
ss m::transaction(ssm) Shore Storage Manager ss m::transaction(ssm)

NAME
begin xct, commit xct, abort xct, chain xct, save work, rollback work, tid to xct, xct to tid,
state xct, prepare xct, enter 2pc, recover 2pc − Class ss m methods for transactions

SYNOPSIS
#include <sm_vas.h> // which includes sm.h

static rc_t begin_xct(
long timeout = WAIT_SPECIFIED_BY_THREAD);

static rc_t begin_xct(
tid_t& tid,
long timeout = WAIT_SPECIFIED_BY_THREAD);

static rc_t commit_xct(
bool lazy = false);

static rc_t abort_xct()
static rc_t chain_xct(

bool lazy = false);
static rc_t save_work(sm_save_point_t& sp);
static rc_t rollback_work(

const sm_save_point_t& sp);
static xct_state_t state_xct(const xct_t*);

static xct_t* tid_to_xct(const tid_t& tid);
static const tid_t& xct_to_tid(const xct_t*);

#define max_gtid_len 256
#define max_server_handle_len 100

typedef opaque_quantity<max_gtid_len> gtid_t;
typedef opaque_quantity<max_server_handle_len> server_handle_t;

enum vote_t {
vote_bad, // illegitimate
vote_readonly, // no log written
vote_abort, // cannot commit
vote_commit, // can commit if so directed

};

static rc_t prepare_xct(vote_t &v);
static rc_t enter_2pc(const gtid_t &);
static rc_t recover_2pc(const gtid_t &,

bool mayblock,
tid_t& tid);

static rc_t set_coordinator(const server_handle_t &h);
static rc_t query_prepared_xct(int &numtids);
static rc_t query_prepared_xct(int numtids, gtid_t l[]);

DESCRIPTION
The above class ss m methods all deal with transaction management. See the transaction section
of the SSM interface document for more information.

Release Jan 1999 1



ss m::transaction(ssm) Shore Storage Manager ss m::transaction(ssm)

TRANSACTION METHODS
begin xct(timeout)

begin xct(tid, timeout)

The begin xct method begins a new transaction and associates the current thread with
the transaction. The tid returns the transaction ID of the new transaction. The timeout
parameter specifies the default amount of time the current thread should block when
waiting to obtain a lock on behalf of the transaction. There are three commonly used val-
ues for this parameter:

WAIT FOREVER
This value indicates that the thread should block for up to an unlimited amount of time
when waiting for a lock.

WAIT IMMEDIATE
This value indicates that the thread should not block for any locks.

WAIT SPECIFIED BY THREAD
This value indicates that the amount of time to block should be based on the thread’s
lock timeout setting. See smthread t(ssm) for more details.

Using the default, WAIT SPECIFIED BY THREAD, is usually appropriate as the
default for the thread is WAIT FOREVER.

Note: Nested transactions are not supported. Therefore, it is an error to call
begin xct while the current thread is already associated with a transaction.

commit xct(lazy)

The commit xct method commits the transaction associated with the current thread. If
commit xct returns successfully, all changes made by the transaction are guaranteed to
be persistent, even if the server should crash. All locks held by the transaction are
released. When the lazy parameter is set the true, the the transaction commit log record
is not actually written to the disk. The transaction’s changes (on volumes) are not persis-
tent until the commit log record is written to the disk. Therefore, if a crash should occur
immediately after a "lazy" commit, the transaction would be rolled back. However, if any
subsequent log record makes it to disk, then the commit record will also be on disk. In
addition, all lazy commit log records will be written to the disk every 30 seconds.

abort xct()

The abort xct method rolls back all changes (on volumes) made by the transaction and
ends the transaction.

chain xct(lazy)

The chain xct method commits the current transaction and begins another one just as
begin xct would do. In addition, all lock held by the current transaction are transfered
to the new transaction. The lazy parameter functions as it does for commit xct.

save work()

The save work method marks a "save point" and fills the sp parameter with information
about it.

rollback work()

The rollback work method uses the log to roll back all changes (on volumes) made since
the save point indicated by the sp parameter. No locks are released.

Release Jan 1999 2



ss m::transaction(ssm) Shore Storage Manager ss m::transaction(ssm)

TRANSACTION STATES
state xct()

The state xct method returns the current state of the transaction pointed to by xct.

The states are {xct_stale, xct_active, xct_prepared, xct_aborting, xct_chaining,
xct_committing, xct_ended}.

ATTACHING TRANSACTIONS TO THREADS
The transaction pointer for the current threads is available via smthread t::xct. See
smthread t(ssm). for more information.

TRANSACTION IDENTIFIERS
Transactions are identified by a transaction ID, tid t. Internal to the SM, there xct t, hold-
ing information about the transaction. So, a pointer to an xct t can also be used to SM inter-
faces, including smthread t(ssm) use xct t pointers to avoid the transaction from tid t.

tid to xct()

The tid to xct methods converts a transaction ID in to an xct t pointer.

xct to tid()

The xct to tid method converts a xct t* to a transaction ID.

DISTRIBUTED TRANSACTIONS
The Shore storage manager can participate in transactions coordinated by other software modules
that employ the "presumed abort" two-phase commit protocol. The coordinator in such a situa-
tion is external to the Shore storage manager; it is assumed to have its own stable storage, and it
is assumed to recover from failures in a short time , the precice meaning of which is given below.

A prepared transaction, like an active transaction, consumes log space and holds locks. Even if a
prepared transaction does not hold locks needed by other transactions, it consumes resources in a
way that can interfere with other transactions. If a prepared transaction remains in the system
for a long time while other transactions are running, eventually the storage manager needs the log
space used (reserved) by the prepared transaction. A coordinator must resolve its prepared trans-
actions before the storage manager effectively runs out of log space for other transactions in the
system. The amount of time involved is a function of the size of the log and of the demands of
the other transactions in the system.

For the purpose of this discussion, the portion of a global transaction that involves a single Shore
transaction is calld a thread of the global transaction.

A Shore transaction participates as a thread of a global transaction as follows:

Start a Shore transaction with begin xct.

Acquire
a global transaction identifier from the coordinator.

Indicate
to the Shore storage manager that this Shore transaction is a thread of a global transac-
tion, and associate the global transaction identifier with this thread by calling enter 2pc.

Associate
a coordinator with the transaction for recovery purposes, by calling set coordinator.

Release Jan 1999 3



ss m::transaction(ssm) Shore Storage Manager ss m::transaction(ssm)

Prepare
the Shore thread of the transaction and get the Shore storage manager’s vote with pre-
pare xct. It is an error to commit a global transaction thread without first preparing it.
It is an error to do anything else in a transaction after it is prepared, except to end the
transaction or retry the prepare (to get the vote again).

Convey
the vote to the coordinator, and determine the transaction’s fate from the coordinator.

End the thread with commit xct or abort xct.

GLOBAL TRANSACTION IDENTIFIERS
A global transaction identifier is an opaque value to the Shore storage manager. It uses a tem-
plate class defined as follows:
template <int LEN> class opaque_quantity {
private:

uint4 _length;
unsigned char _opaque[LEN];

public:
opaque_quantity();
opaque_quantity(const char* s);

friend bool operator ==(const opaque_quantity<LEN>&,
const opaque_quantity<LEN>&);

friend ostream& operator <<(ostream &o, const opaque_quantity<LEN>&);
opaque_quantity<LEN>& operator=(const opaque_quantity<LEN>&);
opaque_quantity<LEN>& operator=(const char*);
opaque_quantity<LEN>& operator+=(const char*);
opaque_quantity<LEN>& operator-=(uint4 len);
opaque_quantity<LEN>& append(const void* data, uint4 len);
opaque_quantity<LEN>& zero(); // zero entire max-sized data structure
opaque_quantity<LEN>& clear(); // zero length only
operator const char *();
void * data_at_offset(uint i) const;
uint4 wholelength() const; // including _length member
uint4 length() const; // excluding _length member
uint4 set_length(uint4 l); // of _opaque part only
void ntoh(); // put in host byte-order
void hton(); // put in net byte-order
bool is_aligned() const; // to sizeof(int)

};

VOTING
The Shore storage manager implements the "read-only optimization" for presumed-abort. If a
prepared transaction did not log any updates, the transaction is committed at the time it is pre-
pared, and the vote returned indicates that the transaction thread is read-only. Once the vote is
communicated to the coordinator, and the coordinator has recorded this vote on stable storage,
this thread of the global transaction can be omitted from all further processing of the transaction.

The votes are {vote_bad, vote_readonly, vote_abort, vote_commit}.

CRASH RECOVERY
If the application (value-added server) should crash during a two-phase commit, a new application
(representing the coordinator) must run, and it must contact the Shore storage manager in order
to complete the two-phase-commit protocol.

Release Jan 1999 4



ss m::transaction(ssm) Shore Storage Manager ss m::transaction(ssm)

If the application crashes before the prepare is done the transaction thread is aborted.

If the application crashes during the first phase (after the prepare is done, but before the vote is
written to stable storage, the application must retry the prepare phase to get the vote and resolve
the transaction.

If a crash occurs during the second phase (after the prepare is done and its vote is written to sta-
ble storage, but before the transaction is resolved), the application cannot always tell if the second
phase completed. It is always safe to try again to complete the transaction thread. If the trans-
action thread is unknown to the Shore storage manager at this point, the second phase completed.

In order to locate a prepared transaction after a crash, the application calls recover 2pc. If a
prepared thread with the given global transaction identifier is found, the (local) Shore transaction
identifier is returned, and the thread is attached. The application can subsequently call com-
mit xct or abort xct.

The Boolean argument mayblock indicates whether the application considers it acceptable for the
recover 2pc call to block (e.g., in the event that it is awaiting connection to its internal coordi-
nator).

After recovery after a crash, a value-added server may discover what transactions were prepared
and need recovery by calling the two forms of query prepared xct . The first call returns the
number of such transactions. With that information, the value-added server can allocate memory
in for storing the global transaction identifiers of the prepared transactions. The value-added
server then invokes the second form of query prepared xct to get a list of the global transac-
tion identifiers, and then recover the prepared transactions.

ERRORS
EXAMPLES

ToDo.

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number
018 (formerly 8230), monitored by the U.S. Army Research Laboratory under contract
DAAB07-91-C-Q518. Further funding for this work was provided by DARPA through Rome
Research Laboratory Contract No. F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All
Rights Reserved.

SEE ALSO
lock(ssm), smthread t(ssm), intro(ssm),

Release Jan 1999 5


