
RSRC(COMMON) RSRC(COMMON)

NAME
rsrc m, rsrc i − Resource Manager and Iterator Classes

SYNOPSIS
#include <rsrc.h>

template <class TYPE, class KEY>
class rsrc_m : public w_base_t {

friend class rsrc_i<TYPE, KEY>;
public:

NORET rsrc_m(
TYPE* space,
int n,
char* descriptor=0);

NORET ~rsrc_m();

void mutex_acquire();
void mutex_release();

bool is_cached(const KEY& k);

w_rc_t grab(
TYPE*& ret,
const KEY& k,
bool& found,
bool& is_new,
latch_mode_t mode = LATCH_EX,
int timeout = sthread_base_t::WAIT_FOREVER);

w_rc_t find(
TYPE*& ret,
const KEY& k,
latch_mode_t mode = LATCH_EX,
int ref_bit = 1,
int timeout = sthread_base_t::WAIT_FOREVER);

void publish_partial(const TYPE* rsrc);
void publish(

const TYPE* rsrc,
bool error_occurred = false);

bool is_mine(const TYPE* rsrc);

void pin(
const TYPE* rsrc,
latch_mode_t mode = LATCH_EX);

void upgrade_latch_if_not_block(
const TYPE* rsrc,
bool& would_block);

void unpin(
const TYPE*& rsrc,
int ref_bit = 1);

// number of times pinned

Release Jan 1999 1



RSRC(COMMON) RSRC(COMMON)

int pin_cnt(const TYPE* t);
w_rc_t remove(const TYPE*& t) {

w_rc_t rc;
bool get_mutex = ! _mutex.is_mine();
if (get_mutex) W_COERCE(_mutex.acquire());
rc = _remove(t);
if (get_mutex) _mutex.release();
return rc;

}

void dump(ostream &o,bool debugging=1)const;
int audit(bool prt= false) const;

void snapshot(u_int& npinned, u_int& nfree);

unsigned long ref_cnt, hit_cnt;

// iterator
template <class TYPE, class KEY>
class rsrc_i {
public:

NORET rsrc_i(
rsrc_m<TYPE, KEY>& r,
latch_mode_t m = LATCH_EX,
int start = 0)
: _mode(m), _idx(start), _curr(0), _r(r) {};

NORET ~rsrc_i();

TYPE* next();
TYPE* curr() { return _curr ? _curr->ptr : 0; }
w_rc_t discard_curr();

private: // disabled methods
NORET rsrc_i(const rsrc_i&);
rsrc_i& operator=(const rsrc_i&);

};

/*
* rsrc_t
* control block (handle) to a resource
*/
template <class TYPE, class KEY>
struct rsrc_t {
public:

NORET rsrc_t() {};
NORET ~rsrc_t() {};
w_link_t link; // used in resource hash table
latch_t latch; // latch on the resource
KEY key; // key of the resource
KEY old_key;
bool old_key_valid;
TYPE* ptr; // pointer to the resource
w_base_t::uint4_t waiters; // # of waiters

Release Jan 1999 2



RSRC(COMMON) RSRC(COMMON)

w_base_t::uint4_t ref; // ref count
scond_t exit_transit; // signaled when

// initialization is done

};

DESCRIPTION
The rsrc m template class manages a fixed size pool of "resources" (of type T) in a multi-
threaded environment. A structure, rsrc t, is associated with each resource. Class rsrc t con-
tains a key, K, a pointer to the resource and a latch to protect access to the resource. The rsrc t
elements are stored in a hash table, hash t. Because of the latches, each resource can be individ-
ually "pinned" for any desired length of time without restricting access to other resources.

The template class rsrc i is the iterator for the rsrc m class.

When a entry needs to be added and the table is full, on old entry is removed based on an LRU
policy.

The rsrc m is relatively expensive, so it is probably best used to manage large resources or where
high concurrency is needed. A good example is managing access to pages in a buffer pool.

Requirements:
The rsrc m template takes two class parameters:

T the class type of the resources to be manages.

K the unique key of the resource for lookup purposes. Note: that K must define K::opera-
tor=() for copying since rsrc m saves a copy of K for lookup purpose, and u long
hash(const K&) hash function for K because rsrc m is hash-table based.

A resource in rsrc m
can be in one of three states:

unused the resource is free; no key is associated with the resource.

cached the resource is cached and is associated with a key.

in-transit
the resource is begin replaced; its key is being changed.

Rsrc m Interface
rsrc m(rsrc, cnt, desc)

The constructor creates a resource manager to manage the resources specified by the
array rsrc. The number of resources (ie. the length of the array) is specified by cnt. The
desc is an optional string used for naming the latches protecting the resources. It can be
useful in debugging.

˜rsrc m()

The destructor destroys the resource manager. There should not be any resources pinned
when the resource manager is is destroyed.

grab(ret, key, found, is new, mode, timeout)

Release Jan 1999 3



RSRC(COMMON) RSRC(COMMON)

The grab method pins the resource associated with key and sets a latch in mode mode on
the resource. The calling thread should subsequently free rsrc by calling unpin.

If the resource is cached, grab simply returns it. Otherwise, grab will either allocate an
unused resource or find another cached resource to replace using a pseudo-LRU (clock)
algorithm. The calling thread could potentially block if mode causes a latch conflict
(i.e.when there is contention to the resource). If grab is successful, a pointer to the
cached/allocated/replacement resource is returned in ret. The found flag is set to indicate
cache hit/miss. In the case of a cache miss, the resource returned is said to be in-tran-
sit, and the is new flag indicates whether ret points to:

(1) a previously unused resource (true), or

(2) a previously cached resource of another key (false).

In case 1, the in-transit resource returned simply needs to be initialized with the new key.
All other threads that ask for a resource with the new key will block. The caller should
initialize the resource and subsequently call publish, which formally publishes the new
key and resets the resource’s in-transit status.

In case 2, the in-transit resource returned is temporarily associated with both the new key
(as specified in grab and the old key. All other threads that ask for a resource with any
of these keys will block. The caller sehould first clean up the resource (invalidate the old
key) and call publish partial, which informs rsrc m that the old key is no longer valid.
The caller should then proceed as in case 1.

In essense, the caller should proceed as follows:
grab the resource
if not found then

if not is_new then
clean up the resource (optional), e.g.,flush the dirty page
call publish_partial() (optional)

initialize the resource (obligatory), e.g.,read the new page
call publish() (obligatory)

... use the resource ...
call unpin() to free the resource

find(ret, key, mode, ref bit, timeout)

The find method looks up and pins a cached resource identified by key. It returns an the
error fcNOTFOUND
if the resource is not cached. If the resource is cached, a mode
latch is acquired on the resource and a pointer to the resource is returned in ret. The

calling thread should subsequently free the resource by calling unpin. As in grab,
the calling thread could potentially block if mode causes a latch conflict (i.e.,when there

is contention to the resource). The refbit parameter is a hint to the rsrc m replacement
algorithm; refbit is directly proportional to the duration that a resource remained cached.
Thus, a zero refbit implies that the rsrc m should reuse the resource as soon as needed
after it is unpinned.

pin(rsrc, mode)

Release Jan 1999 4



RSRC(COMMON) RSRC(COMMON)

The pin method pins the resource rsrc. The latch on the resource is acquired in mode
mode. The calling thread should subsequently free rsrc by calling unpin.

publish(rsrc, error flag)

The publish method makes the resource rsrc, that was previously obtained by a grab
call with a cache miss, available. See the description of grab for more details. The
error flag parameter is informs the rsrc m that the resource has not been successfully
initialized, and should be invalidated.

publish partial(rsrc)

The publish partial method partially publishes the resource rsrc that was previously
obtained with a call to grab. See the description of grab for more details.

unpin(rsrc, refbit)

The unpin method releases the latch on the resource rsrc. The refbit parameter is a hint
to the rsrc m replacement algorithm; refbit is directly proportional to the duration that
a resource remained cached. Thus, a zero refbit implies that the rsrc m should reuse the
resource as soon as needed.

Rsrc i Interface
The rsrc i template is used to iterate over all of the resources in an instance of rsrc m.

rsrc m(r, mode, start)

The constructor initilizes an iterator for the rsrc m instance indicated by parameter r.
Each resource will be pinned (latched) in mode mode. The iterator starts at the start,
element in the array of resources that r manages. The iterator will only return those
resources actually in the hash table.

˜rsrc m()

The destructor ends the iterator by unpinning and currently pinned resource.

next()

The next method unpins the current resource, advances the iterator to the next resource,
and pins it. Next returns a pointer to the resource after it has advanced. It will return
0 if there are no more resources. Next skips any resources not in the hash table.

curr()

The curr method returns a pointer to the currently pinned resource.

discard curr()

The discard curr method unpins the current resource and removes it from the hash ta-
ble.

TODO

Release Jan 1999 5



RSRC(COMMON) RSRC(COMMON)

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number
018 (formerly 8230), monitored by the U.S. Army Research Laboratory under contract
DAAB07-91-C-Q518. Further funding for this work was provided by DARPA through Rome
Research Laboratory Contract No. F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All
Rights Reserved.

SEE ALSO
latch t(common), intro(common).

Release Jan 1999 6


