EventCallbacks(

EventClass eclass,

EventType etyp);

This method removes all functions to be called for the specified EventClass and EventType.
If eclass is given as Event::EVENT_CLASS_ALL, all callback functions will be removed for
all events. etyp can be given as Event::EVENT_TYPE_ALL to remove all functions registered
for all types of events in the given eclass.

int Network::get_EventNotificationFd(EventClass eclass);

Network::get_EventNotificationFd returns a file descriptor that can be used with select

or poll to receive notification of interesting DATA, TOPOLOGY, or ERROR events.

eclass should be set to one of Event::DATA_EVENT, Event::TOPOLOGY_EVENT, or
Event::ERROR_EVENT. Event::DATA_EVENT can be used by both front-end and back-end pro-
cesses to provide notification that one or more data packets have been received.
Event::TOPOLOGY_EVENT and Event::ERROR_EVENT can only be used by front-end pro-
cesses, and provide notification when the front-end observes a change in network topology or
an error, respectively.

When the file descriptor has data available (for reading), you should call Net-

work::clear_EventNotificationFd before taking action on the notification. When notifi-
cations are no longer needed, use Network::close_EventNotificationFd.

NOTE: this functionality is not available on Windows platforms.

void Network::clear_EventNotificationFd(EventClass eclass);

This method resets the event notification file descriptor returned from Net-

work::get_EventNotificationFd. eclass should be set to one of Event::DATA_EVENT,
Event::TOPOLOGY_EVENT, or Event::ERROR_EVENT.

NOTE: this functionality is not available on Windows platforms.
MRNet API Programmer’s Guide 1

Page 15
void Network::close_EventNotificationFd(EventClass eclass);

This method closes the event notification file descriptor returned from Net-

work::get_EventNotificationFd. eclass should be set to one of Event::DATA_EVENT,
Event::TOPOLOGY_EVENT, or Event::ERROR_EVENT.

NOTE: this functionality is not available on Windows platforms.

bool is_LocalNodeChild() const;

bool is_LocalNodeParent() const;

bool is_LocalNodeInternal() const;

bool is_LocalNodeFrontEnd() const;

bool is_LocalNodeBackEnd() const;

These methods return true if the local process is of the specified type, false otherwise.

4.1.2 Class NetworkTopology

Instances of NetworkTopology are network specific, so they are created when a Network is
instantiated. MRNet API users should not need to create their own NetworkTopology instances.

The corresponding lightweight backend API class is “Class NetworkTopology” on page 25.

NetworkTopology * Network::get_NetworkTopology();

Network::get_NetworkTopology is used to retrieve a pointer to the underlying NetworkTo-

pology instance of a Network.

unsigned int NetworkTopology::get_NumNodes();

This method returns the total number of nodes in the tree topology, including front-end, inter-
nal, and back-end processes.

NetworkTopology::Node * NetworkTopology::find_Node(Rank node_rank);

This method returns a pointer to the tree node with rank equal to node_rank, or NULL if not
found.

NetworkTopology::Node * NetworkTopology::get_Root();

 This method returns a pointer to the root node of the tree, or NULL if not found.

void NetworkTopology::get_Leaves(

std::vector<NetworkTopology::Node * > & leaves);

This method fills the leaves vector with pointers to the leaf nodes in the topology. In the case
where back-end processes are not started when the network is instantiated, a front-end process
can use this function to retrieve information about the leaf internal processes to which the
back-ends should attach.
MRNet API Programmer’s Guide 1

Page 16
void NetworkTopology::get_BackEndNodes(

std::set< NetworkTopology::Node * > & nodes);

This method fills a set with pointers to all back-end process tree nodes. Note that this method
is unsafe to use while the network topology is in flux, as is the case during the “back-end
attach” mode of MRNet tree instantiation.

void NetworkTopology::get_ParentNodes(

std::set<NetworkTopology::Node * > & nodes);

This method fills a set with pointers to all tree nodes that are parents (i.e., those nodes having
at least one child).

void NetworkTopology::get_OrphanNodes(

std::set< NetworkTopology::Node * > & nodes);

This method fills a set with pointers to all tree nodes that have no parent due to a failure.

void NetworkTopology::get_TreeStatistics(

unsigned int & num_nodes,

unsigned int & depth,

unsigned int & min_fanout,

unsigned int & max_fanout,

double & avg_fanout,

double & stddev_fanout);

This method provides users statistics about the tree topology by setting the passed parameters.

num_nodes is the total number of tree nodes (same as the value returned by NetworkTopol-

ogy::get_NumNodes), depth is the depth of the tree (i.e., the maximum path length from root
to any leaf), min_fanout is the minimum number of children of any parent node, max_fanout
is the maximum number of children of any parent node, avg_fanout is the average number of
children across all parent nodes, and stddev_fanout is the standard deviation in number of
children across all parent nodes.

void NetworkTopology::print_TopologyFile(const char * filename);

This method will create (or overwrite) the specified topology file filename using the current
state of this NetworkTopology object.

void NetworkTopology::print_DOTGraph(const char * filename);

This method will create (or overwrite) the specified dot graph file filename using the current
state of this NetworkTopology object.

std::string NetworkTopology::Node::get_HostName();

This method returns a string identifying the hostname of the tree node.
MRNet API Programmer’s Guide 1

Page 17
Port NetworkTopology::Node::get_Port();

This method returns the listening port of the tree node.

Rank NetworkTopology::Node::get_Rank();

This method returns the unique rank of the tree node.

Rank NetworkTopology::Node::get_Parent();

This method returns the rank of the tree node’s parent.

const std::set< NetworkTopology::Node * > &
NetworkTopology::Node::get_Children();

This method returns a set containing pointers to the children of the tree node, and is useful for
navigating through the tree.

unsigned int NetworkTopology::Node::get_NumChildren();

This method returns the number of children of the tree node.

unsigned int NetworkTopology::Node::find_SubTreeHeight();

This method returns the height of the subtree rooted at this NetworkTopology node.

4.1.3 Class Communicator

Instances of Communicator are network specific, so their creation methods are functions of an
instantiated Network object. There is no corresponding lightweight backend class.

Communicator * Network::new_Communicator();

This method returns a pointer to a new Communicator object. The object contains no end-
points. Use Communicator::add_EndPoint to populate the communicator.

Communicator * Network::new_Communicator(Communicator & comm);

This method returns a pointer to a new Communicator object that contains the same set of
end-points contained in comm.

Communicator * Network::new_Communicator(

std::set< CommunicationNode * > & endpoints);

This method returns a pointer to a new Communicator object that contains the provided set of
end-points.

Communicator * Network::new_Communicator(std::set< Rank > & endpoints);

This method returns a pointer to a new Communicator object that contains the set of end-
points corresponding to processes whose ranks are provided in the passed set.
MRNet API Programmer’s Guide 1

Page 18
Communicator * Network::get_BroadcastCommunicator();

This method returns a pointer to a broadcast Communicator containing all the end-points
available in the system at the time the function is called.

Multiple calls to this method return the same pointer to the Communicator object created at
network instantiation. If the network topology changes, as can occur when starting back-ends
separately, the object will be updated to reflect the additions or deletions. This object should
not be deleted.

bool Communicator::add_EndPoint(Rank ep_rank);

This method is used to add an existing end-point with rank ep_rank to the set contained by
this Communicator.

If the set of end-points in the communicator already contains the new end-point, the function
returns success. This method fails if there exists no end-point defined by ep_rank. This
method returns true on success, false on failure.

bool Communicator::add_EndPoint(CommunicationNode * endpoint);

This method is similar to add_EndPoint above except that it takes a pointer to a Communica-

tionNode object instead of a rank. Success and failure conditions are exactly as stated above.
This method returns true on success and false on failure.

const std::set< CommunicationNode * > & Communicator::get_EndPoints();

Returns a reference to the set of CommunicationNode pointers comprising the end-points in
the communicator.

std::string CommunicationNode::get_HostName();

Returns a character string identifying the hostname of the end-point represented by this Com-
municationNode.

Port CommunicationNode::get_Port();

Returns the listening port of the end-point represented by this CommunicationNode.

Rank CommunicationNode::get_Rank();

Returns the rank of the end-point represented by this CommunicationNode.

4.1.4 Class Stream

Instances of Stream are network specific, so their creation methods are functions of an instan-
tiated Network object. The corresponding lightweight backend API class is “Class Stream” on
page 26.

MRNet provides two types of streams, homegenous and heterogeneous. Homogenous streams
use the same filters at every process participating in the stream, while heterogeneous streams
allow for different filters to be used at different processes.
MRNet API Programmer’s Guide 1

Page 19
Stream * Network::new_Stream(

Communicator * comm,

int up_transfilter_id = TFILTER_NULL,

int up_syncfilter_id = SFILTER_WAITFORALL,

int down_transfilter_id = TFILTER_NULL);

This version of Network::new_Stream is used to create a homogenous Stream object
attached to the end-points specified by a Communicator object comm.

up_transfilter_id specifies the transformation filter to apply to data flowing upstream
from the application back-ends toward the front-end; the default value is TFILTER_NULL.

up_syncfilter_id specifies the synchronization filter to apply to upstream packets; the
default value is SFILTER_WAITFORALL.

down_transfilter_id allows the user to specify a filter to apply to downstream data flows;
the default value is TFILTER_NULL.

Stream * Network::new_Stream(

Communicator * comm,

std::string us_filters,

std::string sync_filters,

std::string ds_filters);

This version of Network::new_Stream is used to creae a heterogeneous Stream object. Users
specify where packet filters are placed within the tree. Like the homogenous version of Net-
work::new_Stream, the end-points are specified by the comm argument.

Strings are used to specify the filter placements, with the following syntax: "filter_id =>

rank; [filter_id => rank; ...]". If "*" is specified as the rank for an assignment, the
filter will be assigned to all ranks that have not already been assigned. If a rank within comm is
not assigned a filter, it will use the default filter. See $MRNET_ROOT/Examples/Heteroge-

neousFilters for an example of using Network::new_Stream to specify different filter
types to be used within the same stream.

us_filters specifies the transformation filters to apply to data flowing upstream from the
application back-ends toward the front-end.

sync_filters specifies the synchronization filters to apply to upstream packets.

ds_filters allows the user to specify filters to apply to downstream data flows.

Note that more than one filter should not be assigned to a single rank in any of these strings.
MRNet API Programmer’s Guide 1

Page 20
Stream * Network::get_Stream(unsigned int id);

Returns a pointer to the Stream identified by id, or NULL on failure. Back-ends may pass their
local rank as the id to retrieve a singlecast stream that can be used for non-filtered communi-
cation directly with the front-end.

unsigned int Stream::get_Id();

Returns the integer identifier for this Stream.

const std::set< Rank > & Stream::get_EndPoints();

Returns the set of end-point ranks for this Stream.

unsigned int Stream::size();

Returns an integer indicating the number of end-points for this Stream.

unsigned int Stream::is_Closed();

For use by back-ends only, this method returns true if the front-end has deleted this Stream,
false otherwise.

int Stream::send(int tag, const char * format_string, ...);

int Stream::send(const char * format_string, va_list list, int tag);

int Stream::send(int tag, const void** data, const char * format_string);

int Stream::send(PacketPtr & pkt);

Invokes a data send operation on the calling Stream. The first three interfaces construct a
packet from the passed operands, while the fourth allows for sending an already constructed
packet.

tag is an integer that identifies the data in the packet.

format_string is a format string describing the data in the packet (See Appendix E: “For-
mat Strings” on page 42 for a full description).

data is an array of pointers to individual data items; the format string indicates the type of
data pointed to by each array index.

On success, Stream::send returns 0; on failure -1.

NOTE: tag must have a value greather than or equal to the constant FirstApplicationTag
defined by MRNet (#include "mrnet/Types.h"). Tag values less than FirstApplication-

Tag are reserved for internal MRNet use.

int Stream::flush();

Commits a flush of all packets currently buffered by this Stream. A successful return value of
0 indicates that all buffered packets have been passed to the operating system for network
MRNet API Programmer’s Guide 1

Page 21
transmission. A return value of -1 indicates that the stream has experienced a terminal failure,
and further attempts to send or receive data on the stream will fail.

int Stream::recv(int * tag, PacketPtr & packet, bool blocking = true);

Invokes a stream receive operation. Packets received by the calling Stream will be returned by
this method, one-at-a-time, in FIFO order.

tag will be filled in with the integer tag value that was passed by the corresponding
Stream::send operation. packet is set to point to the received packet.

blocking determines whether the receive should block or return if data is not immediately
available; it defaults to a blocking call.

A return value of -1 indicates that the stream has experienced a terminal failure, and further
attempts to send or receive data on the stream will fail. A return value of 0 indicates no pack-
ets were available for a non-blocking receive, or the stream has been closed. The return value
1 indicates a packet has been received successfully.

int Stream::get_DataNotificationFd();

Stream::get_DataNotificationFd returns a file descriptor that can be used with select or
poll to receive notification that data has arrived for a stream.

When the file descriptor has data available (for reading), you should call
Stream::clear_DataNotificationFd before taking action on the notification. When notifi-
cations are no longer needed, use Stream::close_DataNotificationFd.

NOTE: this functionality is not available on Windows platforms.

void Stream::clear_DataNotificationFd();

This method resets the data notification file descriptor returned from
Stream::get_DataNotificationFd.

NOTE: this functionality is not available on Windows platforms.

void Stream::close_DataNotificationFd();

This method closes the data notification file descriptor returned from
Stream::get_DataNotificationFd.

NOTE: this functionality is not available on Windows platforms.

int Stream::set_FilterParameters(

FilterType ftype,

const char *format_str, ...) const;

Stream::set_FilterParameters allows users to dynamically configure the operation of a
stream transformation filter by passing arbitrary data in a similar fashion to Stream::send.
MRNet API Programmer’s Guide 1

Page 22
When the filter executes, the passed data is available as a PacketPtr parameter to the filter,
and the filter can extract the configuration settings.

ftype should be given as FILTER_UPSTREAM_SYNC to configure the synchronization filter,
FILTER_UPSTREAM_TRANS for upstream transformation filter and FILTER_DOWNSTREAM_TRANS

for downstream transformation filter.

int Stream::set_FilterParameters(

const char *format_str,

va_list params,

FilterType ftype) const;

This method is the same as the previous method except for the filter configuration parameters
are given in the va_list form.

bool Stream::enable_PerformanceData(

perfdata_metric_t metric,

perfdata_context_t context);

Stream::enable_PerformanceData starts recording performance data for the specified met-

ric type for the given context. Returns true on success, false otherwise. Appendix F:
“MRNet Stream Performance Data” on page 43 describes the metric and context types.

bool Stream::disable_PerformanceData(

perfdata_metric_t metric,

perfdata_context_t context);

Stream::disable_PerformanceData stops recording performance data for the specified
metric type for the given context. Previously recorded data is not discarded, so that it can be
retrieved with Stream::collect_PerformanceData. Users can enable/disable recording for
a particular metric and context any number of times before collecting the results. Returns
true on success, false otherwise.

bool Stream::collect_PerformanceData(

rank_perfdata_map & results,

perfdata_metric_t metric,

perfdata_context_t context,

int aggr_filter_id = TFILTER_ARRAY_CONCAT);

Stream::collect_PerformanceData collects the recorded performance data for the speci-
fied metric type for the given context. The collected data is returned in a
rank_perfdata_map, which associates individual node ranks to a std::vector<

perf_data_t > containing the recorded data instances. After collection, the recorded data at
each nodeis discarded. Returns true on success, false otherwise.

Users can aggregate the recorded data across nodes by specifying a transformation filter with
aggr_filter_id. Note that only the built-in filter types of TFILTER_SUM, TFILTER_MIN,
MRNet API Programmer’s Guide 1

Page 23
TFILTER_MAX, TFILTER_AVG, and TFILTER_ARRAY_CONCAT are supported. By default, perfor-
mance data from each node is concatenated, and results contains every recorded data instance
for each node. If the summary aggregation filters are used, results will contain a single associ-
ated pair. The rank for this pair is equal to -1 (numberof aggregated ranks), and the vec-
tor contains one or more aggregated instances.

void Stream::print_PerformanceData(

perfdata_context_t metric,

perfdata_context_t context);

Stream::print_PerformanceData prints recorded performance data of the specified metric

type for the given context. At each rank, the data is printed to the MRNet log files and then
discarded.

4.1.5 Class Packet

A Packet encapsulates a set of formatted data elements sent on a stream. Packets are created
using a format string (e.g., "%s %d" describes a null-terminated string followed by a 32-bit integer,
and the packet is said to contain two data elements). MRNet front-end and back-end processes do
not create instances of Packet; instead they are automatically produced from the formatted data
passed to Stream::send. Appendix E: “Format Strings” on page 42 contains the full listing of
data types that can be sent in a Packet.

When receiving a packet via Stream::recv or Network::recv, the Packet instance is stored
within a PacketPtr object. PacketPtr is a class based on the Boost library shared_ptr class,
and helps with memory management of packets. A PacketPtr can be assumed to be equivalent to
"Packet *", and all operations on packets require use of PacketPtr.

The corresponding lightweight backend API class is “Class Packet” on page 27.

int Packet::get_Tag();

Returns the integer tag associated with this Packet.

unsigned short Packet::get_StreamId();

Returns the stream id associated with this Packet.

const char * Packet::get_FormatString();

Returns the character string specifying the data format of this Packet.

int Packet::unpack(const char * format_string, ...);

Extracts data contained within this Packet according to the format_string, which must
match that of the packet. The function arguments following format_string should be point-
ers to the appropriate types of each data item. For string and array data types, new memory
buffers to hold the data will be allocated using malloc, and it is the user’s responsibility to
MRNet API Programmer’s Guide 1

Page 24
free these strings and arrays. Note that for array data elements, an extra argument must be
passed to hold each array’s length.

The return value 0 indicates success; -1 indicates the format string supplied did not match the
Packet or a failure in unpacking.

void Packet::set_Tag(int tag);

This method can be used to set the packet’s tag value after it has been created.

void Packet::set_Destinations(const Rank * bes, unsigned int num_bes);

This method can be used to tell MRNet to deliver the packet to a specific set of back-ends,
rather than all the back-ends addressed by the stream on which the packet is sent. bes should
point to an array of back-end ranks, and num_bes is the number of entries in the array.

void Packet::set_DestroyData(bool destroy);

This method can be used to tell MRNet whether or not to deallocate the string and array data
members of a Packet. If destroy is true, string and array data members will be deallocated
using free when the Packet destructor is executed - this assumes they were allocated using
malloc. The default behavior for user-generated packets is not to deallocate (false). Turning
on deallocation is useful in filter code that must allocate strings or arrays for output packets,
which cannot be freed before the filter function returns.

4.2 C API Reference

In the MRNet lightweight back-end library, the MRNet C++ classes are mimicked for ease of
use. With the exception of constructors/destructors, API calls in standard MRNet can be trans-
lated to their lightweight versions according to the following pattern:

return_type class::function_name(param1_type param1, ...);

translates to:

return_type class_function_name(

class class_object,

param1_type param1, ...);

4.2.1 Class Network

Network_t * Network_CreateNetworkBE(int argc, char ** argv);

The back-end constructor method. MRNet automatically passes the necessary information to
the back-end process using the program argument vector (argc/argv) by inserting it after the
user specified arguments. See “Network * Network::CreateNetworkBE(int argc, char **
argv);” on page 9 for more information on the required arguments.
MRNet API Programmer’s Guide 1

Page 25
void delete_Network_t(Network_t * network);

delete_Network_t acts as a destructor for the Network_t object and cleans up internal struc-
tures before freeing the Network_t pointer.

void Network_waitfor_ShutDown(Network_t * network);

Network_waitfor_ShutDown blocks until the network has been shut down.

char Network_is_ShutDown(Network_t * network);

Returns true if the network has been shut down.

char* Network_get_LocalHostName(Network_t * network);

Network_get_LocalHostName returns the name of the host where the process is running.

Port Network_get_LocalPort(Network_t * network);

Network_get_LocalPort returns the listening port of the local process.

Rank Network_get_LocalRank(Network_t * network);

Network_get_LocalRank returns the rank of the local process.

int Network_recv(

Network_t * network,

int otag,

Packet_t * packet,

Stream_t * stream);

Network_recv is used to invoke a stream-anonymous receive operation. Any packet available
(i.e., addressed to any stream) will be returned in roughly FIFO order.

otag will be filled in with the integer tag value that was passed by the corresponding
Stream_send operation. packet is the packet that was received. A pointer to the Stream_t to
which the packet was addressed will be returned in stream.

In standard MRNet, Network::recv had an additional parameter, blocking, to indicate
whether this call should block or return if data is not immediately available. However, because
the lightweight back-ends are single-threaded, there is only the blocking option; therefore this
parameter has been omitted.

A return value of -1 indicates an error and 1 indictes a success.

4.2.2 Class NetworkTopology

NetworkTopology_t * Network_get_NetworkTopology(Network_t * network);

Network_get_NetworkTopology is used to retrieve a pointer to the underlying
NetworkTopology_t instance within network.
MRNet API Programmer’s Guide 1

Page 26
Node_t * NetworkTopology_find_Node(

NetworkTopology_t * net_top,

Rank node_rank);

This method returns a pointer to the topology node with rank equal to node_rank, or NULL if
no match is found.

Node_t * NetworkTopology_get_Root(NetworkTopology_t * net_top);

This method returns a pointer to the root node of the tree, or NULL if not found.

char * NetworkTopology_Node_get_HostName(Node_t * node);

This method returns a string identifying the hostname of the node.

Port NetworkTopology_Node_get_Port(Node_t * node);

This method returns the listening port of the node.

Rank NetworkTopology_Node_get_Rank(Node_t * node);

This method returns the rank of the node.

Rank NetworkTopology_Node_get_Parent(Node_t * node);

This method returns the rank of the node’s parent.

unsigned int NetworkTopology_Node_find_SubTreeHeight(Node_t * node);

This method returns the height of the sub-tree rooted at the node.

4.2.3 Class Stream

Stream_t * Network_get_Stream(Network_t * network, unsigned int id);

Network_get_Stream returns a pointer to a Stream_t identified by id, or NULL on failure.
Back-ends may pass their local rank as the id to retrieve a singlecast stream that can be used
for non-filtered communication directly with the front-end.

void delete_Stream_t(Stream_t * stream);

delete_Stream_t acts as a destructor for the Stream_t object and cleans up internal struc-
tures before freeing the Stream_t pointer.

unsigned int Stream_get_Id(Stream_t * stream);

This method returns the integer identifier for this Stream_t.
MRNet API Programmer’s Guide 1

Page 27
int Stream_send(

Stream_t * stream,

int tag,

const char * format_string, ...);

This method sends data on stream. tag is an integer that identifies the data to be sent by the
stream. format_string is a format string describing the types of the data elements (see
Appendix E: “Format Strings” on page 42 for a full description.) On success, Stream_send
returns 0; on failure, -1.

NOTE: tag must have a value greater than or equal to the constant FirstApplicationTag
defined by MRNet (#include "mrnet_lightweight/Types.h"). Tag values less than Fir-

stApplicationTag are reserved for internal MRNet use.

int Stream_flush(Stream_t * stream);

This operation is currently not required in lightweight MRNet, as Stream_send will deliver
the data for network transmission. This method will always return the value 0 for success.

int Stream_recv(

Stream_t * stream,

int * tag,

Packet_t * packet);

Stream_recv invokes a stream-specific, blocking receive operation. Packets addressed to the
passed stream will be returned, one-at-a-time, in FIFO order. Unlike the standard C++
Stream::recv, Stream_recv will always block if data is not immediately available.

tag will be filled in with the integer tag value that was passed by the corresponding
Stream::send operation. packet is the received Packet_t.

A return value of -1 indicates an error and 1 indicates success.

4.2.4 Class Packet

When receiving a packet, it is stored within a Packet_t object. Note that standard MRNet
makes use of the PacketPtr object, which is based on the Boost library shared_ptr class. How-
ever, in the lightweight back-end library, pointers to Packet_t objects are used instead.

int Packet_get_Tag(Packet_t * packet);

This method returns the integer tag associated with packet.

unsigned short Packet_get_StreamId(Packet_t * packet);

This method returns the stream id associated with packet.

char* Packet_get_FormatString(Packet_t * packet);

This method returns the character string specifying the data format of packet.
MRNet API Programmer’s Guide 1

Page 28
void Packet_unpack(

Packet_t * packet,

const char * format_string, ...);

This method extracts data elements contained within packet according to the
format_string, which must match that of packet. The function arguments following
format_string should be pointers to the appropriate types of each data element. For string
and array data types, new memory bufffers to hold the data will be allocated using malloc,
and it is the user’s responsibility to free these strings and arrays. Note that for array data ele-
ments, an extra argument must be passed to hold each array’s length.

The return value 0 indicates success; -1 indicates the format string supplied did not match the
packet or a failure in unpacking.
MRNet API Programmer’s Guide 1

Page 29
APPENDIX A: BUILDING AND TESTING MRNET

For this discussion, $MRNET_ROOT is the location of the top-level directory of the MRNet dis-
tribution and $MRNET_ARCH is a string describing the platform (OS and architecture) as discovered
by the configure process. For the installation instructions, it is assumed that the current working
directory is $MRNET_ROOT.

A.1: Supported Platforms and Compilers

MRNet has been developed to be highly portable; we expect it to run properly on all common
Unix-based as well as Windows platforms. This being said, we have successfully built and tested
MRNet on the following systems:

• Linux: x86, x86_64, power64, ia64, CrayXT

• Solaris 8, 9: sparc32

• AIX 5.2, 5.3: power32

• Windows: x86

A.2: System Requirements

MRNet requires GNU make for building on UNIX/Linux systems. Our build system attempts
to use native system compilers where available. For building on Windows systems, Visual Studio
2005 solution/project files are available, as are pre-compiled libraries and binaries.
MRNet API Programmer’s Guide 1

Page 30
A.3: Build Configuration

MRNet uses GNU autoconf to discover the platform specific configuration parameters. The
script that does this auto-configuration is called configure.

UNIX> ./configure --help

shows all possible options of the command. Below, we display the MRNet-specific ones:

./configure without any options should give reasonable results, but the user may specify certain
options. For example,

UNIX> ./configure CXX=g++

instructs the configure script to use g++ for the C++ compiler.

A.4: Compilation and Installation

To build MRNet:

UNIX> make

After a successful build, the following files will be present:

• $MRNET_ROOT/lib/$MRNET_ARCH/libmrnet: MRNet API library

• $MRNET_ROOT/lib/$MRNET_ARCH/libmrnet_lightweight: MRNet lightweight back-end
API library

• $MRNET_ROOT/lib/$MRNET_ARCH/libxplat: Cross-platform API library that exports plat-
form dependent routines to MRNet

• $MRNET_ROOT/lib/$MRNET_ARCH/libxplat_lightweight: Cross-platform API library that
exports platform dependent routines to MRNet, for use with the lightweight back-end library

• $MRNET_ROOT/bin/$MRNET_ARCH/mrnet_commnode: MRNet internal process executable

--enable-shared Build shared library versions of MRNet and XPlat
--enable-debug Build MRNet and XPlat with debug information
--enable-verbosebuild Show build actions (useful for debugging build problems)
--with-startup=METHOD Choose tree instantiation method: “ssh” (default), or

“cray_xt” (Cray XT systems)

--with-alpstoolhelp-lib=DIR

--with-alpstoolhelp-inc=DIR

For Cray XT only, when co-locating MRNet processes with
an already running application launched using ALPS.

SpecifyDIR as the absolute path to the directory containing
the libalps library.

SpecifyDIR as the absolute path to the directory containing
the libalps.h header file.
MRNet API Programmer’s Guide 1

Page 31
• $MRNET_ROOT/bin/$MRNET_ARCH/mrnet_topgen: MRNet topology file generator

To build the MRNet tests and examples:

UNIX> make tests

UNIX> make examples

The tests and examples consist of front-end and back-end programs, and custom filter libraries:

• $MRNET_ROOT/bin/$MRNET_ARCH/*_[FE,FE_lightweight,BE,BE_lightweight]: Front-
end and back-end programs. Not all lightweight tests and examples require a separate front-
end; in these cases, the standard front-end should be used with the lightweight back-end.

• $MRNET_ROOT/bin/$MRNET_ARCH/mrnet_tests.sh: A shell script that runs the test pro-
grams and checks for errors in an automated fashion.

• $MRNET_ROOT/lib/$MRNET_ARCH/*Filter[s].so: test and example filter libraries.

To install the MRNet components (i.e., the executables, libraries, and headers) to the directories
specified during configure. If --prefix is not provided to configure, the default install loca-
tions are /usr/local/{bin,lib,include}/:

UNIX> make install

To install the MRNet tests or examples:

UNIX> make install-tests

UNIX> make install-examples

If your system does not provide the C++ Boost headers (normally installed in
/usr/include/boost), we provide the subset of Boost header files necessary for building
MRNet. To install these headers:

UNIX> make install-boost

A.5: Testing the Code

The shell script, mrnet_tests.sh is placed in the binary directory with the other executables dur-
ing the building of the MRNet tests as described above. This script can be used to run the MRNet
test programs and check their output for errors. The script is used as follows:

UNIX> mrnet_tests.sh [-l | -r <hostfile> | -a <hostfile>]

 [-f <sharedobject>] [-lightweight]

The -l flag is used to run all tests using only topologies that create processes on the local machine
(note: running all the tests locally can take quite a while - anywhere from 30 minutes to an hour
depending on the machine capabilities). The -r flag runs tests using remote machines specified in
the file whose name immediately follows this flag. To run tests both locally and remotely, use the
-a flag and specify a hostfile to use. To run the programs that test MRNet’s ability to dynamically
load filters, you must specify the absolute location of the shared object
test_DynamicFilters.so produced when the tests were built. The -lightweight flag is used
to run tests with both the standard back-ends and the lightweight back-ends.
MRNet API Programmer’s Guide 1

Page 32
A.6: Bugs, Questions, and Comments

MRNet is maintained by the Paradyn Project, University of Wisconsin-Madison. Comments and
feedback whether positive or negative are encouraged.

Please report bugs to paradyn@cs.wisc.edu. Bug fixes as patches are also welcome.

The MRNet webpage is http://www.paradyn.org/mrnet/
MRNet API Programmer’s Guide 1

Page 33
APPENDIX B: A COMPLETE EXAMPLE: INTEGER ADDITION

The source code for the example contained in this appendix can be found in
$MRNET_ROOT/Examples/IntegerAddition. All examples can be built by typing ’make’ from
within the $MRNET_ROOT/Examples directory.

B.1: A Complete MRNet Front-End
1 #include "mrnet/MRNet.h"

2 #include "IntegerAddition.h"

3 using namespace MRN;

4

5 int main(int argc, char **argv)

6 {

7 int send_val=32, recv_val=0;

8 int tag, retval;

9 PacketPtr p;

10 if(argc != 4){

11 printf("Usage: %s topology be_exe so_file\n", argv[0]);

12 exit(-1);

13 }

14 const char * topology_file = argv[1];

15 const char * be_exe = argv[2];

16 const char * so_file = argv[3];

17 const char * argv=NULL;

18

19 // Instantiates the MRNet internal nodes, using the organization

20 // in "topology_file," and the specified back-end application

21 Network * network = Network::CreateNetworkFE(topology_file,

22 be_exe, &argv);

23

24 // Make sure path to "so_file" is in LD_LIBRARY_PATH

25 int filter_id = network->load_FilterFunc(so_file, "IntegerAdd");

26 if(filter_id == -1){

27 printf("Network::load_FilterFunc() failure\n");

28 delete network;

29 return -1;

30 }

31

32 // A Broadcast communicator contains all the back-ends

33 Communicator * comm_BC = network->get_BroadcastCommunicator();

34

35 // Create a stream that uses Integer_Add filter for aggregation

36 Stream * stream = network->new_Stream(comm_BC, filter_id,

37 SFILTER_WAITFORALL);

38 int num_backends = comm_BC->get_EndPoints().size();

39
MRNet API Programmer’s Guide 1

Page 34
40 // Broadcast a control message to back-ends to send us "num_iters"

41 // waves of integers

42 tag = PROT_SUM;

43 unsigned int num_iters=5;

44 if(stream->send(tag, "%d %d", send_val, num_iters) == -1){

45 printf("stream::send() failure\n");

46 return -1;

47 }

48 if(stream->flush() == -1){

49 printf("stream::flush() failure\n");

50 return -1;

51 }

52

53 // We expect "num_iters" aggregated responses from all back-ends

54 for(unsigned int i=0; i<num_iters; i++){

55 retval = stream->recv(&tag, p);

56 if(retval == -1){

57 //recv error

58 return -1;

59 }

60 if(p->unpack("%d", &recv_val) == -1){

61 printf("stream::unpack() failure\n");

62 return -1;

63 }

64 if(recv_val != num_backends * i * send_val){

65 printf("Iteration %d: Failure!\n", i);

66 }

67 else{

68 printf("Iteration %d: Success! recv_val(%d) == %d\n",

69 i, recv_val, send_val*i*num_backends);

70 }

71 }

72

73 if(stream->send(PROT_EXIT, "") == -1){

74 printf("stream::send(exit) failure\n");

75 return -1;

76 }

77 if(stream->flush() == -1){

78 printf("stream::flush() failure\n");

79 return -1;

80 }

81

82 // Network destruction will exit all processes

83 delete network;

84 return 0;

85 }
MRNet API Programmer’s Guide 1

Page 35
B.2: A Complete MRNet Back-End
1 #include "mrnet/MRNet.h"

2 #include "IntegerAddition.h"

3

4 using namespace MRN;

5

6 int main(int argc, char **argv)

7 {

8 Stream * stream=NULL;

9 PacketPtr p;

10 int tag=0, recv_val=0, num_iters=0;

11 Network * network = Network::CreateNetworkBE(argc, argv);

12 do {

13 if (network->recv(&tag, p, &stream) != 1){

14 fprintf(stderr, "stream::recv() failure\n");

15 return -1;

16 }

17 switch(tag){

18 case PROT_SUM:

19 p->unpack("%d %d", &recv_val, &num_iters);

20

21 // Send num_iters waves of integers

22 for(unsigned int i=0; i<num_iters; i++){

23 if(stream->send(tag, "%d", recv_val*i) == -1){

24 printf("stream::send(%%d) failure\n");

25 return -1;

26 }

27 if(stream->flush() == -1){

28 printf("stream::flush() failure\n");

29 return -1;

30 }

31 }

32 break;

33 case PROT_EXIT:

34 printf("Processing PROT_EXIT ...\n");

35 break;

36 default:

37 printf("Unknown Protocol: %d\n", tag);

38 break;

39 }

40 } while (tag != PROT_EXIT);

41

42 network->waitfor_ShutDown();

43 delete network;

44 return 0;

45 }
MRNet API Programmer’s Guide 1

Page 36
B.3: A Complete MRNet Lightweight Back-End
1 #include "mrnet_lightweight/MRNet.h"

2 #include "IntegerAddition_lightweight.h"

3

4 int main(int argc, char **argv)

5 {

6 Stream_t * stream;

7 Packet_t* p = (Packet_t*)malloc(sizeof(Packet_t));

8 int tag=0, recv_val=0, num_iters=0;

9 Network_t * net = Network_CreateNetworkBE(argc, argv);

10 do {

11 if(Network_recv(net, &tag, p, &stream) != 1) {

12 printf("BE: stream::recv() failure\n");

13 break;

14 }

15 switch(tag) {

16 case PROT_SUM:

17 Packet_unpack(p, "%d %d", &recv_val, &num_iters);

18 // Send num_iters waves of integers

19 unsigned int i;

20 for(i=0; i<num_iters; i++) {

21 printf("BE: Sending wave %u ...\n", i);

22 if(Stream_send(stream,tag, "%d",

23 recv_val*i) == -1){

24 printf("BE: stream::send(%%d) failure\n");

25 tag = PROT_EXIT;

26 break;

27 }

28 if(Stream_flush(stream) == -1){

29 printf("BE: stream::flush() failure\n");

30 tag = PROT_EXIT;

31 break;

32 }

33 sleep(2); // stagger sends

34 }

35 break;

36 case PROT_EXIT:

37 if(Stream_send(stream,tag, "%d", 0) == -1) {

38 printf("BE: stream::send(%%s) failure\n");

39 break;

40 }

41 if(Stream_flush(stream) == -1) {

42 printf("BE: stream::flush() failure\n");

43 }

44 break;

45
MRNet API Programmer’s Guide 1

Page 37
46 default:

47 fprintf(stderr, "BE: Unknown Protocol: %d\n", tag);

48 tag = PROT_EXIT;

49 break;

50 }

51 } while (tag != PROT_EXIT);

52

53 if (p != NULL)

54 free (p);

55

56 Network_waitfor_ShutDown(net);

57 delete_Network_t(net);

58 return 0;

59 }

B.4: A MRNet Filter: Integer Addition
1 extern "C" {

2

3 //Must declare the format of data expected by the filter

4 const char * IntegerAdd_format_string = "%d";

5 void IntegerAdd(std::vector< PacketPtr > & packets_in,

6 std::vector< PacketPtr > & packets_out,

7 std::vector< PacketPtr > & /* packets_out_reverse */,

8 void ** /* filter state */,

9 PacketPtr & /* configuration parameters */,

10 TopologyLocalInfo & /* local topology information */)

11 {

12 int sum = 0;

13

14 for(unsigned int i = 0; i < packets_in.size(); i++) {

15 PacketPtr cur_packet = packets_in[i];

16 int val;

17 cur_packet->unpack("%d", &val);

18 sum += val;

19 }

20

21 PacketPtr new_packet (new Packet(packets_in[0]->get_StreamId(),

22 packets_in[0]->get_Tag(), "%d", sum));

23 packets_out.push_back(new_packet);

24 }

25

26 } /* extern "C" */
MRNet API Programmer’s Guide 1

Page 38
APPENDIX C: PROCESS-TREE TOPOLOGIES

MRNet allows a tool to specify a node allocation and process connectivity tailored to its computa-
tion and communication requirements and to the system where the tool will run. Choosing an
appropriate MRNet configuration can be difficult due to the complexity of the tool’s own activity
and its interaction with the system. This section describes how users define their own process
topologies, and the mrnet_topgen utility provided by MRNet to facilitate generation of topology
specification files.

C.1: Topology File Format

The first parameter to Network::CreateNetworkFE is the name of an MRNet topology file.
This file defines the topological layout of the front-end, internal, and back-end MRNet processes.
In the syntax of the topology file, the hostname:id tuple represents a process with instance id

running on hostname. It is important to note that the instance is used to distinguish processes on
the same host, and does not reflect a port or process rank. A line in the topology file has the form:

hostname1:0 => hostname1:1 hostname1:2 ;

meaning a process on hostname1 with instance id 0 has two children, with instance ids 1 and 2,
running on the same host. MRNet will parse the topology file without error if the file properly
defines a tree in the mathematical sense (i.e. a tree must have a single root, no cycles, full connec-
tion, and no node can be its own descendant). Please note that the hostname associated with the
root of the topology must match the host where the front-end process is run, or a run-time error
will occur.

NOTE: A single topology specification line may span multiple physical lines to improve readabil-
ity. For example:

hostname1:0 =>

hostname1:1

hostname1:2

;

C.2: An Example Topology File
nutmeg:0 => c01:0 c02:0 c03:0 c04:0 ;

c03:0 => c05:0 ;

c04:0 => c06:0 c07:0 c08:0 c09:0 ;

nutmeg

|

/ | | \

c01 c02 c03 c04

| |

c05 |

/ | | \

c06 c07 c08 c09
MRNet API Programmer’s Guide 1

Page 39
C.3: Topology File Generator

MRNet provides a topology generator program that supports generation of balanced and k-
nomial topologies using simple specifications, and arbitrary topologies with a more complex
specification that fully enumerates the topology fan-outs at each level of the tree. After MRNet is
built, this program can be found at $MRNET_ROOT/bin/$MRNET_ARCH/mrnet_topgen. The usage
can be obtained by running mrnet_topgen without arguments.

The generator program uses host lists that specify available hosts and the maximum number of
processes to place on each host. The format for the host list is one host specification per line,
where each specification is of the form hostname[:num_slots]. If the number of process slots is
not given with the host, the generator program assumes only one process should be placed on the
host. Additionally, if the same hostname is given on multiple lines, the number of processes that
can be placed on the host is the summation of the process slot counts for all lines. An example
host list file follows:

host1:4

host2

host3:2

host2

The above host list file results in three hosts being available for topology process placement, with
host1 having four available slots, and host2 and host3 each having two available slots. The gen-
erator program also allows users to specify different host lists for the placement of internal com-
munication processes and back-end processes (see the mrnet_topgen usage for more
information).

Some MRNet front-end programs may wish to generate a topology at run-time. To support
this requirement, MRNet provides three API classes: BalancedTree, KnomialTree, and Gener-

icTree that front-end programs may use directly to generate any topology that can be produced
by mrnet_topgen. Not surprisingly, mrnet_topgen is built upon these classes, and its source
code ($MRNET_ROOT/tests/config_generator.C) can serve as a reference for front-end pro-
grams wishing to use these classes.
MRNet API Programmer’s Guide 1

Page 40
APPENDIX D: ADDING NEW FILTERS

D.1: Defining an MRNet Filter

A filter function has the following signature:

void filter_name(

std::vector< PacketPtr > & packets_in,

std::vector< PacketPtr > & packets_out,

std::vector< PacketPtr > & packets_out_reverse,

void ** filter_state,

PacketPtr & config_params,

const TopologyLocalInfo & topol_info);

packets_in is a reference to a vector of packets serving as input to the filter function.
packets_out is a reference to a vector into which output packets should be placed. When packets
need to be sent in the reverse direction on the stream, packets_out_reverse can be used instead
of packets_out. Both packets_out and packets_out_reverse can be used simultaneously.
filter_state may be used to define and maintain state specific to a filter instance.
config_params is a reference to a PacketPtr containing the current configuration settings for
the filter instance, as can be set using Stream::set_FilterParameters. Finally, topol_info
provides information that can be used by filters to determine the local process’s placement in the
topology, as well as access to the local Network object.

For each filter function defined in a shared object file, there must be a const char * symbol
named by the string formed by the concatenation of the filter function name and the suffix
"_format_string". For instance, if the filter function is named my_filter_func, the shared
object must define a symbol “const char* my_filter_func_format_string”. The value of
this string will be the MRNet format string describing the format of data that the filter can operate
on. A value of "" denotes that the filter can operate on data of arbitrary value.

D.2: Fault-Tolerant Filters

MRNet automatically recovers from failures of internal tree processes (i.e., those processes
that are not the front-end (root) or back-ends (leaves)). As part of the recovery, MRNet will
extract filter state from the children of a failed process and pass that state as input to each child’s
newly chosen parent. If you have a filter that maintains persistent state using filter_state, you
can provide an additional function within the shared object for your filter that MRNet may use to
extract the state. The name of this extraction function should be the same as the filter name with
the suffix "_get_state" appended. For instance, if the filter function is named my_filter_func,
the extraction function should be named my_filter_func_get_state.

A filter state extraction function has the following signature:

PacketPtr filter_name_get_state(void ** filter_state, int stream_id);

filter_state is a pointer to the state defined by the filter for the stream identified by
stream_id. This function should extract the necessary state and return a packet that can be passed
MRNet API Programmer’s Guide 1

Page 41
as input to the filter function. Since the packet will be processed as a normal input packet for the
filter, it’s format must match that expected by the filter. A fault-tolerant filter example is provided
in $MRNET_ROOT/Examples/FaultRecovery.

D.3: Creating and Using MRNet Filter Shared Object Files

Since we use the C facility dlopen to dynamically load new filter functions, all C++ symbols
must be exported. That is, the filter function, format string, and state extraction function defini-
tions must fall within the statements:

extern "C" {

and

}

The file that contains the filter functions and format strings must be compiled into a valid
shared object. For example, with the GNU C++ compiler on ELF systems, the options "-fPIC -

shared -rdynamic" can be used. Please refer to your compiler documentation for the appropriate
options for other compilers. You can also refer to the setting of the SOFLAGS variable in
$MRNET_ROOT/Examples/Makefile to see the options chosen during the configure process for
compiling the Example filter libraries.

Additionally, front-end and back-end programs that will dynamically load filters must be built
with compiler options that notify the linker to export global symbols (for GNU compilers, you can
use "-Wl,-E").
MRNet API Programmer’s Guide 1

Page 42
APPENDIX E: FORMAT STRINGS

After the % character that introduces a conversion, there may be a number of flag characters. u, h,
l, and a are special modifiers meaning unsigned, short, long and array, respectivley. The full set of
conversions are:

NOTE: All array format specifiers, "a*", require an implicit length parameter of type
unsigned int to be given: e.g., send("%af", float_array_pointer, float_array_length)

Table 1: Format String Conversions

c signed 8-bit character

uc unsigned 8-bit character

ac array of signed 8-bit characters

auc array of unsigned 8-bit characters

hd signed 16-bit decimal integer

uhd unsigned 16-bit decimal integer

ahd array of signed 16-bit decimal integers

auhd array of unsigned 16-bit decimal integers

d signed 32-bit decimal integer

ud unsigned 32-bit decimal integer

ad array of signed 32-bit decimal integers

aud array of unsigned 32-bit decimal integers

ld signed 64-bit decimal integer

uld unsigned 64-bit decimal integer

ald array of signed 64-bit decimal integers

auld array of unsigned 64-bit decimal integers

f 32-bit floating-point number

af array of 32-bit floating-point numbers

lf 64-bit floating-point number

alf array of 64-bit floating-point numbers

s null-terminated character string

as array of null-terminated character strings
MRNet API Programmer’s Guide 1

Page 43
APPENDIX F: MRNET STREAM PERFORMANCE DATA

The primary abstraction for communication and data processing within MRNet is the stream,
so performance metrics and contexts are associated with actions on a particular stream.

All data is recorded as instances of a perf_data_t, which is simply a union type that can hold
a 64-bit signed integer, a 64-bit unsigned integer, or a double precision float. As shown below, the
data values can be accessed using the i, u, or d union fields.

typedef union { int64_t i; uint64_t u; double d; } perfdata_t;

Metrics define the type of performance data to record. The supported metric types are:

 * PERFDATA_MET_NUM_BYTES : count of data bytes (uint64_t)

 * PERFDATA_MET_NUM_PKTS : count of data packets (uint64_t)

 * PERFDATA_MET_ELAPSED_SEC : elapsed seconds (double)

 * PERFDATA_MET_CPU_USR_PCT : percent CPU utilization by user (double)

 * PERFDATA_MET_CPU_USR_PCT : percent CPU utilization by system (double)

 * PERFDATA_MET_MEM_VIRT_KB : virtual memory footprint in KB (double)

 * PERFDATA_MET_MEM_PHYS_KB : physical memory footprint in KB (double)

Contexts specify when to record data. The supported contexts are:

 * PERFDATA_CTX_SEND : when data is sent

 * PERFDATA_CTX_RECV : when data is received

 * PERFDATA_CTX_FILT_IN : before executing transformation filter

 * PERFDATA_CTX_FILT_OUT : after executing transformation filter

 * PERFDATA_CTX_NONE : when data is collected

Table 2 shows which metrics are valid for a given context. When a metric is valid for only
CTX_FILT_OUT, the metric is actually recorded through a combination of measurements at
CTX_FILT_IN and CTX_FILT_OUT. When a metric is valid for only CTX_NONE, the data is only
recorded at the time it is collected. An example MRNet application that makes use of the Stream
performance data collection facilities is provided in $MRNET_ROOT/Examples/PerformanceData.

NOTE: MET_CPU_USR_PCT, MET_CPU_SYS_PCT, MET_MEM_VIRT_KB, and MET_MEM_PHYS_KB

are currently only supported for Linux.
MRNet API Programmer’s Guide 1

Page 44
Table 2: Metric-Context Compatibility Matrix

CTX_SEND CTX_RECV CTX_FILT_IN CTX_FILT_OUT CTX_NONE

MET_NUM_BYTES yes yes yes yes no

MET_NUM_PKTS yes yes yes yes no

MET_ELAPSED_SEC no no no yes no

MET_CPU_USR_PCT no no no yes no

MET_CPU_SYS_PCT no no no yes no

MET_MEM_VIRT_KB no no no no yes

MET_MEM_PHYS_KB no no no no yes
MRNet API Programmer’s Guide 1

Page 45
APPENDIX G: ENVIRONMENT VARIABLES

Table 3: Environment Variables

XPLAT_RSH
XPLAT_RSH_ARGS

XPLAT_REMCMD

Set XPLAT_RSH to the name of the remote shell
program to use for remote process execution.
Default is ’ssh’. XPLAT_RSH_ARGS can be used to
pass shell-specific options to the remote shell.

If it is necessary to run the remote shell program
with a utility such as runauth to non-interactively
authenticate the unattended remote process, that
command may be specified using XPLAT_REMCMD.

XPLAT_RESOLVE_HOSTS

XPLAT_RESOLVE_CANONICAL

Tell XPlat to perform DNS resolution of host-
names and IP addresses by setting the variable to
’1’. Default is ’1’.

When XPLAT_RESOLVE_HOSTS is ’1’, setting
XPLAT_RESOLVE_CANONICAL to ’1’ will tell XPlat
to try to resolve all hostnames to their canonical
DNS format. Default is ’0’.

MRNET_OUTPUT_LEVEL

MRNET_DEBUG_LOG_DIRECTORY

Set the debug output level (valid values are 1-5,
default is 1). Level 1 will only log warning/error
messages, level 3 provides fairly detailed function
execution logging, and level 5 will produce every
log message that MRNet generates.

Specify the absolute path to the directory to store
MRNet log files. By default, the directory
$HOME/mrnet-log will be used if it exists;
otherwise, log messages will be output to stderr.

MRN_COMM_PATH (deprecated)
MRNET_COMM_PATH

If mrnet_commnode is not in your path by default,
you can specify the full path using this variable.
MRNet API Programmer’s Guide 1

	MRNet API Programmer’s Guide
	1. Introduction
	2. Abstractions
	2.1 End-Points
	2.2 Communicators
	2.3 Streams
	2.4 Filters

	3. A Simple Example
	3.1 The MRNet Interface
	Figure 1: MRNet Front-End Sample Code
	Figure 2: MRNet Back-End Sample Code

	3.2 MRNet Instantiation

	4. The MRNet API
	4.1 C++ API Reference
	4.1.1 Class Network
	4.1.2 Class NetworkTopology
	4.1.3 Class Communicator
	4.1.4 Class Stream
	4.1.5 Class Packet

	4.2 C API Reference
	4.2.1 Class Network
	4.2.2 Class NetworkTopology
	4.2.3 Class Stream
	4.2.4 Class Packet

	Appendix A: Building and Testing MRNet
	A.1: Supported Platforms and Compilers
	A.2: System Requirements
	A.3: Build Configuration
	A.4: Compilation and Installation
	A.5: Testing the Code
	A.6: Bugs, Questions, and Comments

	Appendix B: A Complete Example: Integer Addition
	B.1: A Complete MRNet Front-End
	B.2: A Complete MRNet Back-End
	B.3: A Complete MRNet Lightweight Back-End
	B.4: A MRNet Filter: Integer Addition

	Appendix C: Process-Tree Topologies
	C.1: Topology File Format
	C.2: An Example Topology File
	C.3: Topology File Generator

	Appendix D: Adding New Filters
	D.1: Defining an MRNet Filter
	D.2: Fault-Tolerant Filters
	D.3: Creating and Using MRNet Filter Shared Object Files

	Appendix E: Format Strings
	Table 1: Format String Conversions

	Appendix F: MRNet Stream Performance Data
	Table 2: Metric-Context Compatibility Matrix

	Appendix G: Environment Variables
	Table 3: Environment Variables

