
ss m::lock(ssm) Shore Storage Manager ss m::lock(ssm)

NAME
lock, unlock, query lock, set lock cache enable, lock cache enabled − Class ss m Methods for
Locking

SYNOPSIS
#include <sm_vas.h> // which includes sm.h

static rc_t lock(
const lvid_t& lvid,
lock_mode_t mode,
lock_duration_t duration = t_long,
long timeout = WAIT_SPECIFIED_BY_XCT);

static rc_t lock(
const lockid_t& lockid,
lock_mode_t mode,
lock_duration_t duration = t_long,
long timeout = WAIT_SPECIFIED_BY_XCT);

static rc_t unlock(const lockid_t& lockid);

static rc_t query_lock(
const lockid_t& lockid,
lock_mode_t& mode,
bool implicit = false);

static rc_t set_lock_cache_enable(bool enable);
static rc_t lock_cache_enabled(bool& enabled);

static rc_t set_escalation_thresholds(
int4 toPage,
int4 toStore,
int4 toVolume);

static rc_t get_escalation_thresholds(
int4& toPage,
int4& toStore,
int4& toVolume);

static rc_t dont_escalate(
const lockid_t& n,
bool passOnToDescendants = true);

static rc_t dont_escalate(
const lvid_t& lvid,
bool passOnToDescendants = true);

// Lock ID

class lockid_t {
public:

//
// The lock graph consists of 6 node: volumes, stores, pages, key values,
// records, and extents. The first 5 of these form a tree of 4 levels.

Release Jan 1999 1



ss m::lock(ssm) Shore Storage Manager ss m::lock(ssm)

// The node for extents is not connected to the rest.
// The node_space_t enumerator maps node types to integers.
// These numbers are used for
// indexing into arrays containing node type specific info per entry (e.g
// the lock caches for volumes, stores, and pages).
//
enum name_space_t {
t_bad = 10,
t_vol = 0,
t_store = 1, // parent is 1/2 = 0 t_vol
t_page = 2, // parent is 2/2 = 1 t_store
t_kvl = 3, // parent is 3/2 = 1 t_store
t_record = 4, // parent is 4/2 = 2 t_page
t_extent = 5,
t_user1 = 6,
t_user2 = 7, // parent is t_user1
t_user3 = 8, // parent is t_user2
t_user4 = 9 // parent is t_user3
};

struct user1_t {
uint2_t u1;

user1_t() : u1(0) {}
user1_t(uint2_t v1) : u1(v1) {}

};

struct user2_t : public user1_t {
uint4_t u2;

user2_t() : u2(0) {}
user2_t(uint2_t v1, uint4_t v2): user1_t(v1), u2(v2) {}

};

struct user3_t : public user2_t {
uint4_t u3;

user3_t() : u3(0) {}
user3_t(uint2_t v1, uint4_t v2, uint4_t v3)

: user2_t(v1, v2), u3(v3) {}
};

struct user4_t : public user3_t {
uint4_t u4;

user4_t() : u4(0) {}
user4_t(uint2_t v1, uint4_t v2, uint4_t v3, uint4_t v4)

: user3_t(v1, v2, v3), u4(v4) {}
};

bool operator==(const lockid_t& p) const;
bool operator!=(const lockid_t& p) const;
friend ostream& operator<<(ostream& o, const lockid_t& i);

uint4_t hash() const;
void zero();

name_space_t lspace() const;

Release Jan 1999 2



ss m::lock(ssm) Shore Storage Manager ss m::lock(ssm)

vid_t vid() const;
const snum_t& store() const;
const extnum_t& extent() const;
const shpid_t& page() const;
const slotid_t& slot() const;
uint2_t u1() const;
uint4_t u2() const;
uint4_t u3() const;
uint4_t u4() const;

void set_ext_has_page_alloc(bool value);
bool ext_has_page_alloc() const ;

NORET lockid_t() ;
NORET lockid_t(const vid_t& vid);
NORET lockid_t(const extid_t& extid);
NORET lockid_t(const stid_t& stid);
NORET lockid_t(const lpid_t& lpid);
NORET lockid_t(const stpgid_t& stpgid);
NORET lockid_t(const rid_t& rid);
NORET lockid_t(const kvl_t& kvl);
NORET lockid_t(const lockid_t& i);

NORET lockid_t(const user1_t& u);
NORET lockid_t(const user2_t& u);
NORET lockid_t(const user3_t& u);
NORET lockid_t(const user4_t& u);

void extract_extent(extid_t &e) const;
void extract_stid(stid_t &s) const;
void extract_lpid(lpid_t &p) const;
void extract_rid(rid_t &r) const;
void extract_kvl(kvl_t &k) const;
void extract_user1(user1_t &u) const;
void extract_user2(user2_t &u) const;
void extract_user3(user3_t &u) const;
void extract_user4(user4_t &u) const;

bool IsUserLock() const;

void truncate(name_space_t space);

lockid_t& operator=(const lockid_t& i);

};

ostream& operator<<(ostream& o, const lockid_t::user1_t& u);
ostream& operator<<(ostream& o, const lockid_t::user2_t& u);
ostream& operator<<(ostream& o, const lockid_t::user3_t& u);
ostream& operator<<(ostream& o, const lockid_t::user4_t& u);

istream& operator>>(istream& o, lockid_t::user1_t& u);
istream& operator>>(istream& o, lockid_t::user2_t& u);
istream& operator>>(istream& o, lockid_t::user3_t& u);

Release Jan 1999 3



ss m::lock(ssm) Shore Storage Manager ss m::lock(ssm)

istream& operator>>(istream& o, lockid_t::user4_t& u);

DESCRIPTION
Locks are acquired implicitly by many ss m methods. For those situations where more precise
control of locking is desired, the following methods allow explicit locking and unlocking.

The class representing a generic lock is a lockid t, described above. The SSM acquires locks on
pages, extents, records, stores, and volumes. The extent locks are NOT to be used by
VASs, simply because the extent-based structure of the SSM is likely to change in future releases.

lock(lvid, mode, duration, timeout)

lock(lockid, mode, duration, timeout)

The lock method is used to acquire a lock on volume, index, file or record. The first ver-
sion of the method locks the volume specified by lvid. The second version locks the index,
file or record specified by lockid. The mode parameter specifies the lock mode to acquire.
Valid lock mode t values are listed in
basics.h. The duration parameter specifies how long the lock will be held. Valid values

(among those listed in basics.h) are: t instant, t short and t long. The timeout param-
eter specifies how long to wait for a lock.

unlock(lockid)

The unlock method releases the most recently acquired lock on the file, index, or record
identified by lockid. Note, that only locks with duration t short can be released before
end-of-transaction.

query lock(lockid, mode, implicit)

The query lock method the mode of the lock held on lockid by the current transaction.
The lock mode is returned in mode and will be NL (no lock) if not locked. If implicit is
false then only explicit locks on lockid will be considered. For example, if file F is SH
locked and a query is made about a record in F, the mode returned will be NL. How-
ever, if implicit is true, then SH would be returned for this example.

Lock Cache Control
Each transaction has a cache of recently acquired locks The following methods control the use of
the cache. These are not supported methods and may be removed in later versions of the soft-
ware. Note: that the methods only affect the transaction associated with the current thread.

set lock cache enable(enable)

The set lock cache enable method turns on the cache if enable is true and turns it off
otherwise.

lock cache enabled(enabled)

The lock cache enabled method sets enabled to true if the lock cache is on.

Escalation
The lock manager will escalate from a record lock to a page lock, from a page lock to a store lock,
and from a store lock to a volume lock, to reduce the number of locks in the table. You can con-
trol the thresholds for escalation throught the methods get escalation thresholds and
set escalation thresholds. The default values are as follows:

Release Jan 1999 4



ss m::lock(ssm) Shore Storage Manager ss m::lock(ssm)

record-to-page
5

page-to-store
25

store-to-volume
0

In all cases, a threshold of 0 prevents escalation.

When escalation is in use, it be prevented on selected volumes or other lock-able objects through
the three dont escalate methods. If the argument passOnToDescendants is false, locks acquired
on objects below the volume (or given lockid) in the lock hierarchy will still be escalated according
to the thresholds.

ERRORS
TODO

EXAMPLES
TODO

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number
018 (formerly 8230), monitored by the U.S. Army Research Laboratory under contract
DAAB07-91-C-Q518. Further funding for this work was provided by DARPA through Rome
Research Laboratory Contract No. F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All
Rights Reserved.

SEE ALSO
transaction(ssm), id(ssm), and intro(ssm).

Release Jan 1999 5


