
Paradyn Paral le l Performance Tools

Tutorial 4/19/04

Paradyn Project
Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685
paradyn@cs.wisc.edu

Tutorial

Release 4.1
April 2004

Table of Contents

Tutorial April 19, 2004 Release 4.1

1 Preliminaries ..4

2 Common tutorial - bubba_seq..5
2.1 Running an application ...5
2.2 Viewing performance data ..9
2.3 Performance Consultant diagnosis ..12
2.4 Phases ..17

3 MPI Tutorial - decomp_MPI..19
3.1 Running the MPI application ..19
3.2 Viewing performance data ..22
3.3 Performance Consultant diagnosis ..23

4 Further information..28
4.1 Contacting the Paradyn developers ...28

List of Figures

Tutorial April 19, 2004 Release 4.1

Figure1: Paradyn Main Control window...5
Figure2: Paradyn base Where Axis...6
Figure3: TheDefine A Pr ocess window specifying bubba application process.......................7
Figure4: Paradyn Main Control window with bubba loaded and ready to run...........................8
Figure5: Where Axis after the bubba application process is loaded...8
Figure6: Selecting a Histogram visualization..10
Figure7: Metrics menu with “cpu” and “cpu_inclusive” selected...10
Figure8: Message box shown when instrumentation is deferred..11
Figure9: Histogram of global phase with “cpu” and “cpu_inclusive” for two foci..................12
Figure10: The Performance Consultant window...13
Figure11: The Performance Consultant bubba exigency search...15
Figure12: The Search History Graph showing only exigent bubba nodes..................................16
Figure13: BarChart visi presenting selected bubba performance data..16
Figure14: PhaseTable visi presenting phase durations..17
Figure15: Histogram for global phase...18
Figure16: Histogram of current phase...18
Figure17: TheDefine A Pr ocess dialog for MPI om3..20
Figure18: Paradyn Main Control window after the MPI application process is started.............21
Figure19: Where Axis after the om3 MPI application process is started....................................21
Figure20: MPI metrics menu with “sync_wait_inclusive” and “cpu_inclusive” selected..........23
Figure21: Histogram of global phase for “sync_wait_inclusive” and “cpu_inclusive”..............24
Figure22: The Performace Consultant bottleneck search with MPI om3...................................26
Figure23: Search History Graph om3..27

Page 4

Tutorial April 19, 2004 Release 4.1

1 PRELIMINARIES

This document1 covers the basicsfor using Paradyn:how to start Paradyn,run an application,
view its performancedata,andrun thePerformanceConsultantto automaticallyfind performance
bottlenecksin theapplication.Severalsimpleexampleapplicationprogramscomewith thebinary
distribution of Paradyn.You canobtainParadynandthe testprograms(binariesandsources)by
anonymousftp to grilled.cs.wisc.edu. For more information on obtainingand installing
Paradyn, including setting necessary environment variables, see theParadyn Installation Guide.

This tutorial is providedin two parts.Thefirst partcoversthebasicuseof Paradyn,its visual-
izersandPerformanceConsultantusinga simplesequentialC application(bubba). This is fol-
lowed by an additional tutorials for MPI (decomp, also provided in appropriatebinary
distributions),which maynot beavailableon all systemsor relevant to all Paradynusers.While
thereis someredundancy betweentheMPI tutorial andthebasictutorial, it considersMPI--spe-
cific functionalityof Paradynandadditionalexamplesof theuseof ParadynvisualizersandPer-
formance Consultant with message-passing programs.

1. Note that some of the color figures in this document may be unclear when printed in gray-scale.

Page 5

Tutorial April 19, 2004 Release 4.1

2 COMMON TUT ORIAL - BUBBA_SEQ

This first tutorial sectioncovers the basicuseof Paradynwith a simple sequentialapplication
(bubba) providedaspartof theParadynbinarydistribution for every platformParadynsupports.
This commontutorial sectionis an introductionto Paradynand its capabilities,which will be
elaborated in the following section with additional functionality for MPI applications.

2.1 Running an application

Paradyncanstartan applicationon the local or remotemachine.The standardoutputanderror
messagesof the applicationaredisplayedin a separateterminalwindow. The informationdis-
played can be saved to a file.

2.1.1Start Paradyn and define the application process

Paradyn can be started by entering the following command at a command prompt:2

% paradyn

Paradynwill startrunninganddisplaytheParadynMain Controlwindow (Figure1) andthebase
WhereAxis window (Figure2). The statusline in the ParadynMain Control window (labeled
“UIM status”)indicatesthatParadyn’s userinterfacemanageris ready. This meansthatParadyn
is now ready to load and run the subject application program.

To describeanapplicationto Paradyn,selectDefine A Process from theSetup menu.This
will causea dialog to appearthatwill allow you to specifytheparametersthatarenecessaryfor
Paradynto startyour applicationprocess.This dialogis shown in Figure3. To describetheappli-
cationandits environmentto Paradyn,thefollowing shouldbespecifiedin theDefine A Process
dialog:

1. User: Thelogin nameon thehoston which Paradynwill starttheapplicationprocess.In this
examplewe left the User field blank, which meansthat the login will have a value of the
user’s current login name.

2. On Windows NT, the command prompt is accessible via the “Command Prompt” item in the Start menu.
Alternatively, the command may be issued from the “Run...” item in the Start menu. In both cases, the
PATH environment variable must include the Folder in which the Paradyn executable (paradyn.exe)
resides in order for Paradyn to run.

Figure1: Paradyn Main Contr ol window.

Page 6

Tutorial April 19, 2004 Release 4.1

2. Host: The host on which Paradyn will start the application process. A blank value will default
to the current host (the one on which Paradyn is running).

3. Directory: If the host on which the application is to be started is different from the one on
which the Paradyn process is running, then the current directory on the remote machine is the
home directory of the user specified in the User entry. The Directory field allows you to spec-
ify a different working directory for the application process. In this example, Paradyn will

change to /p/paradyn/demo/Paradyn/bubba_seq/@PLATFORM before starting bubba.3 Note
that the path specified in this field is interpreted on the host specified in the Host field, which
is not necessarily the host on which Paradyn is running.

4. Command: This entry takes the command that will start the application program. In this
example we have entered “bubba ../dat/example5” , which specifies the executable file

(bubba) with one command line argument, ../dat/example5 , the input file.4

5. Daemon: This option allows you to specify which version of the Paradyn daemon to run.
Since this is a sequential application, the defd daemon is selected. If the application is to be
run under Windows NT, the winntd daemon should be selected.
Once the fields of the Define A Process window have been filled in, click on the Accept but-

Figure 2: Paradyn base Where Axis.

3. To simplify this tutorial, the macro @PLATFORM is used as shorthand for the environment variable
PLATFORM specifying the processor-vendor-OS tuple for this host/executable. Paradyn’s input parser
currently doesn’t make the appropriate environment variable substitutions itself, therefore, you must
manually substitute the appropriate information. (Alternatively, filesystems such as AFS may permit def-
inition of a symbolic link called @PLATFORM to achieve this illusion.)

4. On Windows NT, the bubba executable is called “bubba.exe.” Also, note that if you choose to use back-
slashes instead of forward slashes, they must be escaped in the Command field on Windows NT. For
example, to run the bubba executable located one folder up from the folder specified in the Directory
field, the command would be “..\\bubba.exe ..\\..\\dat\\example5”.

Page 7

Tutorial April 19, 2004 Release 4.1

ton, and Paradyn will start your application process. This step can take anywhere from several
seconds to several minutes as Paradyn examines and starts your application, depending on its size,
the load on the machine, network connection speed, etc.

2.1.2 Starting an application process manually

After an application has been defined, the Paradyn main window will contain more status lines,
and the Where Axis will contain more entries. The new status lines provide information about
Paradyn and your application process. These are shown in Figure 4 (which shows the Paradyn
Main Control window after it has started running the application).

The following status lines are for the application process:

1. Application name: The name of the application program (bubba or bubba.exe), the name of
the machine (grilled), the name of the user (self), and the name of the daemon (defd)

2. Processes: A list of the process IDs of all the processes in the application. In this example,
there is one pid (18904) corresponding to the process started on host grilled.

3. Application status: The current status of the application program (either RUNNING,
PAUSED, or EXITED).

4. grilled: Status lines for each host. Once the application starts running these will display the
status of each host (running, paused, or exited).

The new status line for the Paradyn process (Data Manager) displays the state of Paradyn’s Data
Manager.

Now that Paradyn has had a chance to examine the program executable(s), it is able to add
entries to the Where Axis. The new entries in the Where Axis correspond to resources that can
only be obtained when the application process has been defined and started. These new entries
include modules and procedures in the Code hierarchy, and machine names in the Machine hier-
archy. Figure 5 shows the Where Axis with these new resources added. The Machine hierarchy
contains the machine “grilled.cs.wisc.edu” under which is the process “bubba{18904}”, and

Figure 3: The Define A Process window specifying bubba application process

Page 8

Tutorial April 19, 2004 Release 4.1

the Code hierarchy contains several new entries corresponding to a source code modules. Double-

clicking on nodes with a triangle on their righthand edge expands them to show the nodes they
contain; double-clicking on a head-node folds it into its parent node. Single-clicking on nodes
(including head-nodes) will be used later to select (sets of) resources for metric foci. Locating
particular nodes can be achieved by typing a search string in the labeled field and then enter.

At this point, Paradyn is ready to start running the application. You can now select the RUN
button from the Paradyn Main Control window to start executing bubba, or alternatively first
define some performance measurements and/or views before running it (as described in the fol-
lowing sections). Once execution has commenced, the PAUSE button can be used to temporarily

Figure 4: Paradyn Main Control window with bubba loaded and ready to run

Figure 5: Where Axis after the bubba application process is loaded

Page 9

Tutorial April 19, 2004 Release 4.1

halt it and RUN will resume execution. Note, however, that execution can only be resumed from
the current point and not from the start (without exiting and restarting Paradyn).

2.1.3 Starting an application process automatically

Paradyn can also start an application using a PCL specification file. Below shows a command to
start the bubba application using a PCL file called bubba.pcl:

% paradyn -f bubba.pcl

The contents of the PCL file, bubba.pcl, are shown as follows:
// Paradyn configuration file for bubba (generic)

process bubba
{

//host "localhost";
dir "/p/paradyn/demo/Paradyn/bubba_seq/@PLATFORM";
command "bubba ../dat/example5";
daemon defd;

}

In the PCL file, the (optional) host, the directory, the command, and the daemon are specified as
when starting an application manually, and on start-up Paradyn automatically loads and prepares
this process ready for execution and analysis.

2.2 Viewing performance data

Before you run the application process, you may want to start a visualizer (or visi)5. For this appli-
cation, we will start a time-histogram visualization to view CPU utilization for the application. In
this section, we describe how to start a visualizer, and how to choose the set of metrics and parts
of the program that a visualizer will display.

2.2.1 Starting a visualizer

To start a visualizer, select the Visi option from the Paradyn main window menubar. This will
open the Start A Visualization dialog that allows you to choose a type of visualization and a
phase for the data. Figure 6 shows this dialog with a Histogram visualization selected for the Glo-
bal Phase (Section 2.4 will discuss phases). Other visualizations allow metric data to be presented
in tabular and barchart form, etc., though all visualizers may not be available on all platforms.

Once the visualization selection has been made, click on the Start button and Paradyn will
display a metrics dialog. This dialog, shown in Figure 7, allows you to select the set of metrics to

be displayed by the visualization.6 In this example, we have selected cpu (CPU time) and
cpu_inclusive (CPU inclusive). The cpu metric if applied to a function will exclude time spent in
any function it calls, whereas the cpu_inclusive metric includes time spent in the selected function
and the functions that are called by it.

To choose the parts of the program for which the metric will be collected, you select resources
by clicking on nodes in the Where Axis. A focus is a location in the application for which metric

5. Visualizers do not have to be started now, but doing so before the program starts running will guarantee
that you will get data for the complete execution of the application.

6. The metrics dialog shows all metrics defined for the current platform(s).

Page 10

Tutorial April 19, 2004 Release 4.1

data can be collected. For example, if you select the node bubba{18904} from the Machine hier-
archy, you limit data collection to the process bubba{18904}. If you select p_makeMG and
a_reversepmove from the Code hierarchy, you limit data collection to function p_makeMG and
a_reversepmove. Figure 5 shows the Where Axis with these nodes selected.

Paradyn combines selections from each of the resource hierarchies to create a focus, each
selection further restricts the scope of data collection. If you had made the previous process and
module selections, then you limit data collection to activity in the functions p_makeMG and
a_reversepmove in the process bubba{18904}. This selection corresponds to two foci: the
first focus is when the process 18904 is running in function p_makeMG; the second focus is when

Figure6: Selecting a Histogram visualization

Figure7: Metrics menu with “cpu” and “cpu_inclusi ve” selected

Page 11

Tutorial April 19, 2004 Release 4.1

process 18904 is running in functiona_reversepmove.
If no Where Axis nodes are selected then Paradyn uses the default Whole Program.
Onceyou have madeyour selections,click on theAccept buttonon themetricsmenu.Para-

dyn will thentry to enabledatacollectionfor your selection.Theselectionis expandedto bethe
cross-productof metric-focuspairsfrom the list of metricsandfoci selected.For example,if the
metrics CPU and CPU_INCLUSIVE, and the resourcenodesbubba{18904} and p_makeMG
were selected, then Paradyn would try to enable four metric-focus pairs:

• CPU time for process 18904 when it is running in functionp_makeMG.

• CPU time for process 18904 when it is running in functionp_makeMG.

• cpu_inclusive time for process 18904 when it is running in functionp_makeMG.

• cpu_inclusive time for process 18904 when it is running in functionp_makeMG.
If at leastonemetric-focuspair wassuccessfullyenabled,Paradynwill startthevisualization

processandstartsendingperformancedatavaluesto thevisualization.7 If instrumentationfor any
of themetric-focuspairshadto bedeferredbecauseanapplicationprocesswasexecutingat the
instrumentationpoint, Paradyndisplaysa messagebox similar to theoneshown in . If thereare
any metric-focuspairs that could not be enabled,Paradynwill display a messagelisting those
pairs,andre-displaythemetricsmenufor you to modify yourselection.If thisoccurs,andyoudo
not wantto try enablingany othermetric-focuspairs,you canchoosetheCANCEL buttonon the
metrics menu.

The time-histogramshown in Figure9 is the result of selecting the metrics “cpu” and
“cpu_inclusive” from the metrics menu and bubba{18904} and p_makeMG and
a_reversepmove from the Where Axis.

Oncethetime-histogramis created,click on theRUN buttonfrom theParadynmainwindow
to starttheapplicationprocess.Performancedatawill thenbesentby Paradynto the time-histo-
gram.The time-histogramcontainsseveralmenuoptionsfor changingthedisplayof theperfor-
mancedataandfor changingthesetof performancedatathat is currentlybeingdisplayed.These

7. Metric data isn’t sampled or displayed before the application starts running or while it is paused.

Figure 8: Message box shown when instrumentation is deferred

Page 12

Tutorial April 19, 2004 Release 4.1

options are described in detail in theParadyn User’s Guide.

2.3 Performance Consultant diagnosis

ThePerformanceConsultantis thepartof Paradynthatperformsanautomatedhierarchicalsearch
for performancebottlenecks.It automaticallyenablesand disablesinstrumentationfor specific
metric-focuspairs as the searchprogresses.The PerformanceConsultantstarts looking for
course-grainedperformanceproblemsandtheniteratively tries to refinethesearchto isolatethe
performancebottleneckto aspecificaspectof theapplication’sexecution.Thisaspectis specified
asa point in a threedimensionalsearchspacedefinedby a Why Axis, WhereAxis, andWhen
Axis.

2.3.1 The Performance Consultant window

ThePerformanceConsultantis startedby selectingthePerformance Consultant optionfrom the
SetUp menuon theParadynmainwindow. Figure10shows thePerformanceConsultantwindow.
We briefly discuss the parts of the Performance Consultant window below:

1. Searches Menu:Allowsyou to view searchhistorygraphsfrom differentphases.(Phasesare
discussed later in Section2.4.)

2. Statusline: Thestatusline at thetopof thewindow indicatesthephasefor which thesearchis
defined (in this example, the search is defined for theGlobal Phase).

3. SearchText Output:This areais usedby thePerformanceConsultantto print statusmessages
about the state of the search

4. SearchHistory Graph:This is a graphicalrepresentationof thestateof thesearch.Nodescor-

Figure 9: Histogram of global phase with “cpu” and “cpu_inclusive” for two foci

Page 13

Tutorial April 19, 2004 Release 4.1

respondto differentpoints in the searchspace,andarcscorrespondto differentrefinements
that have been made. Figure10 shows only the initial node,TopLevelHypothesis.

5. Buttons: These allow you to start or pause the search.

6. SearchHistory GraphKey: Thebottomportionof thewindow describeshow to interpretthe
color of thenodesandedgesin thesearchhistorygraph,andhow to navigatearoundthewin-
dow.

2.3.2 Starting the search

Thesearchcanbestartedby clicking on the Search button in the PerformanceConsultantwin-
dow. As the PerformanceConsultantsearchproceeds,statusinformationwill be printed to the
window, andthesearchhistorygraphwill beupdatedto reflectthecurrentstateof thesearch.A
PerformanceConsultantsearchis eitherdefinedover theentirerun of theapplication(theglobal
phase),or over a specificphaseof the application’s execution.In this examplewe selectedthe
Search button in the PerformanceConsultantwindow to starta global phasesearch.Figure11
shows the Performance Consultant window during the bottleneck search.

By watchingthe SearchHistory Graph,we canseehow the PerformanceConsultantitera-
tively refinesits searchto isolatethebottleneck.Thefirst hypothesisthePerformanceConsultant

Figure 10: The Performance Consultant window

Page 14

Tutorial April 19, 2004 Release 4.1

tests is whether there is a bottleneck in the whole program, if this is true, then it starts refining the
search. Each level in the search history graph represents a refinement that was made in the search
process. Refinements are only made on hypotheses that test true, and are used to further isolate the
bottleneck to a particular part of the application’s execution. In general the results of the search
can be obtained by following the blue nodes from the root of the search history graph to a leaf
node. Also, by clicking the right mouse button on any node in the search history graph, you can
see a text string representation of the hypothesis associated with any node in the graph. This string
is displayed in the information line below the search history graph. For example, the information
line below the search history graph in Figure 12 shows the hypothesis associated with the bottom-
most nodes in the graph.

Figure 11 shows the search history graph during the search for a bottleneck in bubba. You can
see that there have been refinements on both the Why and Where axis (these are indicated by yel-
low and purple edges in the search history graph). Also, there are nodes representing hypotheses
that have tested true (blue nodes), nodes representing hypotheses that have tested false (pink
nodes), and nodes representing hypotheses that have not yet been decided (green nodes).

Figure 12 shows the search history graph after the search has progressed further, and with
only the nodes representing true hypotheses shown. The first hypothesis evaluated to true (the
blue colored TopLevelHypothesis node at the top of the graph). The first refinement was on the
Why axis and resulted in finding that there was a cpu bottleneck in the application (the CPUb-
ound node is true). Next, the synchronization bottleneck was isolated to the function main and
machine grilled.cs.wisc.edu. The fact that these two nodes are siblings indicates that these refine-
ments were done at the same time. These two nodes were then further refined concurrently. The
result after several such refinements is that the bottleneck is isolated to a specific procedure
(p_makeMG). This means that the Performance Consultant found that there is a CPU bottleneck in
procedure p_makeMG. At this point, the Performance Consultant was unable to further refine the
bottleneck. However, it will continue to evaluate true nodes in the graph.

2.3.3 Investigating the Performance Consultant’s diagnosis

Typically, after running the Performance Consultant, you would like to see the performance data
corresponding to the bottleneck in the application. To do this, you can start a visualization process
to display performance data. In this example, after running the Performance Consultant, we
started a barchart visualization by choosing BarChart from the list Start A Visualization menu
(like Figure 6). The barchart is shown in Figure 13: it shows that almost all of the cpu time for
bubba can be attributed to procedure p_makeMG.

Page 15

Tutorial April 19, 2004 Release 4.1

Figure 11: The Performance Consultant bubba exigency search

Page 16

Tutorial April 19, 2004 Release 4.1

Figure 12: The Search History Graph showing only exigent bubba nodes

Figure 13: BarChart visi presenting selected bubba performance data

Page 17

Tutorial April 19, 2004 Release 4.1

2.4 Phases

In this section we briefly discuss Paradyn’s notion of phases.
Phasesarecontiguoustime-intervalswithin anapplication’sexecution.Therearetwo typesof

phases:a global phase andzeroor morelocal phases. Theglobalphaseincludestheentireperiod
of execution,from the startof the applicationprogramuntil the currenttime. This phaseis the
default for thePerformanceConsultantor any visualization.A local phaserestrictsperformance
informationto a particulartime interval. A local phasecanbestartedat any time; thelocal phase
endswhena new local phaseis started.This meansthat,at any giventime,you canselectperfor-
mance data from the global phase and from the current local phase.

Oneuseof phasesin Paradynis to changethegranularityof performancedatacollectionafter
the applicationprocesshasbeenrunning for sometime. BecauseParadynusesfixed-sizedata
structuresto storeperformancedata,thegranularityof performancedatabecomesmorecoarsethe
longerthe applicationruns.For someapplications,the interestingbehavior may not occuruntil
severalhoursinto its executionwhenthegranularityof performancedatais large.To obtainper-
formancedataat a finer granularity, you canstarta new local phase.The datacollectionat the
start of the new phase will be at the finest granularity supported by Paradyn.

To startanew phase,first createaphasetablevisualizationby choosingPhase Table from the
Start A Visualization menu.A phasetable is shown in Figure14. Next, click on the Start A
Phase menuoptionfrom thephasetable’smenubar. Thiswill causethephasetableto displayan
endtime for thepreviousphase(phase_0 in theexample),andaphasenameandphasestarttime
for the newly created current phase (phase_1 and11m 54s in the example).

Oncea new phaseis started,you cancreatevisualizationsto displaydatafrom it by clicking
on the Current Phase button in the lower right cornerof the Start A Visualization window.
Figure15 and Figure16 are time-histograms for the global and current phases respectively..

Notethatthecurrentphasehistogramstartsatphase_1’sstarttime(11:54)anddisplaysdataat
a finer granularity than the same performance data displayed by the global phase histogram.

Figure 14: PhaseTable visi presenting phase durations.

Page 18

Tutorial April 19, 2004 Release 4.1

Figure 15: Histogram for global phase

Figure 16: Histogram of current phase

Page 19

Tutorial April 19, 2004 Release 4.1

3 MPI TUT ORIAL - DECOMP_MPI

This tutorial section covers the use of Paradyn with a simple MPI application (om3) provided as
part of the Paradyn binary distribution for platforms where MPI is supported. MPI is not yet sup-
ported by Paradyn on all platforms: see the Paradyn User Guide for details.

3.1 Running the MPI application

3.1.1 Start Paradyn and define the MPI application process

The first step is to run Paradyn. This is done by entering the following command:

% paradyn

Paradyn will start running and display the Paradyn Main Control window (Figure 1) and the base
Where Axis window (Figure 2). The status line in the Paradyn Main Control window (labeled
“UIM status”) indicates that Paradyn’s user interface manager is ready. This means that Paradyn
is now ready to loaded and run the subject application program.

To describe an application to Paradyn select Define A Process from the Setup menu. This
will cause a dialog to appear that will allow you to specify the parameters that are necessary for
Paradyn to start your application process. This dialog is shown in Figure 17. To describe the
application and its environment to Paradyn, the following should be specified in the Define A
Process dialog:

1. User: The login name on the host on which Paradyn will start the application process. In this
example we left the User field blank, which means that the login will have a value of the
user’s current login name.

2. Host: The host on which Paradyn will start the application process. A blank value will default
to the current host (the one on which Paradyn is running).

3. Directory: If the host on which the application is to be started is different from the one on
which the Paradyn process is running, then the current directory on the remote machine is the
home directory of the user specified in the User entry. The Directory field allows you to spec-
ify a directory to change to before Paradyn starts the application process. In this example,
Paradyn will change to /p/paradyn/applications/mpi/om3 before starting om3.

4. Command: This entry takes the unix command that will start the application program. The
syntax for this command for launching MPI jobs will vary by platform. For MPICH, the entire
command-line including the mpirun command and all of its appropriate arguments should be
entered. For AIX, the POE job launcher poe can be entered or omitted. In this example we
have entered “mpirun -np 4 -machinefile hostfile om3_4node” , which specifies the
executable file (om3_4node) with two command line arguments: the number of processes (4),
and a file containing node names (hostfile).

5. Daemon: This option allows you to specify which version of the Paradyn daemon to run.
Since this is an MPI application, the mpid daemon is selected.
Once the fields of the Define A Process window have been filled in, click on the Accept but-

ton, and Paradyn will start your application process. This step can take anywhere from several
seconds to several minutes, depending on the size of the application.

Page 20

Tutorial April 19, 2004 Release 4.1

3.1.2 Start the MPI application process manually

After an application has been defined, the Paradyn main window will contain more status lines,
and the Where Axis will contain more entries. The new status lines provide information about
Paradyn and your application process. These are shown in Figure 18 (which shows the Paradyn
Main Control window after it has started running the application).

The following status lines are for the application process:

1. Application name: The name of the application program (in this case, mpirun is named), the
name of the machine (c23), the name of the user (self), and the name of the daemon (rshd)

2. Processes: Typically Paradyn will indicate the process ids in this field. In the case of
MPICH, this field is used to indicate that paradyn has identified the job as an MPICH job.

3. Application status: The current status of the application program (either READY, RUN-
NING, PAUSED, or EXITED).

4. Hosts: Status lines for each host. Once the application starts running these will display the
status of each host (running, paused, or exited). In Figure 18 only the hostname c23 is shown
as we have not yet started the application.

The new status line for the Paradyn process (Data Manager) displays the state of Paradyn’s Data
Manager.

Now that Paradyn has had a chance to look over your program, it is able to add entries to the
Where Axis. The new entries in the Where Axis correspond to resources that can only be obtained
when the application process has been defined and started. These new entries include modules and
procedures in the Code hierarchy, and process IDs in the Machine hierarchy. Figure 19 shows the
new Where Axis with these new resources added. The Process hierarchy contains four new pro-
cesses (one for each MPI process).

At this point, Paradyn is ready to start running the application. You can now select the RUN
button from the Paradyn Main Control window to start executing om3, or alternatively first define

Figure 17: The Define A Process dialog for MPI om3

Page 21

Tutorial April 19, 2004 Release 4.1

some performance measurements and/or views before running it (as described in the follow-
ing sections). Once execution has commenced, the PAUSE button can be used to temporarily halt
it and RUN will resume execution. Note, however, that execution can only be resumed from the
current point and not from the start (without exiting and restarting Paradyn).

Figure 18: Paradyn Main Control window after the MPI application process is started

Figure 19: Where Axis after the om3 MPI application process is started

Page 22

Tutorial April 19, 2004 Release 4.1

3.2 Viewing performance data

Before you run the application process, you may want to start a visualizer1. For this application,
we will start a time-histogram visualization to view CPU utilization and synchronization blocking
time for the application. In this section, we describe how to start a visualizer, and how to choose
the set of metrics and parts of the program that a visualizer will display.

3.2.1 Starting a visualizer

To start a visualizer, select the Visi option from the Paradyn main window menubar. This will
open the Start A Visualization dialog that allows you to choose a type of visualization and a
phase for the data. Figure 6 shows this dialog with a Histogram visualizer selected for the Global
Phase (Section 2.4 discusses phases).

Once the visualization selection has been made, click on the Accept button and Paradyn will
display a metrics menu appropriate for this MPI application. This menu, shown in Figure 20,
allows you to select the set of metrics to be displayed by the visualization. In this example, we
have selected sync_wait_inclusive (inclusive synchronization blocking time) and cpu_inclusive
(inclusive CPU time).

To choose the parts of the program for which the metric will be collected, select resources by
clicking on nodes in the Where Axis. A focus is a location in the application for which metric data
can be collected. For example, selecting the nodes om3_4nodes{23929} and
om3_4nodes{19624} from the Process hierarchy, limits data collection to these two processes
(23929 on c23 and 19624 on c26). Selecting a module from the Code hierarchy limits data collec-
tion to that module. Figure 19 shows the Where Axis.

Paradyn combines selections from each of the resource hierarchies to create a focus, each
selection further restricts the scope of data collection. If you had made the previous process and
module selections, then you limit data collection to activity in a particular module only in pro-
cesses 23929 and 19624. This selection corresponds to two foci: the first focus is when process
23929 is running in the module you selected; the second focus is when process 19624 is running
in that module.

If no Where Axis nodes are selected then Paradyn uses the default Whole Program.
Once you have made your selections, click on the Accept button on the metrics menu. Paradyn

will then try to enable data collection for your selection. The selection is expanded to be the cross-
product of metric-focus pairs from the list of metrics and foci selected. For example, if the metrics
CPU_inclusive and sync_wait_inclusive, and the resource nodes om3_4nodes{23929},
om3_4nodes{19624}, and libm.so.6 were selected, then Paradyn would try to enable four met-
ric-focus pairs:

• CPU_inclusive time for process 23929 when it is running in module libm.so.6.

• CPU_inclusive time for process 19624 when it is running in module libm.so.6.

• sync_wait_inclusive time for process 23929 when it is running in module libm.so.6.

• sync_wait_inclusive time for process 19624 when it is running in module libm.so.6.

1. Visualizers do not have to be started now, but doing so before the program starts running will guarantee
that you will get data for the complete execution of the application.

Page 23

Tutorial April 19, 2004 Release 4.1

If at leastonemetric-focuspair wassuccessfullyenabled,Paradynwill startthevisualization
processandstart sendingperformancedatavaluesto the visualization.If thereareany metric-
focuspairsthatcouldnot beenabled,Paradynwill displaya messagelisting thosepairs,andre-
displaythemetricsmenufor you to modify your selection.If this occurs,andyou do not wantto
try enablingany other metric-focuspairs, you can choosethe CANCEL button on the metrics
menu.

The time-histogram shown in Figure21 is the result of selecting the metrics
“sync_wait_inclusive” and“cpu_inclusive” from themetricsmenuwith machinec23selectedin
the WhereAxis.

Oncethetime-histogramis created,click on theRUN buttonfrom theParadynmainwindow
to starttheapplicationprocess.Performancedatawill thenbesentby Paradynto the time-histo-
gram.The time-histogramcontainsseveralmenuoptionsfor changingthedisplayof theperfor-
mancedataandfor changingthesetof performancedatathat is currentlybeingdisplayed.These
options are described in detail in theParadyn User’s Guide.

3.3 Performance Consultant diagnosis

The PerformanceConsultantis the part of the Paradyntool that performsa searchfor perfor-
mancebottlenecks.It automaticallyenablesanddisablesinstrumentationfor specificmetric-focus
pairsasthesearchprogresses.ThePerformanceConsultantstartslooking for course-grainedper-
formanceproblemsandtheniteratively triesto refinethesearchto isolatetheperformancebottle-
neckto a specificlocationin theapplication’s execution.This locationis specifiedasa point in a
three dimensional search space defined by a Why Axis, Where Axis, and When Axis.

3.3.1 The Performance Consultant window

ThePerformanceConsultantis startedby selectingthePerformance Consultant optionfrom the
SetUp menuon the Paradynmain window. Figure10 shows the initial PerformanceConsultant
window. We briefly discuss the parts of the Performance Consultant window below:

1. Searches Menu: Allows you to view search history graphs from different phases.

Figure 20: MPI metrics menu with “sync_wait_inclusive” and “cpu_inclusive” selected

Page 24

Tutorial April 19, 2004 Release 4.1

2. Statusline: Thestatusline at thetopof thewindow indicatesthephasefor which thesearchis
defined (in this example, the search is defined for theGlobal Phase).

3. SearchText Output:This areais usedby thePerformanceConsultantto print statusmessages
about the state of the search.

4. SearchHistory Graph:This is a graphicalrepresentationof thestateof thesearch.Nodescor-
respondto differentpoints in the searchspace,andarcscorrespondto differentrefinements
that have been made.

5. Buttons: These allow you to start or pause the search.

6. SearchHistory GraphKey: Thebottomportionof thewindow describeshow to interpretthe
color of nodes and edges in the search history graph, and how to navigate around the window.

3.3.2 Starting the search

Thesearchcanbestartedby clicking on the Search button in the PerformanceConsultantwin-
dow. As the PerformanceConsultantsearchproceeds,statusinformationwill be printed to the
window, andthesearchhistorygraphwill beupdatedto reflectthecurrentstateof thesearch.A
PerformanceConsultantsearchis eitherdefinedover theentirerun of theapplication(theglobal
phase),or over a specificphaseof the application’s execution.In this examplewe selectedthe

Figure 21: Histogram of global phase for “sync_wait_inclusive” and “cpu_inclusive”

Page 25

Tutorial April 19, 2004 Release 4.1

Search button in the Performance Consultant window to start a global phase search. Figure 22
shows the Performance Consultant window during the bottleneck search.

By looking at the Search History Graph, we can see how the Performance Consultant itera-
tively refines its search to isolate the bottleneck. The first hypothesis the Performance Consultant
tests is whether there is a bottleneck in the whole program, if this is true, then it starts refining the
search. Each level in the search history graph represents a refinement that was made in the search
process. Refinements are only made on hypotheses that test true, and are used to further isolate the
bottleneck to a particular part of the application’s execution. In general the results of the search
can be obtained by following the blue nodes from the root of the search history graph to a leaf
node. Also, by clicking the right mouse button on any node in the search history graph, you can
see a text string representation of the hypothesis associated with any node in the graph. This string
is displayed in the information line below the search history graph. For example, the information
line below the search history graph in Figure 23 shows the hypothesis associated with the node
representing the sync_wait_inclusive time for the whole program.

Figure 22 shows the search history graph during the search for a bottleneck in om3. You can
see that there have been refinements on both the Why and Where axis (these are indicated by yel-
low and purple edges in the search history graph). Also, there are nodes representing hypotheses
that have tested true (blue nodes), nodes representing hypotheses that have tested false (pink
nodes), and nodes representing hypotheses that have not yet been decided (green nodes). Note that
this application is CPU-bound.

Figure 23 shows the search history graph after the search has progressed further. The first
hypothesis evaluated to true (the blue colored TopLevelHypothesis node at the top of the graph).
The first refinement was on the Why axis and resulted in finding that the application is CPU
bound (the CPUbound node is true). Next, the synchronization bottleneck was isolated to a spe-
cific function in the application (main). and to specific machines (c23, c26, c39, c48). The fact
that thesenodes are siblings indicates that these refinements were done at the same time. These
nodes were then further refined in parallel.

Page 26

Tutorial April 19, 2004 Release 4.1

Figure 22: The Performace Consultant bottleneck search with MPI om3

Page 27

Tutorial April 19, 2004 Release 4.1

Figure 23: Search History Graph om3

Page 28

Documentation Overview April 19, 2004 Release 4.1

4 FURTHER INFORMATION

This tutorial has not covered all of the features in Paradyn. It was intended to guide you
through a few start-to-finish sessions with Paradyn, using the more common features. Note that
some of the functionality shown in this tutorial differs from earlier versions of Paradyn, which are
no longer supported. For a complete description of the features in Paradyn, and information on
how to prepare applications for use with Paradyn, see the Paradyn User’s Guide.

4.1 Contacting the Paradyn developers

There are various ways to get in touch with the Paradyn developers. We are happy to try and
answer questions and appreciate feedback.

■

e-mail: paradyn@cs.wisc.edu

The project e-mail address. Use this address for technical questions or requests.

Web: http://www.paradyn.org

The project home page. From this page, you can find out how to get a binary or source version
of Paradyn. You can also get updates and news on the current release of Paradyn.

FTP: ftp://ftp.cs.wisc.edu/pub/paradyn/

The project ftp site. In the “paradyn” directory, you will find subdirectories containing the bi-
nary and source versions of the Paradyn release. Make sure to look at the README files!

FAX: +1 (608) 262-9777

Postal: Paradyn Project
c/o Prof. Barton P. Miller
Computer Sciences Department
University of Wisconsin
1210 W. Dayton Street
Madison, WI 53706-1685
U.S.A.

	Tutorial
	1 Preliminaries
	2 Common tutorial - bubba_seq
	2.1 Running an application
	2.1.1 Start Paradyn and define the application process
	Figure�1: Paradyn Main Control window.
	Figure�2: Paradyn base Where Axis.
	1. User: The login name on the host on which Paradyn will start the application process. In this ...
	2. Host: The host on which Paradyn will start the application process. A blank value will default...
	3. Directory: If the host on which the application is to be started is different from the one on ...
	4. Command: This entry takes the command that will start the application program. In this example...
	5. Daemon: This option allows you to specify which version of the Paradyn daemon to run. Since th...

	Figure�3: The Define A Process window specifying bubba application process

	2.1.2 Starting an application process manually
	1. Application name: The name of the application program (bubba or bubba.exe), the name of the ma...
	2. Processes: A list of the process IDs of all the processes in the application. In this example,...
	3. Application status: The current status of the application program (either RUNNING, PAUSED, or ...
	4. grilled: Status lines for each host. Once the application starts running these will display th...
	Figure�4: Paradyn Main Control window with bubba loaded and ready to run
	Figure�5: Where Axis after the bubba application process is loaded

	2.1.3 Starting an application process automatically

	2.2 Viewing performance data
	2.2.1 Starting a visualizer
	Figure�6: Selecting a Histogram visualization
	Figure�7: Metrics menu with “cpu” and “cpu_inclusive” selected
	Figure�8: Message box shown when instrumentation is deferred
	Figure�9: Histogram of global phase with “cpu” and “cpu_inclusive” for two foci

	2.3 Performance Consultant diagnosis
	2.3.1 The Performance Consultant window
	1. Searches Menu: Allows you to view search history graphs from different phases. (Phases are dis...
	2. Status line: The status line at the top of the window indicates the phase for which the search...
	3. Search Text Output: This area is used by the Performance Consultant to print status messages a...
	4. Search History Graph: This is a graphical representation of the state of the search. Nodes cor...
	5. Buttons: These allow you to start or pause the search.
	6. Search History Graph Key: The bottom portion of the window describes how to interpret the colo...
	Figure�10: The Performance Consultant window

	2.3.2 Starting the search
	Figure�11: The Performance Consultant bubba exigency search
	Figure�12: The Search History Graph showing only exigent bubba nodes

	2.3.3 Investigating the Performance Consultant’s diagnosis
	Figure�13: BarChart visi presenting selected bubba performance data

	2.4 Phases
	Figure�14: PhaseTable visi presenting phase durations.
	Figure�15: Histogram for global phase
	Figure�16: Histogram of current phase

	3 MPI Tutorial - decomp_MPI
	3.1 Running the MPI application
	3.1.1 Start Paradyn and define the MPI application process
	1. User: The login name on the host on which Paradyn will start the application process. In this ...
	2. Host: The host on which Paradyn will start the application process. A blank value will default...
	3. Directory: If the host on which the application is to be started is different from the one on ...
	4. Command: This entry takes the unix command that will start the application program. The syntax...
	5. Daemon: This option allows you to specify which version of the Paradyn daemon to run. Since th...
	Figure�17: The Define A Process dialog for MPI om3

	3.1.2 Start the MPI application process manually
	1. Application name: The name of the application program (in this case, mpirun is named), the nam...
	2. Processes: Typically Paradyn will indicate the process ids in this field. In the case of MPICH...
	3. Application status: The current status of the application program (either READY, RUNNING, PAUS...
	4. Hosts: Status lines for each host. Once the application starts running these will display the ...
	Figure�18: Paradyn Main Control window after the MPI application process is started
	Figure�19: Where Axis after the om3 MPI application process is started

	3.2 Viewing performance data
	3.2.1 Starting a visualizer
	Figure�20: MPI metrics menu with “sync_wait_inclusive” and “cpu_inclusive” selected
	Figure�21: Histogram of global phase for “sync_wait_inclusive” and “cpu_inclusive”

	3.3 Performance Consultant diagnosis
	3.3.1 The Performance Consultant window
	1. Searches Menu: Allows you to view search history graphs from different phases.
	2. Status line: The status line at the top of the window indicates the phase for which the search...
	3. Search Text Output: This area is used by the Performance Consultant to print status messages a...
	4. Search History Graph: This is a graphical representation of the state of the search. Nodes cor...
	5. Buttons: These allow you to start or pause the search.
	6. Search History Graph Key: The bottom portion of the window describes how to interpret the colo...

	3.3.2 Starting the search
	Figure�22: The Performace Consultant bottleneck search with MPI om3
	Figure�23: Search History Graph om3

	4 Further information
	4.1 Contacting the Paradyn developers

