
The Shore Storage Manager Architecture1

The Shore Project Group
Computer Sciences Department

UW-Madison
Madison, WI
Version 2.0

Copyright c©1994–9
Computer Sciences Department, University of Wisconsin—Madison.

All Rights Reserved.

May 31, 2008

1This research is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAAB07-92-C-
Q508. Further funding for this work was provided by DARPA through Rome Research Laboratory
Contract No. F30602-97-2-0247.

1 Preface

This document describes the storage manager built for the SHORE (Scalable Heterogeneous
Object Repository) project. The SHORE Project ran from 1992 through 1996, and among
its goals was to build a typed, persistent object base with language heterogeneity and Unix
compatibility. SHORE’s type system, Unix compatibility, and language support are provided
in layers above the storage manager. The storage manager provides persistence of untyped
data, concurrency control and recovery, and other conventional storage manager functions.

Several research projects have been using this storage manager:

• Paradise at http://www.cs.wisc.edu/paradise

• Predator at http://simon.cs.cornell.edu/Info/Projects/Predator

• DimSum at http://www.cs.umd.edu/projects/dimsum/

In order that researchers can use and extend the storage manager, this document is meant to
describe some of the history, rationale and conventions of the code. It is not a description of
the programming interface. It is meant to be a companion to the source code.

1.1 Historical background

The SHORE project software was intended to be a tool for research. Some researchers used the
storage manager in toto, using it as a base for their prototypical software. Others modified the
storage manager. In particular, two graduate students’ theses were related to storage manager
functions. For this reason, it was expected that some parts of the storage manager would be
replaced as the researchers’ work matured. Two functional areas in particular were written by
graduate students whose work was never installed into the public storage manager releases: co-
operating distributed servers (so-called multi-server capabilities) and disk space management.
Near the end of the SHORE project, the sole in-house user of the storage manager was Par-
adise, which did its own data distribution above the storage manager layer, so integrating the
multi-server functionality was not a high priority. Likewise, the space management work was
completed about the time the SHORE project ended, hence that work was never installed. As
a result, the space management module of the storage manager is correct, but not particularly
efficient in space or time.

Gray and Reuter: is a good place to start reading about some of the basics of storage manage-
ment; much of the basic design of the storage manager comes from ideas in this book.

Another resource is the Mohan papers about ARIES. The storage manager implements ARIES
recovery and the B+-tree implementation is straight from Mohan’ ARIES/KVL and ARIES/IM
papers.

Finally, much of the source code predates the C++ standard and standard template library
(STL), so there is some duplication of functionality between the libraries in the storage manager

1

and the standard template library. Similarly, C++ exception handling is not used in the storage
manager because it was non-existent when much of this code was written.

2 Organization

The storage manager is a set of libraries. The software was designed for clean separation of
functionality into modules with the hope of maximizing unit-testing and software reuse. The
organization of the modules into files and directories is, to some extent, an historical artifact
of SHORE, but, in general, it reflects a desire to minimize physical (compile- and link-time)
dependencies among files, libraries, and unit tests.

in the source tree contain a subdirectory called tests/, which contains unit-tests for the classes
defined in the directory above it.

2.1 Configuring and building

There are compile-time configuration constants (e.g., page size, extent size) that control the
configuration of the entire package. directory

• config/

contains a file called shore.def where some of the compile-time options are defined. For
example, to configure the storage manager so that it uses a 32KB page size, you must do as
follows:

cd config/
cp shore.def.example shore.def
vi shore.def
:/SM_PAGESIZE
:s/8192/32768/

The default shore.def file contains resonable options for most users, however, those readers
who expect to modify the storage manager might take a look at this file.

Starting with the 5.0 release, GNU Autotools are used for configuration and building the
storage manager. To find out what configuration options are available after you un-gzip and
un-tar the release tarball, simply run:

./bootstrap

./configure --help

2

Beginning with the 5.0 release, the software is tested only on Linux (CentOS, Slackware), I86
hardware. Because this release is derived from older releases that were built on various other
platforms, the software might still be built on other platforms, such as Solaris, MacOS, and
FreeBSD. The old reliance on Imake is gone, however Perl is still used to generate a number
of include files and C++ .cpp files. Support for Visual C++ has been dropped.

The source directories have some circular dependencies due to the provision for virtual tables.

2.2 Conventions

2.2.1 Conventions used in this document

A convention used in this document is that courier font is used wherever references are made
to file names, keyboard input, and code in the storage manager.

Descriptions of classes in this document are not complete; often constructors, destructors, and
operators are omitted from the descriptions here. This document is meant to be a companion
to the source code.

2.2.2 Coding conventions

Early in the life of the SHORE project, the storage manager used these conventions in the
code, but the conventions were not strictly held:

Types end in t, as in smsize t, unless they are persistent, in which case they end in s, as
in sinfo s.

Manager classes (of which there is generally a single instance) end in m, as in lock m (the
lock manager).

Private methods and data members start with an underscore, while the names of public
ones do not.

Namespaces were not part of C++ at the time this code was written, so classes and enumer-
ations were used to limit global namespace pollution.

Named types are used heavily in place of primitive types like int, short. Instead, the
storage manager uses smsize t, slotid t, and the like.

Iterator classes end in i, as in scan index i, an iterator for scanning an index.

3

2.2.3 File naming conventions

Make files for are generated by automake (autoconf, etc). One should never edit a Makefile.

Source files included by other source files have .h suffixes, and all C++ sources are in files
with .cpp suffixes.

Generated source files end in gen and a standard prefix. For example, some code generated
for logging resides in files logdef gen.cpp and logfunc gen.h.

Perl script input files , from which code is generated, have .dat suffixes.

Perl scripts have .pl suffixes.

Include files that describe persistent data structures end in s.h, as they contain descriptions
of types that end in s.

2.2.4 Configuration conventions

C preprocessor macros control both the build environment through Makefiles and the com-
pilation environment through the use of -Dmacro and the C-preprocessor macros in the file
shore.def.

2.2.5 Working around compiler bugs

The file fc/w workaround.h contains C preprocessor macros that both identify and, when
possible, work around compiler bugs. Comments near the macro definitions describe the bug.
It is not always possible to work around a bug with a simple macro; in such cases, comments
in the code should identify the nature of the bug and the work-around.

2.2.6 Unit-testing

Most directories have a set of unit tests. These are short programs that test one or more classes
defined in the containing directory. These tests can be run by invoking the shell script all.

The unit tests are not built my the make files in the containing directory. One must descend
to the test directory and type

make

to build the tests. The top-level make files have a target check, which causes the tests to be
built and run.

4

2.2.7 Error codes

Each directory has one or more sets of error codes. An error code is an unsigned integer value
that is associated with an error message (character string). A set of error codes is a group of
values that share a bit mask. Sets are generated by a Perl script from a .dat file. Error codes
are described in more detail below.

2.3 Generated sources

Some of the sources in the storage manager are generated from Perl scripts. Most of the Perl
code that is used resides in various .pl files in the directory

• tools/

This directory also contains some scripts that are run on an occasional basis, such as those for
updating copyrights.

2.4 Source directory hierarchy

The directory

• src/ —contains sources for four libraries, as follows:

• Common types: fc/

• SHORE threads: sthread/

• More common types:common/

• Storage manager:sm/

These directories are described in sections below.

3 Common types - fc/

This library, called libfc.a, contains template classes for linked lists, hash tables, for class-
specific memory allocation, reference-counted pointers, vectors of arithmetic values, and mis-
cellaneous low-level functions. Also included are support for extensible (generated) sets of
statistics, and OS-specific statistics. Each layer in the source hierarchy keeps its own statistics,
but uses functions provided here.

Nothing in this directory is aware of threads, so none of the code here is thread-safe.

The include files in this directory are exported for client use. That is, they are copied to
installed/include with the make target “make install”

5

3.1 Virtual tables

This library also contains some classes whose purpose is to present to servers certain low-level
information in such a way that servers can easily turn the information into “virtual tables”
There are some circular dependencies among the source directories in order to support virtual
tables, but the build mechanism takes care of that, as described above.

The premise is that a server will collect miscellaneous run-time information from the stor-
age manager and put that information in to a table (relation). The information gathered
is from various and sundry classes in the storage manager, some of them hidden deep be-
neath the server-storage manager API. To allow the server access to the (sometimes private)
data for these disparate classes, we provide a simple canonical form (vtable info array t)
to which each class converts its data for the server to receive. For example, when the
server collects up-to-date transaction data from the storage manager it calls a storage man-
ager method (ss m::xct collect(vtable info array t &t), which in turn, visits each trans-
action instance and puts all the transaction data into a 2-dimensional array of values (a
vtable info array t), the actual argument for t. Each t[i] is a vtable info t, which
represents a tuple or row in the table. T[i][j] is a value in the column j of the table, and the
domain of j is an enumeration defined in vtable enum.h

Every value in the table is represented by a string; it is already in string form.

Files: vtable info.h, vtable info.cpp, vtable enum.h, *collect gen.h

3.2 Error logging

Here you will find a set of classes, ErrorLog and debug, which provide low-level debugging
(tracing). This is for logging to an OS file, not to a database storage structure or to a recovery
log. These classes are meant to provide a service like the Unix syslog service with C++ ostream
syntax. For example, the storage manager creates an instance of an error log, which it uses as
follows:

smlevel_0::errlog->clog << error_prio
<< ‘‘ss_m cannot be instantiated more than once.’’
<< flushl;

The message will be sent to the log only if the storage manager’s runtime configuration option

sm_errlog_level

is higher than or equal to the level of the message. The levels are represented by the enumer-
ation

6

enum LogPriority {
log_none, log_emerg, log_fatal, log_alert,
log_internal, log_error, log_warning,
log_info, log_debug, log_all

};

The I/O manipulators error prio, warning prio, info prio, etc., correspond to the log
priorities. The storage manager uses only these three I/O manipulators in its messages.

A special log,

class __debug : public ErrLog { ... }

is used when the storage manager is built with -DDEBUG. The macros DBG() and DBGTHRD()
send their output to this class along with the line number and file name of the source file in
which the macro appears. The class prints to a file only if the class’s source file list contains
the name of the file in which the macro is used. This allows tracing to turned on and off on a
per-source file basis. The destination for tracing messages is determined by

setenv DEBUG_FILE <filename>

and the source file list is determined by the value of the environment variable DEBUG FLAGS,
for example:

setenv DEBUG_FLAGS ‘‘sm.cpp vol.h’’

Files: errlog.h, errlog.cpp, errlog s.h, debug.h, debug.cpp

See also: man/mancommon/errlog.pdf, man/manssm/debug.pdf

3.3 Error codes and return codes

Errors are reported from functions by returning an instance of class in this library, called
w rc t, with the alias rc t. This class supports stack traces and integer-to-string mappings
for library-specific error sets. The size of the stack trace is a compile-time option (max trace
enumeration constant in w error.h.

An instance w rc t is the size of a pointer. It is, in fact, a reference-counted pointer to an
instance of w error t. The w error t keeps the stack trace and error code. Operations on
w rc t are translated to operations on the underlying w error t. If a function returns an
instance of a w rc t, and that return value is never checked, the destructor for the return value
prints an error message: ‘‘Error not checked’’ This is meant to encourage complete
error-checking on the part of programmers.

7

Files: w rc.h, w rc.cpp, w error.h, w error.cpp, w sptr.h

See also: man/manfc/error.pdf, man/manfc/rc.pdf, man/manssm/errors.pdf

3.4 Dynamic memory allocation

The classes

• auto delete t and

• auto delete array t

are used to clean up heap-allocated objects when leaving a scope, similar to
the auto ptr class template in the C++ standard template library.

Files: w autodel.h

3.4.1 Factories

Throughout the storage manager, there are examples of classes of fixed size
that are instantiated often. A set of template classes allows the storage
manager to create factories that allocate a set of instances to dole out at a
later time. The template /tt w fastnew t does this, with the intent of
avoiding checkerboarding memory in the standard library malloc/free space.
The template class w threadnew t

further allows the allocated space to be accounted for, on a per-thread basis.

Both of these classes are derived from a common base class, w factory t ,
which can be configured to do some detailed accounting of the allocated
memory. When compiled with

#define INSTRUMENT_MEM_ALLOC

this class calls two callback functions to account for the space allocated,
and it links together all allocated
memory. The metadata in the memory header contains a heap identifier of the form
w heapid t which is assigned and used by the callback functions.

This library defines the callback functions

extern w_heapid_t w_shore_thread_alloc(
size_t bytes,
bool is_free);

8

extern void w_shore_thread_dealloc(
size_t bytes,
w_heapid_t h);

The callback functions defined in this library account for all allocations as
allocated from a global heap,, which is to say that it keeps a single counter
for all allocations; w shore thread alloc() always returns the heap id

w_heapid_t w_no_shore_thread_id;

and w shore thread dealloc() ignores its heap identifier argument.

The threads library contains a different implementation of the callback
functions, which account for the allocation and freeing of space in the
running thread, and use the identifier of the running thread for the heap
identifier.

These classes contain the necessary methods to collect the memory-allocation
statistics into a virtual table.

Files: w factory.h, w fctory.cpp, w factory fast.h, w factory fast.cpp,
w factory thread.h, w factory thread.cpp, w shore alloc.h, w shore alloc.cpp

3.5 OS statistics

The class unix stats can be used to start and stop the collection of the
resource usage statistics available on different Unix flavors. An example of
its use is in fc/tests/stats.cpp.

Files: unix stats.h, unix stats.cpp

3.6 Bitmaps

Files: w bitmap.h, w bitmap.cpp, w bitmap space.h

3.7 Lists

The storage manager makes heavy use of doubly-linked lists, provided by

template <class T> class w_list_t

and its companion iterator

9

template <class T> class w_list_i.

To use these lists, a structure or class must contain a w link t for each
list that it wants to be put on at any one time. For example,

struct foo {
int bar[10];
short barnone;
w_link_t link;
};

The list keeps track of the offset of the link that it will use, so that
offset is given when the list is constructed:

typedef w_list_t<foo> foolist;
foolist FL(offsetof(foo, link));
foo* F = new foo;
...
FL.push(F); // put F on the front of the list
// OR
FL.append(F); // put F at the end of the list

To iterate over the list:

w_list_i<foo> i(FL);
while (F = i.next())) {
// use F
}

To remove items from the list:

F =FL.pop();

Lists can be ordered, as implemented by the subclassed templates

template <class T, class KEY> class w_ascend_list_t;
template <class T, class KEY> class w_descend_list_t;

Such a list is constructed by giving the offset of a key as well as the offset
of the link:

w_descend_list_t<foo,short) list(offsetof(foo, barnone),
offsetof(foo, link));

10

The test program tests/list3.cpp demonstrates the use of these lists.

Files: w list.h, w listm.h

See also: man/manfc/list.pdf

3.8 Queues

Circular queues are implemented by the classes

template <class T> class w_cirqueue_t;

which, unlike the lists, does not link its contents; rather it maintains an
array of pointers. The size of the array is given when the queue is
constructed. The iterators for a queue are

template <class T> class w_cirqueue_i;
template <class T> class w_cirqueue_reverse_i;

These classes are demonstrated by the test programs tests/cq1.cpp and
tests/cq2.cpp.

Files: w cirqueue.h

3.9 Timers

Files: w timer.h, w timer.cpp

3.10 Shared memory

The Unix implementation of the storage manager uses shared memory for
communication among processes. The system calls for allocating and attaching
shared memory are encapsulated in a class w shmem t.

Files: w shmem.h, w shmem.cpp

11

3.11 Pseudo-random numbers

Some of the test programs (ioperf and smsh) use pseudo-random numbers. The
class random generator encapsulates the platform-specific differences in the
random-number library functions.

Files: w random.h, w random.cpp

3.12 Heaps

Files: w heap.h

4 SHORE threads - sthread

The storage manager uses a home-grown threads package that is derived from
NewThreads (from the University of Washington). The API is a portable OS
interface. The threads are dynamically allocatable, and their maximum stack
sizes may be determined at the time they are allocated. The library contains
a main thread, an idle thread, and a prioritized ready queue for all
user-defined threads. All scheduling is non-preemptive. This library runs on
NT, but it is not a mapping to native NT threads.

These threads can be built to use POSIX threads (default).

This layer has been ported to the following Platforms:

• Solaris 2.5/Sparc, x86

• SunOS/Sparc

• AIX4.1/RS6000

• Windows NT/x86

See also: man/mansthread/sthread t.pdf

4.1 Non-blocking I/O

The first implementation ran on several variants of Unix, providing
non-blocking I/O by forking off processes that communicate via shared memory.

12

Under NT, the cooperating processes are NT threads within the server process.
For each disk, a separate [diskrw (disk read-write) process (or NT thread) is forked by
the storage manager process. Under Unix, there is also a master diskrw process that cleans up
after catastrophic failures. (It does not do recovery or restart – it just cleans up shared mem-
ory.) On Unix, the diskrw process communicates with the server process using a shared-memory
queue and a pipe. The pipe is not used to convey information other than to “kick” the server
into checking the shared-memory queues. Process synchronization on the shared-memory queue
is accomplished with a test-and-set instruction, if the architecture has one, else with spin locks
(at most two processes are vying for any one critical section). On NT, since the diskrw and
server processes share address spaces, there is no need for the queues and pipes, but because
the port to NT is a “shallow” i.e., minimal-effort, port, there is a pipe between threads, imple-
mented over TCP, which allows the threads layer to work, albeit with unnecessary overhead.

Files: diskrw.h, diskrw.cpp, sthread.h, sthread.cpp, spin.h, tsl.h, tsl.S

4.2 Thread synchronization

The threads package provides synchronization services that are used throughout the storage
manager:

smutex t —a mutual exclusion variable (lock, mutex variable, binary semaphore) whose
methods are

acquire(timeout)(wait, P)
release() (signal, V)

Only a holder of (a thread that has acquired) a mutex can release it. A mutex has at most
one holder at any time.

scond t —a condition variable (a list of waiters, protected by a mutex of the caller’s choice),
whose methods are

wait(smutext_t, timeout)
signal()
broadcast()
bool is_hot().

Like condition variables described by Silberschatz,, signaling a scond t when no threads are
waiting is a null operation. Any thread can signal a condition variable.

The implementation assumes a uniprocessor environment, so waiting on a mutex
or a condition variable always means being put on a list; spinning is not used.

13

Files: sthread.h, sthread.cpp

See also: man/mansthread/sthread t.pdf, man/mansthread/sevsem t.pdf,
man/mansthread/smutex t.pdf, man/mansthread/scond t.pdf,
man/mansthread/file handlers.pdf

4.3 Statistics

The library keeps some statistics that help debugging and performance analysis. These statis-
tics are not thread-safe, hence, they are approximate. The statistics are kept in a global
variable

extern sthread stats SthreadStats;

The statistics kept include the number of

• I/O system calls

• select() system calls (on Unix)

• times a thread awaited a latch

• times a thread awaited a condition variable

• times a thread awaited a mutex

An example of its use is in tests/ioperf.cpp.

Files: sthread stats.dat, sthread stats.cpp

See also: man/manssm/statistics.pdf

4.4 I/O performance

The test directory contains several unit tests and one very useful program, ioperf.
Ioperf is an example of a program that uses the threads for non-blocking I/O in
a minimal way, so that it is easy to measure the performance of I/O through the
threads package. By default, it performs sequential I/O. If its name is randomioperf
(by way of a hard link or a rename), it performs pseudo-random I/O instead.

Files: tests/ioperf.cpp

14

5 Common Types - common/

This library (libcommon.a), contains some types that use types defined by the threads library.

It was originally meant to contain types that are shared with client-side code (clients of value-
added servers). It also contains some things that are here only for historical reasons, and could
just as well be in libfc.a.

5.1 Hash table

A fixed-sized, thread-safe hash table with LRU replacement.

Files: hash lru.h, hash lru.cpp

5.2 Transaction IDs

Files: tid t.h, tid t.cpp

5.3 Data vectors

Files: vec t.h, vec t.cpp, vec mkchunk.cpp, zvec t.h

See also: man/mancommon/vec .pdf

5.4 Basic types

Files: basics.h, basics.cpp, devid t.h, devid t.cpp, vid t.h, vid t.cpp,
stid t.h, stid t.cpp

See also: man/mancommon/nbox t.pdf, man/mancommon/lid t.pdf

5.5 Options

Files: opt error.dat, option.h, option.cpp

See also: man/mancommon/options.pdf, man/manssm/init.pdf,
man/manssm/ssm options.pdf

15

5.6 Latches

Besides mutexes and condition variables, the storage manager uses latches to synchronize multi-
thread access to memory. The latch implementation is located in common/, although it will
may be moved to sthread/.

A latch is, like a database lock, can have more than one holder, and can, held in shared or
exclusive mode.

Like a mutex, a latch does not perform deadlock detection when a thread waits on it. Latches
are implemented by the

class latch_t {
public:

latch_t(const char *const name=0); // latches // are named
~latch_t();

w_rc_t acquire(latch_mode_t m, timeout = WAIT_FOREVER);
void release();
w_rc_t upgrade_if_not_block(bool\& would_block);

bool is_locked() const;
int lock_cnt() const;
latch_mode_t mode() const;

bool is_hot() const;
int num_holders() const;
bool is_mine() const;
const sthread_t * holder() const;

};

At most 4 threads can hold a single
latch (in shared mode, of course) at any one time. This limit is a compile-time constant.

Files: latch.h, latch.cpp

See also: man/mancommon/latch.pdf

The class auto release t provides for automatic releasing of a mutex when leaving scope.

Files: auto release.h

16

5.7 Key-value locks

Files: kvl t.h, kvl t.cpp

5.8 Regular expressions

Because the options-processing
code uses regular expressions, a copy of freely-available GNU regular expression code is in-
cluded here. The code has been modified only to suit the storage manager build environment.

Files: regex.h, regex.posix.h, regex2.h, regex cclass.h, regex cname.h,
regex engine i.h, regex utils.h, regcomp i.h regerror i.h, regcomp.cpp,
regerror.cpp, regex.posix.cpp, regex engine.cpp, regexec.cpp, regfree.cpp

5.9 Logical IDs

The “logical” volume ID is the only holdover from the original logical-id service
of the storage manager. A logical volume id consists of an IP address (a.b.c.d)
and a 4-byte unsigned integer derived from the time at which the ID is created
(seconds t), with the intent to be a unique identifier. Volumes are given local han-
dles when they are mounted. Logical volume IDs are not embedded in record ids.

Files: lid t.h, lid t.cpp

6 Storage Manager - sm/

The storage manager library (libsm.a) is the largest library in the group. Because it en-
compasses a lot of functionality, we break it into a set of smaller, somewhat inter-dependent
modules. There is no direct correspondence between modules (identified below) and source
files, although the names of the source files should be somewhat indicative of their content.

Before we delve into the various parts of the storage manager, a few words are in order con-
cerning the storage manager’s use of threads, interactions with clients and other servers, and
class instantiations.

6.1 Threads

The storage manager is a library. The server (code that uses the library) is responsible for its
interactions with clients and cooperating servers. For the server to accomplish this without

17

blocking the entire process, the server must use the threads library that the storage manager
uses.

This threads package can be built to use POSIX threads, which is the default configuration.

It is assumed that the server will run as a collection of threads (of the SHORE threads variety).

Some of those threads will be invoking the storage manage; others might not. For a thread
to use any storage manager functions, it must be a special thread: one derived from the class
smthread t which is derived from sthread t , the basic SHORE thread. Before any storage
manager services can be used, the server will create a single instance (one instance in the
address space of the process) of the storage manager:

sm = new ss_m();

At this time, the storage manager performs recovery and creates instances of the various
manager classes that compose the storage manager: it creates a lock manager, a buffer pool
manager, etc. Some of these managers create instances of smthread t threads that run in the
background. Thereafter, all storage manager activity occurs in server threads (presumably
acting on behalf of clients).

Synchronization among threads is accomplished with smutex t, s cond t (from the threads
package) and latch t (built using smutex t) classes.

Files: smthread.h, smthread.cpp, smthreadstats.cpp

See also: man/manssm/smthread.pdf

6.2 Identifiers

The storage manager supports both logical and physical identifiers. This document describes
only the physical identifiers. Each class in the API has pairs of methods – one method that
takes logical identifiers and one that takes physical identifiers. The logical ID methods can be
understood from the descriptions of physical-ID methods in this document.

Physical IDs The physical IDs that are used throughout the storage manager are as follows:

volume ID —given to a volume when the volume is formatted. Implemented by the class
vid t. This is really a local handle, whose value depends on how the volume is mounted.
It is not “physical” in the obvious sense.

store ID (file ID, index ID) —identifies all storage structures. Implemented by the class
stid t, which contains a vid t and a store number, snum t.

page ID —implemented by the class lpid t, which contains a stid t and a page number,
shpid t.

18

record ID —implemented by the class rid t, which contains a lpid t and a slotid t.

See also: man/manssm/id.pdf

6.3 Disk space management (Ävol m, io m)

The volume manager manages space on a volume. The storage manager API permits extensible
volumes, but the implementation is limited to one volume per operating system disk partition
or file.

The API:

- A volume is a set of pages on a single “logical device” which can contain any number of
volumes, depending on how it is formatted.

- A logical device consists of one or more physical devices. A physical device is a Unix raw
partition or an OS file.

The IMPLEMENTATION:

- The storage manager permits at most one volume per logical device. a logical device ==
one physical device.

- All pages are the same size (a compile-time constant). This is an assumption that per-
vades the storage manager.

See also: man/manssm/volume.pdf, man/manssm/device.pdf

The storage manager modules use different types of pages. Each module derives its own
private page types from a common base class. The common base class manages the common
page header and the slot table for the page. Thus, every page is a slotted page, even though
some managers use only one slot. (This gives rise to some confusing terminology in the storage
manager: slotted page usually refers to file pages only.) The volume manager allocates and
deallocates pages without regard to their type. The volume manager is responsible only for
a few derived page types: those that contain only metadata for managing the allocation and
deallocation of pages.

Together, each page type and the common base class for pages account for each byte on the
page. The accounting functions distinguish metadata from user data from bytes wasted on
alignment This permits a complete accounting of every byte on a volume.

The volume manager arranges pages on a volume into stores. Pages are allocated to stores in
extents (groups of contiguous pages). Hence, the unit of reservation is an extent, while the

19

unit of allocation is a page. There is NO clustering support in the storage manager other than
extents. The number of pages in an extent is a compile-time constant; the default is 8.

Regardless of its page type, every reserved or allocated page resides in a store.
Each store has a property that determines the way updates to the store are logged.

See also: man/manssm/enum.pdf
At any given time, each page is either fully logged (all updates to the page are logged) or not
logged (no updates to the page are logged). The allocation metadata are kept on pages that
are always fully logged.

Each store has a logging property whose meaning can be expressed in terms of the logging
properties of the pages in the store, as follows:

Regular —a regular store’s pages are fully logged The store is marked with a store flag t
value, st regular.

Temporary —a temporary store’s pages are not logged. A temporary store can persist be-
tween transactions. It is removed on mount or dismount of its volume. The store flag for
a temporary store is st tmp.

Load —a store created with this property starts out looking like a temporary store, but it is
changed to a regular store when its creating transaction commits. This change is enforced
by the storage manager. Such a store has a store flag of st load file .

Insert —a store cannot be created with this property. A regular store can be changed to an
insert store (st insert file), which allows newly allocated pages to be unlogged until
commit, and committed pages to be regular. Only stores that are used for files can be
used this way (stores used by indexes cannot).

This permits bulk-loading with minimal logging, followed by fully-logged updates, followed by
large, minimally-logged append operations. Changing the logging property of a store does not
require updating each page in the store.

A transaction creates and deletes stores when it creates and deletes storage structures. Deletion
of stores is postponed until the transaction commits so that the pages allocated to the deleted
store remain reserved. lest the deleting transaction aborts. The deleting transaction could (in
theory) reallocate such pages, however that is never done. Instead, when a store is deleted by a
transaction, the head of the store is marked for deletion, and the store’s identifier is appended to
a list held by the transaction. When the transaction ends, the stores on the list are destroyed if
the transaction commits, or not it the transaction aborts. Stores that are marked st load file
by a transaction are also put on a list held by the transaction. At commit time, the stores on
this list are re-marked so they become st regular. Because these are logged actions, and they
occur if and only if the transaction commits, the storage manager guarantees that the ending
of the transaction and the re-marking and deletion of stores is atomic. This is accomplished
by putting the transaction into a state xct freeing space (see Transaction manager), and
writing a log record that indicates the state change. The space is freed, stores are converted to

20

regular stores as needed, and a final log record is written to indicate that the transaction has
truly ended. In the event of a crash while a transaction is freeing space, the recovery module
searches all the store metadata for stores marked for deletion and deletes those that would
otherwise have been missed in the redo phase.

Pages are reserved for a store in units of ss m::ext sz, a compile-time constant that indicates
the size of an extent. An extent is a set of contiguous pages. Extents are represented by
persistent data structures, extnode t, which are linked together to form the entire structure
of a store. A stnode t holds metadata for a store and sits at the head of the chain of extents
that forms the store, and the extents in the store list are marked as having an owner, which
is the store id of the store to which they belong. A store id is a number of type snum t, and
an extent id is a number of type extnum t. Scanning the pages in a store can be accomplished
by scanning the list of extnode ts. Each extent has a number, and the pages in the extent
are arithmetically derived from the extent number; likewise, from any page, its extent can be
computed. Free extents are not linked together; they simply have no owner (signified by an
extnode t::owner == 0).

Page allocation and deallocation Searching for free extents is a round-robin scheme that
involves inspecting the extnode t structures on a volume. Since these structures sit at the head
of the volume on pages dedicated to them, such searches are relatively inexpensive. Similarly,
searches for free stnode t

structures are limited to a few pages at the head of a volume. When a volume is formatted,
the first several pages of the volume are dedicated to store and extent metadata; the number
of pages so dedicated is a function of the size of the volume given to the format method by
the server. Store numbers are 32-bit unsigned values and extent numbers are 64-bit unsigned
values (unless configured without large volumes : configure –disable-largevolumes), so there is
a limit of 4 billion extents on each volume, and the number of pages per extent is configurable.
Configuring and building with the defaults allows 4 * 8 = 32 billion pages of 8KB each, or
volumes of 256 GB.

Page allocation depends on a policy that differs with context: When objects are appended to
a file by means of the append-object API (append file i), pages are allocated at the end of
the file by locating the last extent and allocating pages in that extent, and adding extents as
needed. When objects are created by any other API method, extents in the file are searched
and unallocated pages in allocated extents may be used. Such pages are found by looking in
a cache of recently-used pages, and by a linear search through the file as a last resort. Before
resorting to a linear search, the storage manager consults histogram (hints) that it keeps for
recently-used files, to see if a search is likely to yield anything.

Pages and extents that are freed by a transaction are kept in a list for deferred deallocation
when the transaction commits. This prevents other transactions from allocating such pages
and extents and thereby interfering with rollback.

One-page storage structures Creating a file or an index normally results in allocating
a minimum of one extent , since the storage structures allocate stores An extent is a set

21

of contiguous pages, so, this can results in waste if the storage structure will never need
so many pages. To avoid this waste, a volume has a special store whose pages can be al-
located to storage structures individually (rather than by the extent). This is used by the
B-tree implementation to allow indexes to start out small (one page) and grow to a store
when needed. (This can only be done if the index is known by some logical handle in
the SM client (a.k.a., server, value-added server, code that uses the SM API so that when
the index grows, its new physical id can be used.) This mechanism was put into place
for the higher layers of SHORE, which implemented Unix-style directories as small B-trees.

Files: sm io.h, sm io.cpp, vol.h, vol.cpp

Space reservation on a page Because fine-grained locking (slot-level – i;.e., records in
files) is the default, special care must be taken to reserve space on a page when slots are
freed (records are deleted) so that rollback can restore the space on the page. In the case
of B-trees, this is not a concern, since undo and redo are handled logically – entries can be
re-inserted in a different page. But in the case of files, records are identified by physical ID,
which includes page and slot, so records must be reinserted just where they first appeared.
Like Mohan’s scheme, the transaction freeing space can re-use the space it freed. Unlike Mo-
han’s scheme, this algorithm does not distinguish contiguous free space and non-contiguous
free space, nor does it use the Commit LSN idea to identify committed data.

Holes in a page are coalesced (moved to the end of the page) as needed, when the total free
space on the page satisfies a need but the contiguous free space does not. Hence, a record
truncation followed by an append to the same record does not necessarily cause the shifting of
other records on the same page.

Space-reservation metadata are kept in a

class space_t {
public:

int usable(xct_t* xd);
rc_t acquire(int amt, int slot_bytes,

xct_t* xd, bool do_it=true);
void release(int amt, xct_t* xd);
void undo_acquire(int amt, xct_t* xd);
void undo_release(int amt, xct_t* xd);

private:
tid_t _tid;
int2_t _nfree;
int2_t _nrsvd;
int2_t _xct_rsvd;

};

When a transaction destroys a record, it releases the space for the record’s slot by calling the
method release(amount in bytes, transaction ptr). The space t keeps track of

22

• the number of free bytes on the page (nfree)

• the number of reserved bytes on the page (nrsvd)

• the transaction ID of the youngest active transaction freeing space on this page (tid)

• the number of reserved bytes freed by the youngest transaction (Ä xct rsvd).

The free byte count is maintained for all page types. The rest are kept only for those page
types that require space reservation. When the youngest transaction to reserve space on a page
commits, the reserved space on that page can be released, and the page’s tid, nrsvd, and
xct rsvd are cleared.

A new page has no pre-allocated slots. Creating a record consists of

• find an allocated but unused slot, if there is one, and acquire space for the record

• if there are no unused slots on the page, allocate a new slot – this means acquire space
for the record and for the slot.

Destroying a record consists of releasing the space for the record and marking the slot free.
Space for the slot is never released because slots that are in use must keep their slot IDs (array
indices).

During rollback, a transaction can use any reserved space. During forward processing, a trans-
action can use any space that it

reserved. The space that was reserved by a transaction is known only if that transaction is
the youngest one reserving space on the page, so this scheme does not always allow every
transaction to make the maximum use of its reserved space on a page, but this scheme is
simple and requires very little overhead on the page, while guaranteeing that transactions can
roll back and reclaim whatever space they need on each page.

None of the changes to metadata in space t are logged. Instead, the operations of freeing
a slot and allo-
cating a slot are logged (with log record types page mark and page reclaim, respectively).

Files: page.h, page.cpp, page s.h

6.4 Buffer manager (bf m)

The buffer manager is the means by which all other modules (except the log manager) read
and write pages. A page is read by issuing a fix method call to the buffer manager. If the
page requested cannot be found in the buffer pool, the requesting thread blocks, waiting for a
cooperating process or thread to read in the page.

On Unix, the buffer pool is in shared memory, where cooperating processes can find and place
pages in response to read and write requests. On NT, a cooperating NT thread performs the

23

read. The buffer pool’s size is a run-time configuration option. All frames in the buffer pool
are the same size, and they cannot be coalesced, so the buffer manager manages a set of pages
of fixed size, and all cooperating processes trade in pages of the given size.

The buffer manager forks background threads to flush dirty pages to their respective disks. It
makes an attempt to avoid hot pages and to minimize the cost of I/O by sorting and coalescing
requests for contiguous pages. (This is the extent of disk scheduling that is done: the diskrw
process/thread does not do disk scheduling.) Groups of contiguous pages are written to disk
in a single vectored write request. Statistics kept by the buffer manager tell the number of
resulting write requests of each size.

The buffer manager writes dirty pages even if the transaction that dirtied the page is still active
(steal policy). Pages stay in the buffer pool as long as they are needed, except when chosen as
a victim for replacement (no force policy).

The replacement algorithm is clock-based (it sweeps the buffer pool, noting and clearing ref-
erence counts). This is a cheap way to achieve something close to LRU; it avoids much of the
overhead and mutex bottlenecks associated with LRU.

Fixing Pages The buffer manager maintains a hash table that maps page IDs to buffer
frame control blocks (bfcb t), which in turn point to frames in the buffer pool. The bfcb t
keeps track of the page in the frame, the page ID of the previously-held page, and whether it
is in transit, the dirty/clean state of the page, the number of page fixes (pins) held on the page
(i.e., reference counts), the recovery LSN of the page (see Log manager, Checkpoints, below),
etc. The control block also contains a latch. A page is always fixed in a latch mode, either
LATCH SH or LATCH EX.

Page fixes are expensive (in CPU time, even if the page is resident.

Each page type defines a set of fix methods that are virtual in the base class for all pages:
The rest of the storage manager interacts with the buffer manager primarily through these
methods of the page classes. The macros MAKEPAGECODE are used for each page subtype;
they define all the fix methods on the page in such a way that bf m::fix() is properly called
in each case.

static rc_t fix(page_s*& page,
const lpid_t& pid,
uint2_t tag,
latch_mode_t mode,
bool no_read,
store_flag_t& out_stflags,
bool ignore_store_id = false,
store_flag_t stflags = st_bad);

Fix() looks up the page identified by pid in the buffer pool, reading the page in if necessary.
The tag indicates the type of page this page should be (or will become), mode indicates the

24

latch mode to use when latching the page (frame). The argument no read, if true, prevents
the buffer manager from reading in the page if it’s not found. This allows the caller to grab a
page frame and immediately format the page in that frame. It is used when pages are being
allocated. The out stflags is where the buffer manager returns the flags that describe the
logging characteristics of the store to which the page belongs. This is a performance hack – it
allows the storage manager to avoid excess looking-up of store flags, which might entail reading
another page (the page containing the store header). If ignore store id is true, the buffer
manager allows the store ID on the page to differ from that in the page ID given. This happens
when a page is deallocated from one store and is allocated to another. The page is not always
written to disk after the deallocation. (For example, when a store is destroyed, rather than
visit each page in the store to change the store ID on the page, the head of the store is marked
free, and the pages are updated when they are read in by the buffer manager.) When a new
page is being allocated and formatted, a fix() call is made to allocate a frame for the page,
and the new store flags are passed to the buffer manager in that call. The buffer manager
keeps track of the store flags for each page (this is kept in the control block) because the buffer
manager is responsible for ensuring the WAL protocol is used; this involves inspecting the LSN
on each page, but pages of temporary files do not have legitimate LSNs, since changes to those
pages are not logged. All this means that the buffer manager has to treat some pages as special
cases, and those cases are detected by inspecting the store flags for a page.

If the page is still in the buffer pool, a refix is faster than a fix:

static rc_t refix(const page_s* p,
latch_mode_t mode);

Likewise, if a page is fixed, latched in share mode, and an exclusive latch is needed, it is
preferable to upgrade the latch than to unfix the page and fix it again in the desired mode:

static void upgrade_latch(page_s*& p,
latch_mode_t m);

When unfixing a page, the caller determines whether the page is to be marked dirty. The caller
also has an opportunity to fool the clock algorithm by setting the reference bit to something
other than the default:

static void unfix(const page_s*& buf,
bool dirty = false,
int refbit = 1);

To mark a page dirty without unfixing the page, use the following, which is used by the
generated logging code:

static rc_t set_dirty(const page_s* buf);

25

The following methods allow pages or sets of pages to be discarded from the buffer pool without
being written to disk One can discard a single page, all the pages in the buffer pool that belong
to a given store or volume, or the entire buffer pool.

static void discard_pinned_page(const page_s*& buf);
static rc_t discard_store(stid_t stid);
static rc_t discard_volume(vid_t vid);
static rc_t discard_all();

One or more may be forced to disk (and discarded from the buffer pool if the argument flush
is true):

static rc_t force_store(stid_t stid,
bool flush = false);

static rc_t force_page(const lpid_t& pid,
bool flush = false);

static rc_t force_volume(vid_t vid,
bool flush = false);

static rc_t force_all(bool flush = false);

Buffer Manager Internals Unless you are hacking the buffer manager, you can safely
skip this section. The buffer manager implementation is split into two files, bf.cpp and
bf core.cpp. Bf core.cpp contains the thread-safe hash table implementation, which takes
care of latching the pages. The following methods of class bf core m bear discussion. The
type tt bfpid t is the buffer manager’s notion of a page ID. The buffer manager uses bfpid t
to override the operator== for page IDs because in the context of the buffer manager, pages
are identified by volume ID and page number only; the store ID is not germane, and if used in
a comparison, yields errors because pages can move from one store to another.

w_rc_t find(bfcb_t*& ret,
const bfpid_t& p,
latch_mode_t mode = LATCH_EX,
int timeout = sthread_base_t::WAIT_FOREVER,
int4_t ref_bit = 0

);

Find() is the basic look-up function. It searches the hash table for a frame containing the page
identified by p. The method returns in error if the page is not found. If the page is found, it
is latched in the given mode. If the page cannot be read before the given timeout expires, the
method returns in error. The last argument allows the caller to set the reference “bit” (which
is not a bit) to fool the clock algorithm used to clean the buffer pool.

26

w_rc_t grab(bfcb_t*& ret,
const bfpid_t& p,
bool& found,
bool& is_new,
latch_mode_t mode = LATCH_EX,
int timeout = sthread_base_t::WAIT_FOREVER

);

The method grab() finds a frame into which the caller will read a page identified by page ID
p.. First, it looks for the page in the table; if found, it latches the frame and returns. If the
page is not in the table, a frame is grabbed, latched, and marked as in-transit. It might be
that the frame chosen contains another page, and that other page needs to be replaced. The
caller then forces out the old page before it reads in the page it wants. Any function that calls
grab() must subsequently call publish() after the frame is filled.

void publish_partial(bfcb_t* p);
void publish(bfcb_t* p,

bool error_occured = false);

Publish() and publish partial() change the state of the control regarding in-transit
pages. When grab() returns an in-use frame and a page replacement occurs, the caller uses
publish partial() after flushing out the old page. Publish partial() wakes up any threads
that were waiting on the page that was written out.. After the desired page is read into the
frame, publish() is called to make the new page generally available to other threads, and to
wake up any threads waiting for the new page.

w_rc_t pin(bfcb_t* p,
latch_mode_t mode = LATCH_EX);

void unpin(bfcb_t*& p,
int ref_bit = 0,
bool in_htab = true);

Pin() and unpin() adjust the pin count of a frame, given the control block. Using these
methods bypasses the hash-table lookup.

Files: bf.h, bf.cpp, bf core.h, bf core.cpp

See also: man/mancommon/rsrc.pdf

6.5 Storage structures

The storage manager supports three storage structures. Storage structures may have their own
navigable structures in addition to the underlying structure of the store(s) that compose them.

27

In the case of small-object files, no such structure exists; in the case of B-trees, of course, it
does.

6.5.1 The directory (dir m)

Every storage structure that is accessible to a server through the API appears in a store direc-
tory. The directory is a B-tree index that contains information about the storage structures.

The index key is the identifier of the storage structure (stid t, which serves as a file id, a
B-tree id, an rtree id, and a store id). The data stored for each store (sdesc t) includes some
persistent information and some transient information (e.g., an approximate last page of the
store). The persistent data are stored in an sinfo s, and include

• kind of structure: B-tree, file, rtree

• if a B-tree, is it unique?, what concurrency control does it use (kvl, IM, none)?

• what stores compose this storage structure?

• what page is the root of this storage structure?

• if this is an index, what is the type of the key of this index?

Store descriptors are cached so that the disk need not be used every time a storage struc-
ture is looked up in the directory.

Files: dir.h, dir.cpp, sdesc.h

6.5.2 File Manager (file m)

Files are groups of variable-sized records (or objects). A record is the smallest persistent datum
that has identity. Records may also have headers. As records vary in size, so their storage
representation varies. The storage manager changes the storage representations as needed.

A file comprises one or two stores. One store is always allocated for slotted (small-record)
pages. If any large records exist in the file, the file will also contain a store for large-record
pages.

The scan order of a file is the physical order of the records in the file. See the note in the
section below, Section6.5.2.

Every record, large or small, has metadata called a tag, represented by class rectag t, which
contains the following (and more).

struct rectag_t {
uint2_t hdr_len;// length of user header
uint2_t flags;// enum recflags_t

28

smsize_t body_len; // true length of the record
};

The hdr len tells the length of the user header, which may be of size 0. The flags is a bit mask
that indicates, among other things, the representation used to store the record. The bit mask
will include one of the following values:

t small the record is small enough to fit on a single file page.

t large 0 the record is too large to fit on a single file page; it has the representation described
below

t large 1 the record was converted from a t large 0 to a representation that uses a 1-level
tree

t large 2 this representation uses a 2-level tree

Every record’s tag can be manipulated (internally by the storage manager – not by a server)
through

class record_t {
public:
// You can look directly at the tag
rectag_t tag;

bool is_large() const;
bool is_small() const;

// get size of user header or body
smsize_t hdr_size() const;
smsize_t body_size() const;

// get pointer to user header or some part of body -- whatever is
// pinned
const char* hdr() const;
const char* body() const;

// offset of the part of the body thats pinned
int body_offset() const;

// page id of page containing the given offset
// into the record’s body
lpid_t pid_containing(smsize_t offset,

smsize_t& start_byte,
const file_p& page) const;

};

29

There are two APIs for servers to manipulate individual objects:

• methods of the storage manager class (ss m::create rec (), ss m::append rec(),
etc.), and

• the class pin i. (Pin i is an iterator over the pages of an object, hence its name.) The
pin i class permits small records or single pages of large records to be pinned in the
buffer pool under the control of the server. It contains methods for reading and updating
records in whole or in part.

Regardless of the API used, updates to records are accomplished by copying out part or all
of the record from the buffer pool to the server’s address space, performing the update there,
and handing to the storage manager the new data (part or all of the updated record). This
simplifies logging of updates in the storage manager.

When a record is pinned (fixed in the buffer pool), the page containing the header and tag may
be in the buffer pool, and at the same time, at most one page of the record’s body is placed in
the buffer pool. A server manipulates the pinned state of a record through the

class pin_i {
public:
// flags that describe the pin state of the record
enum flags_t {

pin_empty = 0x0,
pin_rec_pinned = 0x01,
pin_hdr_only = 0x02,
pin_separate_data = 0x04,
pin_lg_data_pinned= 0x08 // large data page is pinned

};

pin_i();
~pin_i();

// pin the record identified by record id. We’re
// interested in the portion of the record that
// starts at ‘‘start’’
// lock the record in the given mode.
w_rc_t pin(const rid_t rid,

smsize_t start,
lock_mode_t lmode = SH);

// release the record from the buffer pool
void unpin();

// repin efficiently repins a record after

30

// its size has changed, or after it has been
// unpinned.
w_rc_t repin(lock_mode_t lmode = SH);

// conditionally pin: only if the page is
// cached in the buffer pool.
w_rc_t pin_cond(const rid_t& rid,

smsize_t start,
bool& pinned,
bool cond = true,
lock_mode_t lmode = SH);

// pin the next range of bytes in the record,
// freeing the page of the body that’s now pinned
// Parameter eof is set to true if there are
// no more bytes to pin.
// When eof is reached, the previously
// pinned range remains pinned.
w_rc_t next_bytes(bool& eof);

// is something currently pinned
bool pinned() const;

// is the entire record pinned
bool pinned_all() const

// return true if pinned textbf{*and} *
// pin_i is up-to-date with the LSN on
// the page. in other words, verify that
// the page has not been changed by another
// pin_t after this pin_i pinned the page
bool up_to_date() const;

// return offset of first byte pinned
smsize_t start_byte() const;

// how many bytes from start_byte() are pinned
smsize_t length();

// size of user header
smsize_t hdr_size() const;

// size of entire body
smsize_t body_size() const;

31

bool is_large() const;
bool is_small() const;

// record id
const rid_t& rid() const;

// pointer to user header
const char* hdr() const;

// pointer to first pinned byte of body
const char* body();

// These record update functions
// duplicate those in class ss_m
// and are more efficient.
// They can be called on any pinned record
// regardless of where and how much is pinned.
w_rc_t update_rec(smsize_t start,

const vec_t& data,
int* old_value = 0);

w_rc_t update_rec_hdr(smsize_t start,
const vec_t& hdr);

w_rc_t append_rec(const vec_t& data);

w_rc_t truncate_rec(smsize_t amount);

lpid_t page_containing(smsize_t offset,
smsize_t& start_byte) const;

};

When a server manipulates a record through the ss m methods, the storage manager pins the
records, performs the operation and unpins the record. When a server manipulates a record
through the pin i methods, the record remains pinned between storage manager operations.
The server must unpin or repin records at the proper times in order to avoid latch-latch dead-
locks or latch-lock deadlocks. Pinning a record amounts to

1. locking the record (and page, per hierarchical locking)

2. fixing the page in the buffer pool (acquiring a latch on the page for the thread that
performs the pin)

3. computing the page offset of the record’s tag

32

If a server pins two different records that reside on the same page, an update to one of the
records might invalidate the pin t for the other record because the update might cause the
page to be rearranged and the offsets to change. For this reason, a server might have to call the
repin() method. Furthermore, if the server has two or more threads operating on behalf of the
same transaction, the lock acquisition will provide no deadlock protection among the threads,
and the storage manager does not perform deadlock detection for latches. Finally, if two or more
threads pin more than one record each, on behalf of two different transactions, and if a strict
ordering is not imposed on the pins, the two threads may find themselves in latch-lock deadlock.

See also: man/manssm/file.pdf, man/manssm/pin i.pdf

Small Records (t small) Small records are those small enough to fit (one or more) on a
slotted page. When a small record grows too large to fit on a slotted page, the storage manager
moves the object and changes its storage representation.

A file page has a header, followed by a series of records. The end of the page contains a slot
table whose entries grow toward the records, and which point to the starts of the records.

Small records contain their headers and body (data).

Large records contain their headers and, in place of their bodies in the file page, contain pointers
to other pages.

Large Records Every large record has a small amount of metadata on a slotted page. It
may also have a header on the slotted page.

In place of the record data o nthe slotted page, the larger record’s body area points to a page
or tree of pages.

Large Records (t large 0) The body portion of the record in the slotted page is a list of
chunks (lg tag chunks s). A chunk represents a set of contiguous pages, up to 65536 pages
long (since 2 bytes are used for the length of a chunk). Thus, for a storage manager compiled
with 8K pages, a t large 0 record is between 8096 (largest small object size) and about 21
gigabytes in size (if each chunk is 65K pages long). If there is bad clustering in the object, a
t large 0 might have to be converted to a t large 1 when it is only 5 pages in size.

Large Records (t large 1) The body portion of the record in the slotted page contains no
information about leaf pages; rather, it points to the root of a 1-level index for the record (it
is a lg tag indirect s). Large record index pages use one slot, which is simply an array of
page Ids. Thus, for 8K-sized pages, 2030 page Ids fit, meaning that a t large 1 record can be
up to about 16.4 megabytes. 2-level indexes (t large 2) are not yet implemented.

The storage manager automatically performs record-level, two-phase locking by default. The
server can choose coarser granularity for the locking, and (as described later) it also has limited
ability to free locks.

33

Scanning Files The API for scanning files is the iterator class scan file i

, which provides optional 1-page prefetch. The prefetch mechanism was added to see if the
access patterns of the Paradise server offered sufficient opportunity to exploit prefetch that
it might be worth re-designing the interface between the buffer manager and the I/O layer
to allow a “real” implementation of prefetching. The existing prefetch mechanism consists of
a thread that communicates with the scan iterator, and accepts prefetch requests from the
iterator. The thread then fixes the page and unfixes it, in the hope that by the time the scan
iterator fixes the page, the page will then be in the buffer pool. This is a haphazard way to
accomplish prefetch, and involves a lot of overhead: fixing pages is not cheap.

The storage manager provides a class for rapidly appending objects to a file (append file i –
a misnomer because it is not an iterator, but it derives from scan file i). This amounts to
keeping the last page in a file fixed in the buffer pool (through the append file i) to avoid
excess fixing of that page.

The scan order of a file is the physical order of records in the file. If the append file i
API is used to append records to a file, the scan order will be the append or-
der. If any other methods are used to create objects in the file, all bets are off.

See also: man/manssm/scan file i.pdf

Allocating Space For Records When the append file i API is used to create records,
the storage manager keeps the records in the order in which they were appended; this
can waste disk space, but it preserves the sort order of sorted files. When any other
method is used to create records, a different policy applies. The storage manager keeps a
small cache of recently-used pages for each store; if a request cannot be satisfied by pages
in this cache, the storage manager checks a histogram describing the store to determine
whether it is worthwhile to perform a linear search of the file for allocated-but-unused space.

Files: sm.h, pin.h, pin.cpp, smfile.cpp, file.h, file s.h, file.cpp. lgrec.h,
lgrec.cpp, scan.h, scan.cpp

6.5.3 B-tree manager (btree m)

The B-tree indexes are B+-trees, but “B-tree” is commonly used in the sources and documen-
tation.

When a B-tree is created, the server (“client” or “user” of the storage manager API) chooses

1. the key type for the index, from

• signed, unsigned 1-, 2-, 4-byte integers

• fixed-length strings

• variable-length strings

34

• IEEE float and double

• combinations of the above

2. optional prefix compression

3. which locking protocol to use with the index, among

• no locking

• KVL

• IM

• A variant of KVL that provides higher concurrency by avoiding next-key locking,
but does not avoid phantoms, and so it does not permit range scans.

The values associated with the keys are opaque to the storage manager, except when IM is
used, in which case the value is treated as a record ID, but no integrity checks are done. It is
the responsibility of the server to see that the value is legitimate in this case.

B-trees can be bulk-loaded from files of sorted key-value pairs.

The implementation of B-trees is straight from the Mohan ARIES/IM and ARIES/KVL papers.

Those two papers give a thorough explanation of the arcane algorithms, includ-
ing logging considerations. Anyone considering changing the B-tree code is strongly
encouraged to read these papers carefully. Some of the performance tricks de-
scribed in these papers are not implemented here. For example, the ARIES/IM pa-
per describes performance of logical undo of insert operations if and only if phys-
ical undo is not possible. The storage manager always undoes inserts logically.

Files: sm.h, smindex.cpp, btree.h, btree.cpp, btree impl.h, btree impl.cpp,
btree p.h, btree p.cpp, btcursor.h, btcursor.cpp, btree bl.cpp, lexify.h,
lexify.cpp, sort.h, sort s.h, sort.cpp

See also: man/manssm/btree.pdf, man/manssm/scan index i.pdf

6.5.4 R-tree manager (rtree m)

The spatial indexes in the storage manager are R*-trees, a variant of R-trees that perform fre-
quent restructuring to yield higher performance than normal R-trees. The entire index is locked.

Files: sm.h, smindex.cpp, rtree.h, rtree.cpp

See also: man/mancommon/nbox t.pdf, man/manssm/rtree.pdf,
man/manssm/scan rt i.pdf

35

6.6 Lock Manager (lock m)

The lock manager’s API allows explicit acquisition of locks by other modules in the storage
manager. Freeing locks is automatic at transaction commit and rollback. There is limited
support for freeing locks in the middle of a transaction. This is accomplished by creating a
quark (sm quark t). A quark is a marker in the list of locks held by a transaction. When
the quark is destroyed, all locks acquired since the creation of the quark are freed. Quarks
cannot be used while more than one thread is attached to the transaction, although the storage
manager does not strictly enforce this (due to the cost).

The lock manager enforces two lock hierarchies:

• Volume . . . store . . . page . . . record

• Volume . . . store . . . key–value

A lock identifier (lockid t) contains all the necessary information for the lock manager to do
this. The lock manager does not verify that lock identifiers refer to any existing object. Other
than the way the lock identifiers are inspected for the purpose of enforcing the hierarchy, lock
identifiers are considered opaque data by the lock manager.

The lock manager escalates up the hierarchy by default. The escalation thresholds are based
on run-time options. They can be controlled (set, disabled) on a per-object level. For example,
escalation to the store level can be disabled when increased concurrency is desired. Escalation
can also be controlled on a per-transaction or per-server basis.

The lock manager contains hooks for distributed deadlock detection (described later).

The lock manager uses a hash table whose size is determined by a configuration option. The
hash function used by the lock manager is known not to distribute locks evenly among buckets.
This is partly due to the nature of lock IDs. The lock manager code contains several hash
functions that can tested, and the lock manager can be instrumented with some expensive
statistics to measure the effectiveness of the hash function. To do so, you must

#define EXPENSIVE_LOCK_STATS

(which can be done in the generic configuration file, shore.def).

In anticipation of porting the storage manager to a preemptive threads environment, the lock
manager
can be configured to use a mutex on each bucket rather than a mutex on the entire table.

Files: lock.h, lock.cpp, lock core.h, lock core.cpp, lock s.h lock s inline.h,
lock x.h

See also: man/manssm/lock.pdf

36

6.7 Transaction manager

Transaction management is not encapsulated into a single manager; rather, it is largely imple-
mented in the class xct t (a transaction) with certain functionality in other managers. For
example transaction management is closely related to lock management, and there are some
classes that know a little about both (xct lock info t, lock cache t).

// begin a transaction, attach it to this thread,
// and return the transaction id in ‘‘tid’’
w_rc_t begin_xct(tid_t &tid, timeout = WAIT_SPECIFIED_BY_THREAD);
w_rc_t begin_xct(timeout = WAIT_SPECIFIED_BY_THREAD);

// commit the attached transaction
w_rc_t commit_xct(bool lazy=false);

w_rc_t abort_xct();

By default, transactions have standard (degree 3) ACID properties. The storage manager as-
signs a local transaction ID when a transaction is begun (the server cannot choose its transac-
tion Ids). Distributed transactions are not fully implemented in the storage manager, however
there are all the hooks necessary for full distributed transactions to be implemented in a server.
The server is responsible for bookkeeping (associating a global transaction ID with a set of local
transaction IDs – one in each server process).

The storage manager API contains functions that allow the server to inform the storage man-
ager of the coordinator’s name (opaque to the storage manager) for logging purposes, for
preparing a local transaction, and for recovering prepared transactions after a crash-restart.
More will be said about distributed transactions later. For the purpose of this section, a trans-
action refers to a local transaction (which might happen to be a branch of a global transaction).

The server may choose to chain transactions (commit one transaction, begin another, and
transfer the locks from the committed to the new transaction). Partial rollback is provided
through savepoints.

See also: man/manssm/transaction.pdf

Multi-threaded transactions Several server threads (threads of control, as opposed to a
branch of a global transaction) may participate in a transaction under limited circumstances.
Participating in a transaction occurs when any storage manager activity occurs while the thread
is attached to a transaction. (Attaching consists in the existence of a reference from a thread
instance to a transaction instance. Threads may be attached to no transaction.) For example,
the transaction cannot be committed or rolled back (fully or to a savepoint) while more than
one thread is attached to a transaction. Only one thread of the transaction can use the log at
a given time, since the transaction ID written in log records does not contain any thread ID.

37

See also: man/manssm/transaction.pdf

Transactions and Logging Each transaction caches the last log record written until that
log record is forced to the log by the logging protocol. Caching the last record allows com-
pensations to be piggy-backed on the log record, reducing logging overhead. Log records for
redoable-undoable operations contain both the redo- and undo- data, hence an operation never
causes two different log records to be written for redo and for undo. This, too, controls logging
overhead.

The protocol for applying an operation to an object is as follows:

1. Lock the object.

2. Fix the page(s) affected in exclusive mode.

3. Apply the operation.

4. Write the log record(s) for the operation.

5. Unfix the page(s).

The protocol for writing log records is as follows:

1. Grab the transaction’s buffer in which the last log record is to be cached by calling
xct t::get logbuf(logrec t*& l)

2. Write the log record in the buffer.

3. Release the buffer with xct t::give logbuf(logrec t *l, const page p *page) ,
passing in the second argument the fixed page that was affected by the update being
logged. This does several things:

• writes the transaction ID, previous LSN for this transaction into the log record

• flushes the record to the log and remembers this record’s LSN

• marks the given page dirty.

Between the time the log buffer is grabbed and the time it is released, the buffer is held
exclusively by the one thread that grabbed it, and updates to the log buffer can be made
freely.

The above protocol is enforced by the storage manager in helper functions that create log
records; these functions are generated by Perl scripts from the source file logdef.dat. (See
Section6.8, Section6.8 below.) Some logging records are compensated, meaning that the log
records are skipped during rollback. Compensations may be needed because some operation
simply cannot be undone. The protocol for compensating actions is as follows:

38

1. Fix the needed pages.

2. Grab an anchor in the log. This is an LSN for the last log record written for this
transaction.

3. Update the pages and log the updates as usual.

4. Write a compensation log record and free the anchor.

Grabbing an anchor prevents all other threads in a multi-threaded transaction from gaining
access to the transaction manager .

In some cases, the following protocol is used to avoid excessive logging by general update
functions that, if logging were turned on, would generate log records of their own.

1. Fix the pages needed in exclusive mode.

2. Turn off logging for the transaction.

3. Perform the updates by calling some general functions. If an error occurs, undo the
updates explicitly.

4. Turn on logging for the transaction.

5. Log the operation. If an error occurs, undo the updates with logging turned off..

6. Unfix the pages.

The mechanism for turning off logging for a transaction is to construct an instance of
xct log switch t.

When the instance is destroyed, the original logging state is restored. The switch applies only
to the transaction that is attached to the thread at the time the switch instance is constructed,
and it prevents other threads of the transaction from using the log (or doing much else in the
transaction manager) while the switch exists.. An example from the B-tree code:

{// open scope
xct_log_switch_t toggle(OFF);
rc = leaf.insert(key, el, slot);
if(rc) {

leaf.discard();
return rc.reset(); // force caller to check rc

}
}// close scope

39

Concurrency Control The storage manager locks data when they are read and up-
dated. The locking is implicit, but explicit locking can be done with calls to ss m::lock().
Arbitrary unlocking is not allowed. Two-phase locking is used unless quarks are used
by the server (see Section6.6, above). Each transaction keeps a list of the locks
it holds, so that the locks can be logged when the transaction is prepared and re-
leased at the end of the transaction. Furthermore, to avoid expensive lock manager
queries, each transaction keeps a cache of the last 5 locks of each kind in the lock hi-
erarchies. This close association between the transaction manager and the lock man-
ager is encapsulated in several classes in the file lock x.h, which is well-commented.

Files: lock x.h, sm.h, sm.cpp, xct.h, xct.cpp xct impl.h, xct impl.cpp

See also: man/manssm/enum.pdf, man/manssm/lock.pdf, man/manssm/transaction.pdf

6.8 Log manager (log m)

The storage manager performs ARIES-style logging and recovery. This means the logging and
recovery system has these characteristics:

• uses write-ahead logging (WAL)

• repeats history on restart before doing any rollback all updates are logged, including
those performed during rollback

• compensation records are used in the log to bound the amount of logging done and
guarantee progress in the case of repeated failures and restarts.

Log Sequence Numbers (LSNs) Write-ahead logging requires a close interaction between
the log manager and the buffer manager: before a page can be flushed from the buffer pool,
the log might have to be flushed.

This also requires a close interaction between the transaction manager and the log manager.

All three managers understand a log sequence number (LSN) , implemented by class lsn t.

Log sequence numbers serve to identify and locate log records in the log, to timestamp pages,
identify timestamp the last update performed by a transaction, and the last log record written
by a transaction. Since every update is logged, every update can be identified by a log sequence
number. Each page bears the log sequence number of the last update that affected that page.

A page cannot be written to disk until the log record with that page’s LSN has been written
to the log (and is on stable storage).

A log sequence number is a 64-bit structure, with a 32-bit tt lsn t::hi() and a 32-bit
lsn t::lo().

40

Log Partitions The log is partitioned to simplify archiving to tape (future work).The log
comprises 8 partitions, where each partition’s size is limited to approximately 1/8 the maximum
log size given in the run-time configuration option sm logsize.

In the Unix-files case, the configuration option sm log names a directory (which must exist
before the storage manager is started) in which the storage manager may create and destroy
files. In the raw case, the option sm log names a raw disk partition, which the storage manager
further splits into 8 log partitions (these partitions are not to be confused with disk partitions).
The storage manger may have at most 8 active partitions at any one time. An active partition
is one that is needed because it contains log records for running transactions. Such partitions
could (if it were supported) be streamed to tape and their disk space reclaimed. Space is re-
claimed when the oldest transaction ends and the new oldest transaction’s first log record is in
a newer partition (call this Pnew) than that in which the old oldest transaction’s first log record
resided. When this happens, all partitions created before Pnew are superfluous and their space
is reclaimed. Until tape archiving is implemented, the storage manager issues an error (eOUT-
OFLOGSPACE) if it consumes sufficient log space to be unable to abort running transactions
and perform all resulting necessary logging within the 8 partitions available. Determining the
point at which there is insufficient space to abort all running transactions is a heuristic matter
and it is not reliable. Ultimately, archiving to tape is necessary. The storage manager does not
perform write-aside or any other work in support of long-running transactions.

In the Unix-file case, a partition is a file called log.N where N is the N th partition created.

The high 32 bits of an LSN identifies the partition in which the log record with that LSN
resides.

The low 32 bits is a byte-offset in that partition.

Checkpoints The class chkpt m sleeps until kicked by the log manager, and when it is kicked,
takes a checkpoint, then sleeps again. Taking a checkpoint amounts to these steps:

1. Write a chkpt begin log record.

2. Write a series of chkpt dev tab log records to log the device table (list of volumes and
devices mounted).

3. Write one or more chkpt bf tab log records to record the buffer pool’s dirty-page in-
formation. For each dirty page in the buffer pool, the page id and its recovery LSN
(rec lsn) is logged. A page’s recovery LSN is metadata stored in the buffer manager’s
control block, but is not written on the page. It represents an LSN prior to or equal to
the log’s current LSN at the time the page was first marked dirty. Hence, it is less than
or equal to the LSN of the log record for the first update to that page after the page was
read into the buffer pool (and remained there until this checkpoint). The minimum of all
the recovery LSNs written in this checkpoint will be a starting point for crash-recovery,
if this is the last checkpoint completed before a crash.

4. Write one or more chkpt xct tab log records to record the states of the transactions.

41

5. Log the prepared transactions, using the same log records used for a normal transaction-
prepare operation.

6. Write a chkpt end record.

7. Tell the log manager where this checkpoint is: the LSN of the chkpt begin record be-
comes the new master LSN for the log. The master LSN is written in a special place
in the log so that it can always be discovered when the log manager is constructed (on
restart).

Certain things cannot occur during a checkpoint, but otherwise, the checkpoint records can be
interspersed with other log records. What cannot occur are:

• Certain logging during a transaction-prepare operation.

• Certain logging during a transaction-commit operation.

• Mounting a volume.

• Dismounting a volume.

Recovery When the storage manager object is constructed, the logs are inspected, the start
of the last completed checkpoint is located, and its LSN is remembered as the master LSN.

Recovery is performed in these phases:

1. ANALYSIS: The analysis pass begins analyzing the log at the master LSN. It reads the
log records of the last completed checkpoint and reconstructs the transaction table, an in-
memory dirty page table, and the device table, mounting devices and volumes as needed.
From the dirty page table, it computes the LSN where recovery must begin, redo lsn,
which is the lowest of all the recovery LSNs in the dirty page table.

2. REDO: The redo pass scans the log, starting at redo lsn, and for each log record it
encounters, decides whether or not that log record’s action must be redone. The general
rule for redoing a log record’s operation is:

If the log record is not redoable, the log record is ignored. A redoable record might contain
a page ID. If it does not, the redo method for the log record is called. If the record does
contain a page ID, the page is inspected, and if the page’s LSN is older than the LSN of
the log record, the record’s undo method is called.

Formatting of pages presents a special case. Page formats can be handled in one of two
ways:

(a) Trust the LSN on the page to be correct. This works only if every page on the
volume is initialized when the volume is formatted. For large volumes, this can take
a long time, but it means that during recovery, the page format log records can be
skipped if the LSN on the page is older than the LSN of the log record. This is the
default.

42

(b) Don’t initialize each page when formatting a volume. The LSN on the page can-
not be trusted in this case, and every page format log record is redone during
recovery; this means that every subsequent log record for that page must be re-
done. The storage manager can be configured to work this way by #define ---ing
DONT TRUST PAGE LSN in the configuration file shore.def.

3. UNDO: After all log records have been inspected and applied if necessary, the state of
the database matches that at the time of the crash. Now the storage manager rolls back
the transactions that remain active. Care is taken to undo the log records in reverse
chronological order, rather than allowing several transactions to roll back at their own
paces. This is necessary because some operations use page-fixing to for concurrency-
control (pages are protected only with latches if there is no page lock in the lock hierarchy
– this occurs when logical logging and high-concurrency locking are used, in the B-trees,
for example. A crash in the middle of a compensated action such as a page split must
result in the split being undone before any other operations on the tree are undone.). After
the storage manager has recovered, there can be transactions left in prepared state. The
server is now free to resolve these transactions by communicating with its coordinator.
(See Section6.11, Section??, and Section6.11 below.

Locks are not acquired during recovery.

Files: restart.cpp

Log Buffering and I/O The log manager can be configured at compile-time to perform
local I/O or use remote processes for non-blocking I/O. Log records are buffered until forced to
stable storage to reduce I/O costs. The log manager keeps a buffer of a size that is determined
by a run-time configuration option. The buffer is flushed to stable storage when necessary. The
last log in the buffer is always a skip log record, which indicates the end of the log partition.

Files: log buf.h, log buf.cpp

Controlling Logging Overhead Logging can be turned on and off on the basis of

• store property,

• a storage structure’s protocol, or

• a system-wide configuration option, although this is of limited use.

A store’s property greatly affects the amount of logging that is required for updates to the store
or to the pages in a store. Temporary files, for example, do not need to have data updates
logged; only metadata updates are logged.

43

Turning off logging Each storage structure has its own protocol for controlling logging.
The B-tree code, for example, turns off logging for short periods to avoid physical logging of
updates, then back on while it explicitly logs updates logically. The section Section6.7 describes
the mechanism.

Updates to the user data in temporary files never get logged.

There is a run-time configuration option sm logging, which was added long ago in the hope
of making it possible to measure logging overhead by forcing all logging to be turned off for an
experiment. This must be used with care, if at all, because it might break some assumptions
in the code.

Measuring logging overhead The best way to measure logging overhead is to look at the
statistics kept by the log manager. The following statistics are apropos:

• log sync nrec max: the maximum number of log records collected in the log buffer before
the log was flushed to stable storage.

• log sync nbytes max: the maximum number of bytes collected in the log buffer before
the log was forced to stable storage. These two help measure the effectiveness of buffering
the log.

• log sync cnt: the number of times the log was forced to stable storage.

• log chkpt cnt: the number of checkpoints taken

• log switches: the number of times the log was turned off for a transaction

• await 1thread log: the number of times a thread of a multi-threaded transaction had
to wait for access to the transaction manager.

• acquire 1thread log: the number of times the mutex protecting the transaction man-
ager class was acquired.

• get logbuf: the number of calls to xct t::get logbuf()

• anchors: number of log anchors grabbed

• log records generated: number of log records written

• log bytes generated: number of bytes written to the log

• await log monitor: times a thread had to wait for access to the log manager class for
certain operations

• await log monitor var: times a thread had to wait for access to the log manager class
variables

The log manager is a performance bottleneck for loads that involve many updates.

44

Log Record Types There are three styles of logging described in the literature: physical
logging (the record contains before- and after-images of the data), logical logging (the record
describes the operation rather than its effect, e.g., add 3 to the value in the 4th slot), and
physiological logging (a combination of the two, which has the space-savings and allows high
concurrency locking protocols offered by logical logging wherever possible, and it has the sim-
plicity of physical logging where logical logging is not used).

The storage manager uses physiological logging, but the language used in the code and com-
ments can be misleading, in that much of what is called “physical” logging is in fact logical by
the commonly-accepted definitions above. Very few operations are, in fact, physically logged
(page link, page set byte, page splice, set store flags, set deleting). In the stor-
age manager argot, a log record is “physical” if it is page-oriented (it applies to a page whose
page ID is in the record), and “logical” it is operation-oriented (also called functional logging).
For example, a B-tree insert results in a log record that is physically redone (insert this value
on this page) and logically undone (remove this value from the B-tree; start by traversing the
B-tree from the root).

Much of the log-record-specific code is generated by a Perl script. This makes it easy to change
the logging scheme. The input file is logdef.dat, which contains a set of lines of the form
name mask args for which the Perl script generates the following:

A class definition (in logdef gen.cpp):

class {\em name}_log: public logrec_t {
...
public:
{\em name}_log ({\em args});
...
void redo (page_p *); // optional
void undo (page_p *); // optional

};

A free function (in logstub gen.cpp): rc t log name (args) ...

A case of a switch statement (in redo gen.cpp): case t name: (name log *) this) -¿
redo(page);

A case of a switch statement (in undo gen.cpp): case t name: ((name log *) this) -¿
undo(page); A value for an enumeration (in logtype gen.h): t name = ...,

The bodies of the methods of class name log are hand-written and reside in logrec.cpp. The
switch cases are included in general redo and undo function in logrec.cpp. Adding a new
log record type consists of adding a line to logdef.dat, adding the method definitions to lo-
grec.cpp, and adding the appropriate calls to the free function log name(args) in the storage
manager. The base class for every log record is logrec t, which is worth studying. It is in
logrec.h. Every log record has one or more of the following characteristics (See the comments
in logdef.dat, where some of these characteristics are set with the mask .)

45

• X: it is generated by a transaction (some log records are not, e.g., those used for check-
pointing). If it is generated by a transaction, the log record will contain a transaction
ID, and the log name() function will be generated by the Perl script.

• R: it is redoable – the general redo function will contain a switch case for this log record.

• U: it is undoable – the general undo function will contain a switch case for this log record.
An undoable log record is either page-oriented or logical (operation-oriented).

• A: it is a log record for space allocation, so its generation cannot be turned off by log
switches or by store flags on a page.

• L: it is a logical log record – it does not need a page pinned for undo.

• C: It is a compensation record. There is a log record whose sole purpose is to compensate
around other log records, but compensations can be piggy-backed on other log records.

Certain methods of logrec t refer to these characteristics:

• bool logrec t::is redo() const returns true if the log record is redoable

• bool logrec t::is undo() const returns true if the log record is undoable

• bool logrec t::is cpsn() const returns true for compensation records. These log
records are not undoable. Instead of applying undo and then reading the previous log
record for the transaction, the undo code skips this log record and simply goes on to look
at the previous log record (logrec t::prev()

• bool logrec t::is page update() const returns true if the log record is redoable, is
not a compensation log record, and has a legitimate page ID to which to apply changes.

• bool logrec t::is logical() const returns true for logical log records.

Files: log.h, log.cpp, log base.cpp, log buf.h, log buf.cpp, unix log.h,
unix log.cpp, srv log.h, srv log.cpp, raw log.h, raw log.cpp, logdef.dat,
logrec.h, logrec.cpp, logstub.cpp

6.9 External Sort

The storage manager contains a set of sorting routines for use by the server. They are included
in the storage manager for performance. File sort could be written at the server level, but it
would require many record pins through the pin i

interface, which is costly. There are two sort implementations with two APIs for sorting
files. One (the “old” sort implementation sorts on a fixed set of keys. The other (the “new”

46

implementation is more general, and does much of its work through callbacks to the server-
provided functions. This makes the storage manager prone to crashes if the callback functions
contain any bugs. If the generality of the latter implementation is not needed, use the former.

The new sort implementation produces output directly usable for bulk-loading R-tree and B-
tree indexes. It performs a polyphase mege sort with callbacks for key comparisons. If the
type of the key is one of the fundamental types supported by the old sort implementation, the
internal key comparison functions from the old sort implementation are used. For performance
comparisons, the old sort can be made to invoke the new sort implementation. A Boolean
argument to the old sort API controls this option.

There are some significant differences that are worth mentioning here. The B-tree implemen-
tation sorts on key-value pairs, so in the event that a B-tree holds ¡key,OID¿ pairs, the records
with duplicate keys must be sorted on the OIDs. The B-tree bulk-load method contains a hack
to sort duplicates on their OIDs, so that bulk-loading can work with the old sort code. The
new sort can be made to guarantee a stable sort, but in the event that the sort is producing
records for bulk-loading a B-tree, this can be counter-productive. The new sort code handles
duplicates as follows:

if (duplicates are being eliminated) {
remove the one with the larger OID

} else if (this is a stable sort) {
sort by input order

} else if (this is output for an index) {
sort by OID

} else {
don’t guarantee any thing about their relative order

}

The old sort eliminates duplicates as follows:

if (duplicates are being eliminated) {
if (entire object is a duplicate) {

remove one of the objects
}

}

See also: man/manssm/sort.pdf, man/manssm/newsort.pdf,
man/manssm/sort stream i.pdf

6.10 Statistics

The storage manager keeps server-wide statistics. It also keeps some per-transaction- and
per-thread statistics. Per-thread statistics can be aggregated into the per-transaction statis-
tics, and per-transaction statistics can be reaped by the server at the end of a transaction.

47

Some of the data structures and code for managing counter-type statistics is generated from
Perl scripts and .dat files. To add a counter to the storage manager, simply add a line
to the (mostly self-explanatory) sm stats info.dat and add code to update the counter in
the appropriate places in the storage manager. The macros INC TSTAT and INC STAT update
statistics. Grep for the definitions of these macros in sm/*.{h,cpp} to see how they are used.

See also: man/mansm/statistics.pdf

6.11 Distributed Transactions

The support for distributed transactions is described separately from the transaction manager
because it is separable from the rest of the storage manager.

The server library contains a set of classes that support two-phase commit and centralized
global deadlock detection.

The storage manager at one time contained an internal coordinator for use when multiple
SHORE storage-manager-based server processes were used. This coordinator communicated
through a communications package that is no longer available, and is not distributable, so
internally-coordinated transactions are no longer supported.

All communication between servers occurs outside the storage manager.

Distributed Transacation Branches Any local active transaction can be a branch of a
distributed transaction by taking the following steps:

1. Inform the storage manager that the attached transaction is a branch of an externally-
coordinated transaction, using enter 2pc(const gtid t &global xct id);

2. End the transaction branch in one of these ways:

(a) Abort the transaction unilaterally by aborting this branch. The server then votes
to abort when communicating with its external coordinator.

(b) Prepare and Commit or Abort the transaction branch by using prepare xct(vote t
&v) which returns the vote the server must use when the server communicates with
its external coordinator. The choices are:

vote readonly returns if the branch has issued any log records (made any updates)
or has been forced to vote read-only.

vote abort not returned from a prepare command.
vote commit returned if the branch has logged anything and has not been forced

to vote read-only.

The server then communicates with its coordinator and, based on the final vote,
either commits or aborts the prepared transaction.

48

3. A branch can force the server to vote read-only, and not to write a log record for the
transaction. This could be used when savepoints have been used with rollback in this
transaction, so the transaction will have written to the log but will not have made any
updates.

Internally-Coordinated Transactions DEPRECATED This section is deprecated. It is
left here lest anyone wish to implement a communications package or use another, and revive
the internal coordinator.

When two or more SHORE storage manager-based server processes cooperate to implement
distributed transactions, the coordinator in the storage manager library can be used.

The coordinator implements the presumed-abort commit protocol. The coordinator’s log is
a B+-tree.

Files: coord.cpp, coord.h, coord log.cpp, coord log.h, coord thread.cpp,
subord.cpp, participant.cpp, participant2.cpp

Externally-Coordinated Transactions When a (one or more) server(s) cooperates with
one or more external entities to implement distributed transactions, the server must use an
external coordinator, and all interaction with the storage manager is through the storage
manager’s API (no over-the-wire interaction with external coordinators).

The coordinator is a class that is meant to be instantiated by a server after (local)
recovery is finished. If recovery yields any prepared transactions that the server con-
siders to be in-doubt, the server is expected to initiate global recovery before accept-
ing any more work from clients. The tester shell (smsh) contains code that han-
dles recovery for testing purposes; it can be examined to see how recovery is done.

See also: man/manssm/transaction.pdf

6.12 Callback Classes

In order to simplify testing and to allow servers to manage policy regarding distributed trans-
actions, the storage manager defines interfaces for two simple mapping classes, which the server
is expected to implement:

• Global transaction ids mapped to local transaction ids

• Server name mapped to communication endpoint

Global transaction IDs and server names are treated as opaque data by the storage manager.

Communication endpoints are no longer supported.

49

7 Testing the storage manager - sm/smsh

Unit-testing of the storage manager is performed with a server that interprets Tcl scripts. The
interpreter contains functions for each element of the storage manager’s API.

In addition, there are some shell scripts that run and restart the Tcl-based server, invoking
hooks in the server to cause controlled crashes.

Altogether, these tests include single- and multi- transaction tests, multi-threaded-transaction
tests, distributed transaction tests, and a few tests with pseudo-randomness.

8 References

50

