
STATISTICS(FC) STATISTICS(FC)

NAME
w statistics t − generic statistics structure

SYNOPSIS
#include <w.h>
#include <w_statistics.h>

class w_statistics_t {

// members of interest to users
w_statistics_t *copy_brief() const;
w_statistics_t *copy_all() const;

int *int_val(NAMED_CONSTANT) const;
static int error_int; //returned if error

uint *uint_val(NAMED_CONSTANT) const;
static unsigned int error_int; //returned if error

float *float_val(NAMED_CONSTANT) const;
static float error_float; //returned if error

char typechar(NAMED_CONSTANT) const;
//returns ’v’ for unsigned long
// ’l’ for long
// ’i’ for int
// ’u’ for unsigned int
// ’f’ for float

const char *string(NAMED_CONSTANT) const;
const char *module(NAMED_CONSTANT) const;

// for arithmetic
friend
w_statistics_t &
operator+=(w_statistics_t &, const w_statistics_t &);

friend
w_statistics_t &
operator-=(w_statistics_t &, const w_statistics_t &);

void zero(); // clears all stats
};

// For SDL users
static shrc Shore::gather_stats(w_statistics_t &, bool remote=false);

DESCRIPTION
This is a class for collecting and printing simple statistics, meaning integers, unsigned integers,
and one-word floating-point numbers. Statistics are collected in modules (meant to correspond to
software modules). Each module consists of a list of statistics, along with metadata describing the
type and semantics of each statistic. Modules are distinguished by unique masks, which are mani-
fest constants. (There is no convenient way to make sure the masks are unique.)

In order to reduce the effort required to read this manual page, we distinguish two kinds of

Release Jan 1999 1



STATISTICS(FC) STATISTICS(FC)

readers: those writing software that generates statistics (e.g., a value-added-server), and those
writing software that uses statistics generated elsewhere (e.g., an application that uses statistics
generated by the Shore Object Cache). After reading the section below, MECHANISM, you
can skip a section that does not apply to you.

MECHANISM
This class allows local and remote statistics to be collected. In the local case, the modules in an
instance of w statistics t store references to data structures that are updated in place by the soft-
ware module that generates the statistics. For example, Object Cache statistics are generated by
the Object Cache, and are stored in a data structure to which the application’s w statistics t
instance has direct access through a reference.

In the remote case, copies of the statistics and all their metadata are put in the w statistics t
instance. The implications of this are that it can be confusing to copy and save statistics, because
local (static) statistics and remote (malloc-ed) statistics have to be treated differently.

WRITING SOFTWARE THAT GENERATES STATISTICS
In Shore, we use a Perl script (in the source tree under ) to generate the statistics modules for the
various software modules. The section GENERATING MODULES , below describes the input
to this script.

Any number of software modules can ‘add’ their statistics to a w statistics t instance for later
printing by an application. The application can use generic methods to print the entire set of
modules, or it can print only selected statistics according to its own formatting rules, or use
selected statistics for its own purposes.

GENERATING MODULES
We use an (abbreviated) example from the Shore source tree to show how to use the Perls script
to generate statistics modules. The input to the Perl script is as follows:
SM Storage manager = 0x00060000 sm_stats_info_t {

// Record pinning:
u_long rec_pin_cnt Times records were pinned in the buffer pool
u_long rec_unpin_cnt Times records were unpinned

// Btree stats:
u_long bt_find_cnt Btree lookups (find_assoc())
u_long bt_insert_cnt Btree inserts (create_assoc)
u_long bt_remove_cnt Btree removes (destroy_assoc)
u_long bt_scan_cnt Btree scans started
// ... we don’t include all the stats

};

The first line identifies the module and some of the metadata to be associated with it. SM is a
character string that will be a prefix for all the manifest constants generated by the script. What
lies between SM and the equal sign (=) becomes a descriptive string for the module, for the pur-
pose of printing the statistics. 0x00060000 is for distinguishing this module from others.
sm stats info t is the name of a C++ class that "owns" the statistics. This name is used to gen-
erate the file names for the output of The files generated in this example are:
sm_stats_info_t_def.i
sm_stats_info_t_msg.i
sm_stats_info_t_op.i
sm_stats_info_t_struct.i

The second line is a comment. C++ and C comments, and blank lines are acceptable.

The next lines defines a single statistic, whose type is u long. Types can be any one of : long,
u long, int, u int, float. After the type is a C/C++ struct member name. The class
sm stats info t will contain the members
unsigned long rec_pin_cnt;

Release Jan 1999 2



STATISTICS(FC) STATISTICS(FC)

unsigned long rec_unpin_cnt;
and so on. The list of members is generated by the script, and will be found in The script does
not generate the entire definition for sm stats info t because the author of the software may wish
to make the statistics be only a small part of the class, and therefore define the class as follows:
class sm_stats_info_t {

... // stuff

#include "sm_stats_info_t_struct.i"

... // more stuff
};

Getting back to the input to the Perl script, the remainder of the third line is a string that
describes the semantics of the statistic. It will be quoted by the Perl script. You should not
quote it in your input file. The string should not be very long because it makes the output diffi-
cult to format nicely.

The file contains the definition of an output operator
w_statistics_t &
operator<<(w_statistics_t &s,const sm_stats_info_t &t);
This operator is declared to be a friend of your class sm stats info t (by including The file also
contains some metadata describing the types of the statistics, which are members of your class (by
including

The file contains the list of descriptive strings for the module. These must be used as follows
(sorry, this isn’t automatically generated): in some single place (so it isn’t multiply defined), do
// the strings:
const char *sm_stats_info_t ::stat_names[] = {

#include "sm_stats_info_t_msg.i"

};

The output file contains the manifest constants for the module, which are generated for (optional)
use by the application (the program that prints the statistics).

GATHERING STATISTICS
Using the above example, the module of statistics called a sm stats info t is added to a w statis-
tics t instance with the operator
w_statistics_t &
operator<<(w_statistics_t &s,const sm_stats_info_t &t)
as follows:
w_statistics_t stats;
// assume the sm_stats_info_t is called ss_m::stats_info

stats << ss_m::stats_info;

MISCELLANEOUS METHODS
Copy brief makes copies of the statistics, but copies pointers to the metadata. The result is
mutable.

Copy all makes copies of the statistics and the metadata. The result is mutable.

The methods int val uint val, and float val return the integer, unsigned integer, or floating
point value of the statistic. When an error occurs in evaluating the method, these functions
return error int, error uint, and error float, respectively. You can find out the type of a statistic
with the method typechar, which returns ’v’ for unsigned longs, and ’f’ for floats.

String returns the printable, descriptive string for the statistic indicated by the manifest (named)
constant. Module returns the printable, descriptive string for the module of which the statistic

Release Jan 1999 3



STATISTICS(FC) STATISTICS(FC)

is a member.

Operators operator+= and operator-= perform the indicated arithmetic on the corresponding
statistics in the operands, which are instances of w statistics t. The operands must contain
exactly the same statistics, and left-hand operand must be mutable, which means that it must be
a copy of a local (static) instance, or it must be a remote (malloced) instance.

Zero sets all the values to 0 (or 0.0 for floats). It will fail on an immutable (static, local)
instance.

WRITING SOFTWARE THAT USES GENERATED STATISTICS
GATHERING STATISTICS

Applications (users of SDL) will use the method Shore::gather stats.
w_statistics_t localstats;
SH_DO(Shore::gather_stats(localstats));

w_statistics_t remotestats;
SH_DO(Shore::gather_stats(remotestats, true));

PRINTING ALL THE STATISTICS
A program can use the output operator to print all the statistics in an instance of the class w sta-
tistics t. The program does not need to have any compiled-in knowledge of any of the modules
contained in the instance.

This operator does not print any information about statistics whose values are zero.
w_statistics_t stats;
cout << stats << endl;

PRINTING SELECTED STATISTICS
In order to use selected statistics, a program must have compiled in the manifest constants for the
modules of interest. For SDL users, these are included by #include <ShoreStats.h> See the fol-
lowing man pages for lists of the constants available for the various software layers: statis-
tics(oc), statistics(svas), and statistics(ssm).

For example, to print the storage manager’s count of the bytes of log generated:
w_statistics_t current;
SH_DO(Shore::gather_stats(current, true));

cout << "Module "
<< current.module(SM_log_bytes_generated) << endl;

cout << ::form("%-30.30s %10.10d",
current.string(SM_log_bytes_generated),
current.int_val(SM_log_bytes_generated)) << endl;

The first print statement prints the name of the module; you can call the method w statis-
tics t::module with the manifest constant for any statistic to get a descriptive name of the mod-
ule (in this case, "Storage manager"). The second print statement formats the output as follows:

Bytes written to the log 0000000928

SAVING STATISTICS and COMPUTING DIFFERENCES
Statistics can be saved for later use in computing the costs of certain operations. The natural
thing to want to do is to gather two entirely different copies of all the statistics, you can just
gather twice, and compute the difference:
w_statistics_t earlier;
SH_DO(Shore::gather_stats(earlier, true));
w_statistics_t later;
SH_DO(Shore::gather_stats(later, true));

// DON’T DO THIS WITH LOCAL STATISICS

Release Jan 1999 4



STATISTICS(FC) STATISTICS(FC)

later -= earlier;
cout << later << endl;

With local statistics ...
This will not work for local statistics because the differences will always be zero! Each of the
instances of w statistics t points directly to the current local statistics data structures for each
module! It works fine for remote statistics (those gathered from the Shore server) because each of
earlier and later is a complete copy of the statistics and metadata.

To save local statistics, you need to make a copy.
w_statistics_t current;

SH_DO(Shore::gather_stats(current));
w_statistics_t *saved = current.copy_brief();
Copy brief copies only that values of the statistics, and it makes duplicate references to the
metadata stored in current (rather than copying all the descriptive strings, for example).
IMPORTANT: This means that you had better not let current go out of scope until you are fin-
ished with saved ! Now, you’d like to just subtract one from the other:
// ERROR:
current -= *saved;
but that doesn’t work because current is immutable. (Remember, it points into the current statis-
tics.) You have to copy it also:
// OK:
w_statistics_t *cur = current.copy_brief();
*cur -= saved;
cout << *cur << endl;
// Don’t forget to delete:
delete cur;
delete saved;

More about remote statistics ...
With remote statistics, you might wonder how you can save the expense of twice copying all the
metadata from the server. Here’s how:
w statistics t current; w statistics t *saved;

SH DO(Shore::gather stats(current, true)); w statistics t *saved = current.copy brief(); //
gather a current set SH DO(Shore::gather stats(current, true)); current -= *saved; cout << cur-
rent << endl;
In this example, because
current
contains remote statistics (everything is malloced),
it is a writable instance of
w statistics t;
it can be overwritten and updated by the subtraction.

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number
018 (formerly 8230), monitored by the U.S. Army Research Laboratory under contract
DAAB07-91-C-Q518. Further funding for this work was provided by DARPA through Rome
Research Laboratory Contract No. F30602-97-2-0247.

Release Jan 1999 5



STATISTICS(FC) STATISTICS(FC)

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All
Rights Reserved.

SEE ALSO
rc(fc), intro(fc), statistics(oc), statistics(svas), and statistics(ssm).

Release Jan 1999 6


