
LIST(FC) LIST(FC)

NAME
w list t − generic list structures

SYNOPSIS
#include <w.h>
#include <w_list.h>
// for definition of offsetof(x,y):
#include <stddef.h>

class w_link_t;
class T {

// your type
...
w_link_t _link;
...

};

// unsorted lists:
template <class T> class w_list_t;

// iterator over a w_list_t:
template <class T> class w_list_i;
template <class T> class w_list_const_i;

// sorted lists:
template <class T, class K> w_descend_list_t;
template <class T, class K> w_ascend_list_t;

DESCRIPTION
This is a set templates for managing doubly-linked lists of objects of type T (for user-defined
types T). The double-linking of items into lists is accomplished with the class w link t, which
must be a member of the type T. The template methods operate on the w link t member. The
name of the member can be anything; the methods locate the member by information given when
the list is constructed:
w_list_t<mytype> l(offsetof(mytype, mylink));
where the template parameter is the type:
class mytype {

int a;
w_link_t mylink;
...
int b;

};

The lists managed by these templates are of two general kinds: unsorted and sorted.

Unsorted lists
Unsorted lists ( w list t<T> ) are constructed as in the example given above.

Items are put into the list with the any of the following methods:
w_list_t<T>& push(T* t);
T* pop(); // reverse of push
w_list_t<T>& append(T* t) ;
T* chop(); //reverse of append

These methods return the objects at the front and rear of the lists:
T* top();
T* bottom();

A list can be printed with

Release Jan 1999 1



LIST(FC) LIST(FC)

friend ostream& operator<<(
ostream& o,
const w_list_t<T>& l);

Unsorted lists are traversed with iterators (instances of w list i<T> ), which have methods
next(), curr(), and reset().
{

mytype *p;
w_list_i<mytype> iter(l);
for (int i = 0; i < 10; i++) {

p = iter.next();
if ( p->a == .... // whatever you wish

}
}

Sorted lists
Sorted lists ( w descend list t<T,K> and w ascend list t<T,K> ) are lists of objects con-
taining keys, which are members of the template parameter class T, whose type is the template
parameter type K.

Sorted lists are traversed by calling their methods
virtual T *search(const K &);
In order for the method search to work, the template has to find a member of the key type K in
each instance of type T that is in the list. For this reason, each ordered list is constructed with
the location of the key as well as the location of the w link t:
// order this list on the value of a in descending order
w_descend_list_t<mytype, int> l(

offsetof(mytype, a),
offsetof(mytype, mylink) // offset of link

);

// order this list on the value of b in ascending order
w_ascend_list_t<mytype, int> l(

offsetof(mytype, b),
offsetof(mytype, mylink) // offset of link

);

Objects are inserted into sorted lists with the method put in order:
virtual void put_in_order(T* t);

Sorted lists can be traversed with iterators ( w list i ), and with these methods:
T* first();
T* last();

In addition, methods derived from w list i such as pop can be used to remove items from the
head list (e.g, for destroying the entire list).

DERIVING NEW LISTS
The methods search and put in order are declared virtual so that other list types can be
derived from these templates.

BUGS
There are no methods for removing items from the middle of a list.

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

Release Jan 1999 2



LIST(FC) LIST(FC)

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number
018 (formerly 8230), monitored by the U.S. Army Research Laboratory under contract
DAAB07-91-C-Q518. Further funding for this work was provided by DARPA through Rome
Research Laboratory Contract No. F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All
Rights Reserved.

SEE ALSO
rc(fc), intro(fc), statistics(oc), statistics(svas), and statistics(ssm).

Release Jan 1999 3


