
ERROR(FC) ERROR(FC)

NAME
w error t − Shore error-handling

SYNOPSIS
#include <w.h>
#include <w_error.h>
class w_rc_t;
class w_error_t;
class w_error_info_t;

DESCRIPTION
These classes are used internally by
class w_rc_t;
This manual page is of interest only to writers of value-added servers, and then only those who
need to generate their own sets of error codes.

ERROR CODES
Error codes are unsigned integers, returned from Shore methods in the form of a w rc t (see
rc(fc)). Each error code has associated metadata, which consists of a descriptive string and a
name (either by way of an enumeration, or by a C-preprocessor-defined name) (which could be
considered meta-metadata, perhaps).

The integer values associated with error code names, the descriptive strings, the enumerations,
and the #defines are generated by a Perl script.

Error codes are grouped into modules, so that all the error codes for a software module and their
metadata are kept together. Each module is given a mask, which is folded into the values
assigned to the errorcodes. This keeps the error codes for different software modules distinct.

The software that manages error codes keeps a (global) list of all the modules of error codes.
Each software layer that uses the error codes must invoke a method to ‘install’ its module in the
global list. The method is generated by the Perl script.

The data structure w error info t stores the error codes and their associated metadata. This
data structure is generated by the Perl script.

The data structure w error t holds an error code, line number and file name, and its instances
can be linked to form stack traces. The application programmer does not directly manipulate
them, however; the application programming interface for returning and interpreting errors is the
class w rc t.

GENERATING SETS OF ERROR CODES
The Perl script in the Shore source tree, generates error codes from an input file that is best
described with an example. The following example is taken from the Shore storage manager.

The script takes one of two mutually exclusive options, and a file name. One or the other of the
options (-d, -e) is required:

$(SHORE_SOURCES)/tools/errors.pl -d <input-file>
// or
$(SHORE_SOURCES)/tools/errors.pl -e <input-file>

In the first case (-d) the named constants are generated as C preprocessor defined constants. The
prefix of the generated names is capitalized and separated from the rest of the name by an under-
score character (in concert with Paleozoic convention).

In the second case (-e) the named constants are generated as members of an anonymous enumera-
tion. The prefix of the generated names is taken, case unchanged, from the input file.
e = 0x00080000 "Storage Manager" smlevel_0 {

ASSERT Assertion failed
USERABORT User initiated abort
}

Release Jan 1999 1

ERROR(FC) ERROR(FC)

The input is parsed as follows. On the first line:

e A prefix used to generate the names of the constants for the error codes for this mod-
ule. This prefix must not conflict with prefixes for other modules.

= Separates the name prefix from the mask.

0x00080000
This mask is added into each named constant generated for this module.

Storage Manager
The name of the module.

smlevel 0 The name of a C++ class. If a class name is present, certain generated data struc-
tures and methods will be members of this class. If no class name appears here, the
generated data structures will have global names.

{ Begins the set of error codes descriptions for this module.

Blank lines may appear anywhere. Lines beginning with ‘#’ are comments.

The next three lines define error codes:

ASSERT This causes the named constant eASSERT to appear in an anonymous enumeration
type. The value associated with eASSERT will contain the mask 0x00080000.
enum {

eASSERT = 0x80000,
...

};

Assertion failed
This is the descriptive string associated with eASSERT. The Perl script generates
an array of data structures that associates these descriptive strings with their corre-
sponding integers.

} Ends the set of error code descriptions for the module. More than one module may be
described in a single input file.

GENERATED FILES
The Perl script generates a set of files. The names of the files have the prefix given on the first
line of a module’s input. In the above example, the output files are:

e einfo.i Contains two members of smlevel 0. First is the list of error codes with associated
descriptive strings:
w_error_info_t smlevel_0 ::error_info[] = {
{ eASSERT , "Assertion failed" },
...
};

 If a class name did not appear in the input file, the name of the data structure will be
‘ error info’ prepended with the name of the module. In this case, it would be
w_error_info_t e_error_info[] = {
{ eASSERT , "Assertion failed" },
...
};

Second is the full definition of a method
void smlevel_0 ::init_errorcodes()
that your code can call to ‘install’ the module of error codes in a global list of all the error codes
in the running program. This method is generated only if the input for the module contains a
class name.

e error.h Contains two anonymous enumerations. The first contains all the constants for the
error codes. The second contains the minimum and maximum error codes for this

Release Jan 1999 2

ERROR(FC) ERROR(FC)

module. Using the above example, we get:
enum {

eASSERT = 0x80000,
eUSERABORT = 0x80001,
...
eLOGICALIDOVERFLOW = 0x80041,
eTRANSITTIMEOUT = 0x80042,

};

enum {
eERRMIN = 0x80000,
eERRMAX = 0x80042

};

e error def.h
An alternative to If the -d option were used on the Perl script, this output file would
be generated and would look like this:
#define E_OK 0
#define E_ASSERT 0x80000
#define E_USERABORT 0x80001
#define E_LOGICALIDOVERFLOW 0x80041
#define E_TRANSITTIMEOUT 0x80042
#define E_ERRMIN 0x80000
#define E_ERRMAX 0x80042

e error.i This is an ancillary file that might not be needed. It is generated in case the set of
descriptive strings is needed by software that is not privy to the class smlevel 0. It
contains a simple array of the strings, an a constant indicating the length of the array:
static char *e_errmsg[] = {

/* eASSERT */ "Assertion failed",
/* eUSERABORT */ "User initiated abort",
...

};

const e_msg_size = 66;
Of course, the strings are in the proper order so the array can be indexed by the error
code (after subtracting the module’s mask).

INSTALLING SETS OF ERROR CODES
Your program must ‘install’ your modules by calling init errorcodes() or, if you did not use a
class name for your module, by explicitly installing the set:

w_rc_t rc = w_error_t::insert(
"Storage Manager", // name of the module
e_error_info, // the error_info list
eERRMAX - eERRMIN + 1 // number of items in the

// error_info list.
);
...

USING SETS OF ERROR CODES
If you want to write code that returns one of your error codes, you use the manifest constants to
build w rc t structures, which can be printed directly. See rc(fc) for details.

SEE ALSO
rc(fc) and intro(fc).

Release Jan 1999 3

