
1

Breakpoints and Halting in Distributed Programs

Barton P. Miller
Jong-Deok Choi

Computer Sciences Department
University of Wisconsin-Madison

1210 W. Dayton Street
Madison, Wisconsin 53706

Abstract
Interactive debugging requires that the programmer be able to halt a program at interesting

points in its execution. This paper presents an algorithm for halting a distributed program in a
consistent state, and presents a definition of distributed breakpoints with an algorithm for imple-
menting the detection of these breakpoints. The Halting Algorithm extends Chandy and
Lamport’s algorithm for recording global state and solves the problem of processes that are not
fully connected or frequently communicating. The definition of distributed breakpoints is based
on those events that can be detected in a distributed system. Events that can be partially ordered
are detectable and form the basis for the breakpoint predicates, and from the breakpoint definition
comes the description of an algorithm that can be used in a distributed debugger to detect these
breakpoints.

Index Items - Distributed Programming, Distributed Debugging, Halting Algorithm, Distri-
buted Breakpoints.

1. Introduction

Interactive debugging requires that the programmer be able to halt a program at interesting points in

its execution. Halting consists of the mechanisms to stop the program’s execution and the predicates,

called breakpoints, that are used to trigger the halting. This paper presents an algorithm for halting a distri-

buted program in a consistent state, and presents a definition of distributed breakpoints with an algorithm

for implementing these breakpoints.

Halting a single-process, sequential program is well-understood. There is a single thread of execu-

tion that can be stopped without regard for other activities in the system. When a program consists of

cooperating processes executing on different machines, halting decisions are affected by unpredictable

communication delays between machines. We cannot instantly transmit a command to halt all processes,

nor can we guarantee that the halt command will simultaneously reach all processes. In Section 2 of this

paper we present an algorithm for consistently halting a distributed program given the inherent
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Research supported by the National Science Foundation grant MCS-8105904 and a Digital Equipment Corporation External
Research Grant.

Revised Revised

2

communication delays. This algorithm is derived from Chandy and Lamport’s algorithm for recording glo-

bal state [1], and extends this algorithm to work for processes that communicate infrequently or are not

fully connected.

Breakpoints in a sequential program have an implied reference to time. When we say ‘‘stop when

procedure X is entered or when procedure Y is entered’’, we mean to stop the program when any of these

conditions becomes true. When we say ‘‘stop when procedure X is entered and i[j]=7’’, we mean to stop

the program when, at the same instant, both of these conditions are true.

We have no single, global notion of time in a distributed system [2], so we may not be able to deter-

mine whether one condition really occurred before another. This means that we will have to tolerate break-

points that occur independently on different machines. Likewise, we cannot determine whether events on

different machines occurred simultaneously. This means that we must replace the concept of simultaneous

events with one that is suitable for a distributed system. In Section 3, we present a definition of predicates

for breakpoints in a distributed program. This definition is based on detectable orderings of events. We

describe an algorithm from which one can implement a satisfaction detector for these predicates.

Section 4 discusses the application of these ideas to current research in distributed debugging.

2. Consistent Halting

This section describes how to halt all processes belonging to a distributed program so that no critical

information is lost when the processes halt. This problem is easy to solve for a single machine because

there is only one active process at a given moment. When processes of the same program reside on dif-

ferent machines, they cannot be stopped simultaneously. Therefore, some information may be lost or

recorded incorrectly.

Our halting algorithm is derived from Chandy and Lamport’s algorithm for recording global states

[1]. We first summarize Chandy and Lamport’s algorithm and then present an algorithm to halt the distri-

buted computation in such a way that, in spite of the time delay in halting processes, the final halted states

of the processes of the computation result in globally consistent states. Although the physical instant of

halting each process by our algorithm is different, we show that all the processes halt at the same virtual

time instant [2]. For any two halted processes of a computation, the halted state of a process is not affected

Revised Revised

3

by the halted state of the other process and, therefore, there can be no happened-before [2] relationship

between the two halted states. Each process’s view of event ordering is preserved by our algorithm.

We show some problems with this basic halting algorithm and then present an extended algorithm

that is suitable for a debugger.

2.1. Chandy and Lamport’s Algorithm

A distributed program consists of a finite number of processes and a finite number of channels

between the processes. Figure 1 shows an example where each process is represented by a circle and chan-

nels are represented by directed edges.

q process
channel

c1

c2

p

Figure 1. A Distributed System

Processes in a distributed program communicate by sending and receiving messages. Channels are

assumed to have infinite buffers, to be error-free and to deliver messages in the order sent. Following are

some definitions from [1].

Definitions:
An event e is a 5-tuple <p,s,ss,M,c> where p is a process, s and ss are states of the process
before and after the event, M and c are the message and the channel through which the message
is sent or received by p at that event. M and c can have the special value null if no message is
involved in the event.
A global state Sr consists of the states of processes of the computation and the states of channels.

We briefly restate Chandy and Lamport’s algorithm, which we will call the C&L Algorithm, to

record the global state. In that algorithm, each process records its own state, and the two processes upon

which a channel is incident cooperate in recording the channel state. The algorithm, which can be initiated

independently by more than one process at the same time, is as follows:

C&L Algorithm:
Marker-Sending Rule for a Process p.

For each channel c, incident on, and directed away from p:
p sends one marker along c after p records its state and before p sends further
messages along c.

Marker-Receiving Rule for a Process q.
On receiving a marker along a channel c:

Revised Revised

4

if q has not recorded its state then
q records its state;
q records the state c as the empty sequence

else
q records the state of c as the sequence of messages received along
c after q’s state was recorded and before q received the marker
along c

Theorem 1.

The recorded state Sr is globally consistent.

Proof:

See [1]. `

2.2. Halting Algorithm

We now present an algorithm to halt the processes to yield a globally consistent halted state Sh that is

equivalent to the recorded state Sr . These states are equivalent in the sense that the state of each process in

the halted global state Sh is the same as the state of each process in the recorded global state Sr and the

undelivered messages in each channel in Sh are the same as the recorded messages in the state of the chan-

nel in Sr . We begin the discussion with the same model as in [1].

2.2.1. Basic Algorithm

Our model is the same as in[1] except that we use a halt marker instead of marker. This halt marker

carries with it a sequence number referred to as halt_id. This halt_id enables each process to distinguish an

old halt marker (to ignore) from a new halt marker. Each process also keeps track of the latest halt_id

received as last_halt_id whose value is initially set to zero. Like the C&L Algorithm, halting can be ini-

tiated spontaneously by more than one process. The decision as to when to halt can be made independently

by each process. We discuss how to set and detect breakpoints in distributed debugging system in section

3.

Halting Algorithm:
Marker-Sending Rule for a Process p.

Increment last_halt_id;
Halt Routine (p)

Marker-Receiving Rule For a Process q.
On receiving a halt marker along a channel c:

Compare the halt_id with its last_halt_id;
if halt_id is greater than last_halt_id then

Update last_halt_id;

Revised Revised

5

Halt Routine (q);
else

Ignore;
Halt Routine (x: process):

For each channel c, incident on and directed away from process x, send a halt marker
with a halt_id equal to the last_halt_id along c;
Halt;

A process halts either by receiving halt marker from any one of its adjacent neighboring processes or

by spontaneously deciding to halt. If a process halts by receiving a halt marker, it does so on receiving the

first halt marker with the new halt_id (old halt markers are left over from previous haltings). When all

processes are finally halted, the state of each process is preserved. Each outgoing channel contains

undelivered messages with a halt marker as the last one, or is empty if the halt marker was delivered to the

receiving process. Given the assumptions of reliable channels and each process observing the same algo-

rithm, it can be shown that when all processes halt, the value of each process’s last_halt_id is the same.

This is true because the initial value of each last_halt_id is zero and gets incremented exactly once during

the Halting Algorithm (since a process can halt only once). The global halted state Shconsists of the halted

states of the processes and undelivered messages in channels. We claim that Sh is the same as Sr in the

sense that

(1) the state of each process in Sh is the same as the recorded state of the corresponding process in Sr;
and

(2) the undelivered messages in each channel in Sh are the same as the recorded state of the correspond-
ing channel in Sr .

We begin the proof of our claim with two lemmas.

Lemma 2.1.

The halted state of each process in Sh is the same as the recorded state of the process in Sr .

Proof:

The Halting Algorithm is structurally identical to the C&L Algorithm. In the Halting Algorithm,
each process halts at the instant it would record its state in the C&L Algorithm. So the halted
state of each process p in Sh is the same as the recorded state of the process in Sr . `

Lemma 2.2.

The undelivered messages in each channel in Sh are the same as the recorded messages of the
state of the corresponding channel in Sr .

Proof:

In the Halting Algorithm, a process p halts as soon as it receives a halt marker on any one of its

Revised Revised

6

incoming channels. When a halt marker is received on a channel, we know that the channel is
now empty since the process that was sending on the channel halted as soon as it sent the halt
marker on the channel. All of process p’s other incoming channels will contain pending mes-
sages. Since each process sends a halt marker before it halts, the last message in each of these
pending channels is the halt marker. Therefore, the state of an incoming channel c of a process p
in Sh either consists of (zero or more) pending messages followed by a halt marker or is empty.

In the C&L Algorithm, each process proceeds with its computation after it records its state when
it receives the first marker from any of the incoming channels. The state of an incoming channel
c of a process p in Sr consists of the sequence of recorded messages received on the channel until
a marker is received on the channel. Since each process in C&L Algorithm sends a marker at the
instant it would send a halt marker in the Halting Algorithm, the sequence of recorded messages
in Sr received on each incoming channel c until a marker is received is the same as the stored
messages in the channel c in Sh. `

Theorem 2.

Sh is the same as Sr .

Proof:

The proof follows from Lemma 2.1 and Lemma 2.2. `

2.2.2. Problems with the Basic Algorithm

There are two problems with our Halting Algorithm that also occur in the C&L Algorithm. The first

problem is how to halt a process that has only infrequent interactions with the other processes of the com-

putation. The process would eventually halt, potentially long after all other processes have halted. Even

though nothing is conceptually wrong with this kind of process, it is awkward in practice.

The second problem is one that can make both the Halting Algorithm and the C&L Algorithm fail.

This problem occurs when the network connection is acyclic, as in producer-consumer or pipeline relation-

ship. Figure 2 shows an example of this case.

qp

producer consumer

Figure 2. Producer - Consumer Connection

If halting is initiated by the consumer process in this example, there is no way to send the halt marker

to the producer process to halt the entire computation. The C&L Algorithm avoids this problem by assum-

Revised Revised

7

ing that the processes are strongly connected.

2.2.3. Extended Model

We now present our model of the interactive distributed debugger system that works with our Halt-

ing Algorithm and solves the problems mentioned before. In our extended model, there is an additional

process d as the debugger process of the system, and there are two additional control channels connecting

the debugger process with each user process. The introduction of a debugger process solves not only the

problems mentioned above but is also a natural structure for an interactive debugging system [3].

debugger process

p q

d

Figure 3. A Distributed System with a Debugger Process

Figure 3 shows the model with user processes p, q and debugger process d. Since each process has

two control channels, one to and one from the debugger process, the network is strongly connected, i.e.,

there always is a message path from a process to any other process. In addition to guaranteeing strong con-

nectivity of the network, the debugger process performs the typical functions of a debugger. The algorithm

to halt the computation need not be changed except that the debugger process d never really halts and user

processes are always willing to accept a message from the debugger process.

2.2.4. Order of Halting

A process may have more than one incoming channel. This means that a halt marker could be

received from any one of the processes attached to these channels, depending on when and from where the

halting is initiated. The order in which the processes halt can provide useful information to the program-

mer, but this information is not available in our Halting Algorithm.

Revised Revised

8

The halting order information can be obtained by making a small change to the halt markers while

leaving the structure of the Halting Algorithm unchanged. Each process will append its name to the halt

marker before sending the marker to the next process(es). The halt marker that a process receives then

describes which processes have already been halted.

3. Distributed Breakpoints

3.1. Types of Breakpoints in Distributed Debugger

In a sequential programming, the decision to halt the program is usually done by specifying predi-

cates about the program’s behavior and state. The satisfaction of these predicates corresponds to interest-

ing points in the execution of the program, which we call breakpoints. The predicates are expressed in

terms of events that correspond to a particular behavior or change in state of the program.

A predicate that is based entirely on the execution behavior or state of a single process is called a

Simple Predicate. We can combine the Simple Predicates using the disjunctive operator to make a Dis-

junctive Predicate. Likewise, we can combine the Simple Predicates using the conjunctive operator to

make a Conjunctive Predicate.

Predicates can also be combined to describe a sequence of events. For example, a user may want to

halt a program and examine its state when a specified sequence of events is observed during the execution

of the program. We call such predicates Linked Predicates. Linked Predicates have been used with

hardware-based debugging tools such as logic state analyzers. For example, the programmer specifies a

non-contiguous sequence of values (such as program addresses) that must occur and the debugging tool

detects when this sequence has occurred.

There is usually more than one thread of control in a distributed program and the breakpoint predi-

cates can involve more than one process. We call such predicates distributed predicates. We now describe

distributed predicates and how to detect the satisfaction of these predicates. When the distributed predicate

is satisfied, the Halting Algorithm presented in Section 2 is used to halt the computation.

Revised Revised

9

3.2. Simple Predicates (SP)

Simple Predicates consist of the typical predicates used in sequential program debuggers, such as

entering a particular procedure. We also have interprocess event predicates such as a message sent or

received, a channel created or destroyed, or a process created or terminated.

3.3. Disjunctive Predicates (DP)

Disjunctive Predicates are specified by expressions using the disjunctive operator ‘‘∪ ’’:

DP ::= SP [∪ SP]∗ .

The Disjunctive Predicate is satisfied when one or more of the Simple Predicates is satisfied. Halting can

be initiated at the instant when any of the SP’s of the DP is satisfied. Multiple SP’s of the DP can be

satisfied at the same virtual time. Since the Halting Algorithm works for simultaneous initiations from

multiple processes, each process where any SP is satisfied can initiate the Halting Algorithm.

3.4. Linked Predicates (LP)

Linked Predicates specify sequences of events that can be ordered by the happened-before relation

and are specified by expressions using the ‘‘→’’ operator:

LP ::= DP [→ DP]∗ .

The semantics of LP can be interpreted as follows:

Let Σ be the set of DPi’s such that Σ = {DPi , i = 1..n}.
Then, the Linked Predicate

LP = DPi → DPj → DPk . . . 1 ≤ i, j,k ≤ n
means the following regular expression

LP = DPi [Σ - DPj]∗ DPj [Σ - DPk]∗ DPk . . .

The implementation of the Linked Predicates will be described in section 3.6.

3.5. Conjunctive Predicates (CP)

The Conjunctive Predicates are specified by expressions using the conjunctive operator ‘‘∩’’:

CP ::= SP [∩ SP]∗ .

A Conjunctive Predicate is said to be satisfied at the instant when all the Simple Predicates of the Conjunc-

tive Predicate are satisfied. There is no single time reference across machine boundaries in a distributed

Revised Revised

10

system, so we cannot precisely detect the simultaneous events needed for the Conjunctive Predicate. This

form of predicate is well defined within a single machine, but can have several interpretations in a distri-

buted system. Based upon the virtual time concept of a distributed system, our interpretation is as follows.

Given two processes P 1 and P 2 residing on different machines, each process has its own virtual time axis,

called T 1 and T 2 respectively. Predicate SP 1 is on the state of P 1 and SP 2 on the state of P 2. We define a

pair of virtual time points (t 1, t 2) to describe a time when SP 1 is satisfied such that t 1 ∈ T 1 (written as:

SP 1(t 1) is true), and the time when SP 2 is satisfied such that t 2 ∈ T 2 (written as: SP 2(t 2) is true).

We define a set of these virtual time pairs, called SCP, to be:

SCP = {(t 1, t 2) | t 1 ∈ T 1, t 2 ∈ T 2, SP 1(t 1) ∩ SP 2(t 2)}.

At any point in the set SCP, the conjuntive predicate SP 1 ∩ SP 2 is satisfied.

Since T 1 and T 2 are virtual time axes, it is not always possible to order a given virtual time t 1 on P 1

and a given virtual time t 2 on P 2 according to Lamport’s happened-before relationship. We can divide the

SCP into two subsets named ordered −SCP where there is an ordering between t 1 and t 2, and

unordered −SCP where there is no ordering. Since the Linked Predicates introduced in the previous section

is a mechanism to detect events with ordering, the two subsets can be expressed as follows:

ordered −SCP = {(t 1, t 2) | (t 1, t 2) ∈ SCP, ((SP 1)i → (SP 2)j) ∪ ((SP 2)i → (SP 1)j)

such that 1 ≤ i, j},
†

unordered −SCP = {(t 1, t 2) | (t 1, t 2) ∈ SCP, (t 1, t 2) ∈/ ordered-SCP}.

Figure 4 shows examples from each of these sets. We see an ordering in time pair (t 11, t 23) and no order-

ing possible in (t 12, t 22).

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
† We use (SP)i as a shorthand for SP→ SP . . . → SP. For example, (SP)3 stands for SP→ SP→ SP.

Revised Revised

11

$m sub 2$

$t sub 22$

$t sub 21$

$t sub 13$

$t sub 12$

$t sub 11$ $m sub 1$

$P sub 2$$P sub 1$

unordered-SCP
pair

ordered-SCP
pair

$t sub 23$

Figure 4. Examples from the Set SCP

We can use the algorithm for detecting satisfaction of Linked Predicates (see section 3.6) for detect-

ing events that occur at virtual times belonging to the set ordered-SCP. For example, if SP 1(t 11) is true,

and SP 2(t 21) and SP 2(t 22) are true, we can use the Linked predicate SP 1 → SP 2 to detect the events at the

time pair (t 11, t 21). We can use SP 1 → (SP 21)2 to detect the events at the time pair (t 11, t 22). Halting is

initiated at the moment when the last predicate in the ordering is satisfied. Detecting events that occur at

virtual times belonging to the unordered-SCP is more difficult. For example, if we detect that SP 1 on P 1 is

satisfied, we must also detect SP 2 on process P 2. Since there is no common time reference in a distributed

system, it is necessary to have some process gather the information from the other process(es) before halt-

ing is to be initiated. We cannot decide until the last notification arrives at the information gathering pro-

cess, and the inherent time delay in such information gathering makes it impossible for the processes to halt

soon enough to preserve the meaningful states of the processes.

3.6. Implementation of Linked Predicate Detection

Since the definition of the Linked Predicate is general enough to comprise the Simple Predicate and

the Disjunctive Predicate, only one algorithm is needed to detect the predicates. In addition to the halt

marker for the Halting Algorithm, we need a predicate marker to carry the Linked Predicate. If necessary,

we can append to every message originated by the program some kind of tag so that each process can dis-

tinguish the genuine messages from halt markers and predicate markers which are introduced by the debug-

ging system.

Revised Revised

12

To issue the Link Predicate DP 1 → DP 2 → DP 3, the debugger process sends a predicate marker

containing the Linked Predicate to each process involved in DP 1. Upon receiving the predicate marker,

each process sets up the condition to detect when DP 1 is satisfied. When DP 1 is satisfied at process p, pro-

cess p creates a new predicate, newLP, from the remainder (DP 2 → DP 3) of the original Linked Predicate.

This new predicate is issued to each process involved in DP 2. This process is repeated until last Disjunc-

tive Predicate (in this case, DP 3) in the Linked Predicate is satisfied, at which time a process knows that it

should initiate the Halting Algorithm.

Linked Predicate Detection Algorithm:

Predicate-Marker-Sending Rule for a process p.
Send a predicate marker containing the Linked Predicate to each process involved in
the first Disjunctive Predicate of the Linked Predicate;

Predicate-Marker-Receiving Rule for a process q.
On receiving a predicate marker from other process:

Separates the first Disjunctive Predicate from the Linked Predicate carried by
the predicate marker;
Make a newLP from the received Linked Predicate by excluding the first Dis-
junctive Predicate;

When the extracted Disjunctive Predicate is met:
if the newLP is null then

Initiate the halting Algorithm;
else

Send a new predicate marker containing the newLP as the new
Linked Predicate according to the Predicate-Marker-Sending Rule.

Halt markers are manipulated only by the Halting Algorithm and Predicate Markers are manipulated

only by the Predicate Detection Algorithm, so these algorithms do not interfere with each other.

4. Application to Current Research

Distributed debugging is an area of active research. For our purposes, we can separate this research

into two approaches. The first approach avoids the problem of stopping a program by providing tools only

for monitoring a program’s execution [3-6]. For example, Bates and Wileden[4] define an Event Descrip-

tion Language (EDL) that allows a programmer to group low-level events into high-level abstract events.

EDL requires the ability to observe sequences of events and recognize pattern in these sequences. Our

algorithm for recognizing distributed predicates (Section 3.6) could be used to support an EDL abstract

event recognizer.

A second approach to distributed debugging is one that more closely approximates traditional,

single-process debuggers [7-9]. For example, IDD [8] provides a stepping mode of execution for a

Revised Revised

13

collection of processes because IDD does not guarantee that a program can be halted in a timely and con-

sistent manner. The suggested IDD strategy is for a programmer to individually halt processes early

enough so that the entire computation is halted before the interesting points are reached. The programmer

can then execute the program in single instruction steps to find the error. The Halting Algorithm using dis-

tributed breakpoints would simplify the programmer’s debugging task.

A variation on the second approach re-routes all normal communications through a centralized

debugger process [10, 11]. While this simplifies the detection of distributed breakpoints by providing a sin-

gle point of event ordering, it also has several disadvantages. First, there can be substantial communication

overhead in re-routing the messages through a central hub. Second, the change in message flow could sub-

stantially change the execution of the program. Last, the facility to re-route the communications can be

complex to build.

The Linked Predicates are similar to Path Expressions [12]. Our distributed predicate detection algo-

rithm provides a vehicle to implement Path Expressions in a distributed system.

5. Conclusion

Interactive debugging is a familiar scenario to any programmer. The Halting Algorithm presented in

Section 2 and the definition of distributed breakpoints in Section 3 provide the programmer with the neces-

sary tools to apply these techniques to a distributed program. The fundamental idea is that the program’s

view of event ordering and relative timing is preserved.

We have presented a definition of breakpoints in a distributed system. This definition shows what

type of logical statements make sense in such an environment. A satisfying result is that the types of

breakpoints that make sense (those excluding Conjunctive Predicates based on unordered events) are not

difficult to implement; the type of breakpoint that is difficult to implement turns out to not be desirable.

Any software debugging tool will cause some change in the absolute timing of a program. We have

not tried to avoid this, but our algorithms should only impose a minimal change on the execution of a pro-

gram. This change is one that should not affect any but the most timing sensitive programs — and for

these programs, a hardware monitor may be the only suitable form of debugger.

Revised Revised

14

6. REFERENCES

[1] K. M. Chandy and L. Lamport, ‘‘Distributed Snapshots: Determining Global States of Distributed
Systems,’’ ACM Trans. Computing Systems 3(1) pp. 63-75 (February 1985).

[2] L. Lamport, ‘‘Time, Clocks, and the Ordering of Events in a Distributed System,’’ Communications
of the ACM 21(7) pp. 558-565 (July 1978).

[3] H. Garcia-Molina, F. Germano, Jr., and W. H. Kohler, ‘‘Debugging a Distributed System,’’ IEEE
Trans. on Software Engineering SE-10(2) pp. 210-219 (March 1984).

[4] P. Bates and J. C. Wileden, ‘‘An Approach to High Level Debugging of Distributed Programs,’’
Proc. of the SIGSOFT/SIGPLAN Symp. on High-Level Debugging, pp. 107-111 Pacific Grove,
Calif., (August 1983).

[5] R. J. LeBlanc and A. D. Robbins, ‘‘Event-Driven Monitoring of Distributed Programs,’’ Proc. of the
5th International Conf. on Distributed Computing Systems, pp. 515-522 Denver, (May 1985).

[6] B. P. Miller, C. Macrander, and S. Sechrest, ‘‘A Distributed Programs Monitor for Berkeley UNIX,’’
Software - Practice and Experience 16(2) pp. 183-200 (February 1986).

[7] E. T. Smith, ‘‘Debugging Techniques for Communicating, Loosely-Coupled Processes,’’ Ph.D.
Dissertation - Technical Report TR100, Univ. of Rochester (December 1981).

[8] P. K. Harter, Jr., D. M. Heimbigner, and R. King, ‘‘IDD: An Interative Distributed Debugger,’’
Proc. of the 5th International Conf. on Distributed Computing Systems, pp. 498-506 Denver, (May
1985).

[9] F. Baiardi, N. De Francesco, and G. Vaglini, ‘‘Development of a Debugger for a Concurrent
Language,’’ IEEE Trans. on Software Engineering SE-12(4) pp. 547-553 (April 1986).

[10] R. Curtis and L. Wittie, ‘‘BUGNET: A Debugging System for Parallel Programming Environment,’’
Proc. of the 3rd International Conf. on Distributed Computing Systems, pp. 394-399 Denver,
(August 1982).

[11] R. D. Schiffenbaur, ‘‘Interactive Debugging in a Distributed Programs,’’ M.S. Thesis, M.I.T.,
(August 1981).

[12] B. Bruegge and P. Hibbard, ‘‘Generalized Path Expressions: A High Level Debugging Mechanism,’’
Proc. of the SIGSOFT/SIGPLAN Symp. on High-Level Debugging, pp. 34-44 Pacific Grove, Calif.,
(August 1983).

Revised Revised

