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Abstract

Accurate performance diagnosis of parallel
and distributed programs is a difficult and

time-consuming task. We describe a new
technique that uses historical performance
data, gathered in previous executions of an
application, to increase the effectiveness of
automated performance diagnosis. We
incorporate several different types of historical
knowledge about  the application’s

performance into an existing profiling tool, the

Paradyn Parallel Performance Tool. We gather
performance and structural data from previous
executions of the same program, extract
knowledge useful for diagnosis from this

collection of data in the form of search

directives, then input the directives to an

enhanced version of Paradyn, which conducts
a directed online diagnosis. Compared to
existing approaches, incorporating historical
data shortens the time required to identify
bottlenecks, decreases the amount of unhelpful
instrumentation, and improves the usefulness
of the information obtained from a diagnostic

session.

paper describes how historical performance data, i.e.,
data gathered in one or more previous executions of an
application, can be used to increase the effectiveness of
automated performance diagnosis. To test our ideas we
incorporate several different types of historical knowl-
edge about an application’s performance into an exist-
ing diagnostic research tool, the Paradyn Parallel
Performance Tool [5].

Paradyn’s Performance Consultant performs
online, automated bottleneck detection in a single exe-
cution of a parallel or serial code. The general search
strategy used in the Performance Consultant works
well for studying new and unfamiliar applications. It
provides systematic investigation of an application that
does not depend on any assumptions about the applica-
tion or the runtime environment, so it yields useful
information for a wide range of programs. In practice,
we noticed that the second time we sat down with the
same application, it would miss data for interesting
events and possibly stop before completion due to
inherent instrumentation cost limits. There is a natural
tension between a generally useful, single button
approach to performance diagnosis and a more applica-
tion-specific, knowledge-dependent approach. Our
goal is not to replace the Performance Consultant’s sin-
gle button model, rather, to augment the search strategy

1 INTRODUCTION in cases where prior knowledge of the program being

Accurate performance diagnosis of parallel and distribStudied is available.

uted programs is a difficult and time-consuming task. ~ The goals for our research are:

Recent research [1, 2, 14, 3, 4] examines possiblel. Shorten the time required to identify important
approaches for automating, and thereby simplifying, bottlenecks. We evaluate this strategy by mea-
the process of diagnosing a single program run. This suring and comparing the total time to find bot-

1. Thiswork is supported in part by Department of Energy Grant DE-FG02-93ER25176, NASA GSRP grant NGT-51368, NSF grants CDA-9623632
and EIA-9870684, and DARPA contract N66001-97-C-8532. The U.S. Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon.



tlenecks with and without historical

information.

. Decrease the amount of unhelpful instrumenta-
tion. There is a practical limit to the total
amount of instrumentation in place at one time,
to minimize inaccuracy of results due to per-
turbation. Decreasing unhelpful instrumenta-
tion in some cases will allow the search to
continue where it might otherwise reach a limit
and halt. We evaluate this strategy by measur-
ing the total amount of instrumentation and the
time to find bottlenecks.
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sultant (PC) [2] capitalizes on this dynamic instrumen-

tation to automate bottleneck detection during a

program execution. The PC starts searching for bottle-
necks by issuing instrumentation requests to collect
data for a set of pre-defined performance hypotheses
for the whole program. Each hypothesis is based on a
continuously measured value computed by one or more
Paradyn metrics, and a fixed threshold. For example,
the PC starts its search by measuring total time spent in
computation, synchronization, and I/O waiting, and

compares these values to predefined thresholds.
Instances where the measured value for the hypothesis

exceeds the threshold are definedbattlenecks The

full collection of hypotheses is organized as a tree,
where hypotheses lower in the tree identify more spe-
cific problems than those higher up.

We represent a program as a collection of discrete
program resources. Possible resources include the pro-
gram code (i.e. modules and functions), application
processes, machine nodes, synchronization points, data
structures, and data files. Each group of resources pro-
vides a distinct view of the application. We organize
the program resources into trees callesource hierar-
chies The root node of each resource hierarchy is
labeled with the hierarchy’s name. As we move down

from the root node, each level of the hierarchy repre-
We save performance and structural data from sUGsents a finer-grained description of the program. A

cessive executions of an application, then extractasource nameés formed by concatenating the labels
knowl_edge useful for diagnos_is fr(_)m this collection Ofalong the unique path within the resource hierarchy
data, in the form of search directives. There are threg,m the root to the node representing the resource. For
types of directivesprunes which cause the Perfor- gyample  the resource name that represents function
mance Consultant to ignore some bottleneck tests COMYerifyA (shaded) in Figure 1 iscedeftestutil.CiverifyA>.
pletely; priorities, which provide an ordering for the For a particular performance measurement, we
tests; andthresholds which provide a level against may wish to specify certain parts of a program. For
which to test the application’s performance. Last, Wegxample, we may be interested in measuring CPU time
perform online performance diagnosis with angg the total for one entire execution, or as the total for a
enhanced version of Paradyn, using the directives tQingle function. Thefocusconstrains our view of the
guide the search. We evaluated our technique by testing.oqram to a selected part. Selecting the root node of a
an MPI application on the IBM SP/2, with reductions regqyrce hierarchy represents the unconstrained view,
of 31% to 98% in the time needed to locate perfor-yhe whole program. Selecting any other node narrows
mance bottlenecks. the view to include only those leaf nodes that are

, descendents of the selected node. For example, the
2 PARADYN'S PERFORMANCE CONSULTANT shaded nodes in Figure 1 represent the constraint: func-

Our testbed for the studies is an enhanced version fon verifya of processTester:2 running on any CPU,
Paradyn. Paradyn is an application profiler that usegich is labeled with the focus:
dynamic instrumentatioto insert and delete measure- < /Codeftestutil.C/verifyA, /Machine, /Process/Tester:2 >.

ment instrumentation as a program runs. This approach Each node in a PC search represents instrumenta-
results in a relatively small amount of data, in contrastion and data collection for aypothesis:focus) pair. If a

to most tracing methods that may result in (possiblynode tests true, meaning a bottleneck is found, the Per-
unusably) large data files. Paradyn’s Performance Cofjprmance Consultant tries to determine more specific

3. Determine the precise location of all signifi-
cant bottlenecks. Results most useful for per-
formance tuning are obtained when testing
identifies a reasonably small number of well-
defined potential problem areas. Practical lim-
its on the total amount of instrumentation can
result in important bottlenecks not being fully
explored because of the “noise” of less useful
bottlenecks being tested. We measure this by
identifying a set of “important” bottlenecks for
a particular execution, then evaluating the
effect of historical information on finding the
bottlenecks in that set.
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Figure 1: Representing programTester.There are three resource hierarchi&sde, Machine, andProcess.

The Performance Consultant

CPUbound
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Figure 2: A Performance Consultant search in progressThe three items beloopLevelHypothesis have been added
as a result of refining the hypothesis. No@iesessiveSyncWaitingTime andExcessivelOBlockingTime have tested false, as
indicated by node color (light grey in this figure), and nG&&Jbound (dark grey) has tested true and has been expanded by
refinement. The noddmibba.c, channel.c, anneal.c, outchan.c, and graph.c all tested false, whereas the nodeat and
partition.c tested true and were refined.
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information about the bottleneck. It considers twothe total number of resources is large. In practice, this
types of expansion: a more specific hypothesis, and s frequently true. The top-down approach taken by the
more specific focus. A child focus is defined as anyPC has the effect of excluding part of the potentially
focus obtained by moving down along a single edge irhuge search space, since false nodes are never refined.
one of the resource hierarchies. Determining the chilPrunes further shrink the size of the search space. For
dren of a focus by this method is referred toraine- example, we can avoid the overhead of instrumenting
ment If a pair (h:f) tests false, testing stops and thesmall, infrequently executed functions by pruning them
node is not refined. The PC refines all true nodes to asom the search. Pruning directives can also be used to
specific a focus as possible. customize the search strategy for a particular environ-

Each f(ypothesis : focus) pair is represented as a ment. For example, the static process model of MPI
node of a directed acyclic graph called the Search Hisversion 1 leads to a one-to-one correspondence
tory Graph (SHG). The root node of the SHG repre-between process and machine node. It is not necessary
sents the pairTopLevelHypothesis : WholeProgram), and  to investigate relative performance by both process and
its child nodes represent the refinements chosen asachine, so we can prune out the machine hierarchy.
described above. Paradyn displays the SHG in list bofruning does not dictate the overall search strategy
form; we show an example in Figure 2. employed — what to examine first or next — rather it

Depending on the number of resources needed teeduces the size of the total search space. One possible
represent an application, the number of hypotheside effect of pruning is incorrectly eliminating some-
sis/focus pairs to be explored might be quite large. Tahing important. For this reason we also investigated
prevent the PC data requests from overwhelming thether methods with better robustness. We investigated
system capacity or perturbing the application to a poinpruning based on historical data, such as functions with
where reliable results cannot be determined, the cost ahort execution time and redundant hierarchies (e.qg.
instrumentation enabled by the PC is continually moni-machine hierarchy if processes and machines map one-
tored. Search expansion, which generates new instrie-one) or sections of hierarchies. We also investigated
mentation requests, is halted when the cost reachespauning based on general rules, such as pruning the
critical threshold, and restarted once instrumentatiomsyncObject hierarchy from all but synchronization-
deletion (initiated when nodes test false) causes theelated hypotheses.

cost to return to an acceptable level. Priorities assign a relative level of importance to
specified focus-hypothesis pairs. This allows resources
3 HARVESTING HISTORICAL DATA more likely to be responsible for behaviors of interest

We investigated three mechanisms for including historto be studied first, allowing data to be collected for a
ical data in a diagnostic toopruning directivesthat longer time interval. Unlike prunes, priorities do not
tell the tool to ignore some resources entirglyiori-  exclude any foci from consideration; they instruct the
ties that tell the tool which aspects of the applicationdiagnostic tool to consider certain hypothesis-focus
and runtime environment to look at first; atidesholds  pairs first. Each hypothesis-focus pair is given priority:
that tell the tool specific values against which to meaHigh if it tested true in at least one previous execution;
sure the application’s actual performance. These dired-ow if it tested false in all previous executions; other-
tives are described in Section 3.1. In order to use searchise, Medium. High priority pairs are instrumented at
directives extracted from one run in a new diagnosissearch start and are persistent (i.e., testing continues
session, it is necessary to perform a mapping on ththroughout the entire program run, regardless of
resource names. We describe this mapping inhether a true or false conclusion is reached). Starting
Section 3.2. up high priority pairs immediately, rather than waiting
o for the default top down search order to refine down to
3.1 Types of Search Directives them, results in more control over the overall search
Pruning directivesnstruct the diagnostic tool to ignore order. By comparison, setting priority to medium or
a subtree of a resource hierarchy in its evaluation of gow only ensures an ordering between the node and its
specific hypothesis. They are a mechanism for conveysiplings.
ing information about insignificant parts of an applica- ~ Thresholdsare the values used to determine if a
tion. The total number of hypothesis/focus pairs testethypothesis is true or false for a given focus. In the stan-
by the Performance Consultant may become large iflard version of Paradyn, there is a threshold value for
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each hypothesis that can be set by the user. The goalasmd kernel function
to keep the number of bottlenecks reported in a practi-  After each run of the Performance Consultant, we
cally useful range. Reporting a large number of differ-have the search history graph and the program’s
ent bottlenecks vyields inadequate guidance to theesource hierarchies. These results are used to generate
tuning effort, i.e., what to look at first, and also drivessearch directives to be used in subsequent runs. We
up the cost of instrumentation. Reporting only one oradded new functionality to the Performance Consultant
two bottlenecks, or failing to refine the bottlenecks to a0 map focus names found in these directives onto
detailed level, provides less information than mightnames valid in the current environment. Mapping
reasonably be obtained through simple visualizationallows us to link resources from different executions
We investigated automatically setting the thresholdsvith different names, so Paradyn treats them as equiva-
based on historical data. lent. One example to motivate the need for mapping is
. . the common case of executing on differently named
3.2 éﬂxaepézlggnsesource Names Between Different nodes of a machine in diff_erent runs. Mapping is imple-
mented as a set of directives of the form “map

Resources can change from one run of a program to th@sourceName1 resourceNariepecified by the user
next. For example, an 8-node application might run onp an input file. After starting Paradyn, we apply the
nodes 0-7 during one run and on nodes 123-130 on thehecified mappings to the list of extracted search direc-
next run. Similarly, process ID’s are likely to be differ- tyes, then read the directives into the Performance
ent for each run. If we are to relate performance resultggnsultant. For increased efficiency, we apply speci-
from a previous run to the current run, we must be ablgieq pruning directives, if any, to the resulting list of
to establish an equivalency betweemaf) the differ-  search directives before we read it into the Performance
ently named resources. Consultant

The issue of mapping can also appear for code Figure 3 shows combined resource hierarchies for
(module or function) resources. In Section 4.3, Wewo versions of an MPI application, Versions A and B.
present results from multiple implementations of agach resource is tagged with execution identifier 1, 2,

Poisson function decomposition program. The differenty 3 if the resource is found in Version A, Version B, or
version have different names for their main function

executionMAP

File View
Program Event Group Display Mappings Used
g E;E';E?DULE 3 mpe_decomp1d map /Code/exchngl.f /Code/nbexchng.f
) i - map /Code/exchngl.f/lexchngl /Code/nbexchng.f/nbexchngl
9 QIi? 9 iy map /Code/oned.f /Code/onednb.f
1 exchng1.f '2":':"“9' map /Code/sweep.f /Code/nbsweep.f
nbsweep map /Code/sweep.f/sweepld /Code/nbsweep.f/nbswee
3 Cod 2 nhsweep.fc::‘:z nbsweepend P P P P P
2 nbexchng.f- 2 nbexchng1
1 oned.f- 1 main
3 onedbase.f 3 onedinit
+ RooT 3 Machine ' *2 onednb.f- 2 main
3 Memory 1 3weepfi——1 sweepld
3 Process
3 SyncObject

l:l—lx v

Figure 3: Mappings for Versions A and B. On the left we show the execution map for Versions A and B of the
Poisson decomposition application, with the Code hierarchy expanded. Each resource is tagged with an
execution identifier: resources unique to version A are labeled with “1,” those unique to version B are labeled
with “2,” and those common to both are labeled with “3.” We map unique nodes which refer to code that was
modified between versions, including a change of name. The mapping directives we used are shown on the right.
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both, respectively.Resources unigue to one executiorecorded the time each bottleneck was reported by the
are candidates for mapping. For example, the modul®ol. The times we recorded are the timestamps
containing function main is named “oned.f” in Version assigned by Paradyn to the data, and reflect application
A, and “onednb.f” in Version B. We map these two execution time. Since Paradyn performs dynamic
resourcesCode/oned.f andCode/onednb.f, SO that search instrumentation, the starting timestamp is determined
directives extracted from runs of A may be used inby the instant of the instrumentation request, plus the
diagnosing runs of B. The full set of mappings we usedime required to actually insert the instrumentation into
in this example is shown to the right of the resourcethe application code. Each conclusion about a perfor-
hierarchies. mance hypothesis is determined once a set time inter-
val of data has been received from the running
4 RESULTS application. The results are reported in Table 1.
We performed a set of experiments to evaluate the use The first experiment investigated the performance
of prior knowledge in the form of pruning, prioritiza- advantages obtained using pruning directives. We used
tion, and threshold directives. The first section reportslata from previous runs to generate a list of pruning
on the effectiveness of adding pruning and prioritydirectives. Then we ran Paradyn, providing the list of
directives to the Performance Consultant. The secongruning directives as input to the modified Performance
section explores the advantages of using applicatiorfonsultant. The combined search pruning directives
specific thresholds formulated using historical dataresult in a reduction of 93.5% in time to locate all true
The final section studies the use of pruning, prioritiza-bottlenecks. We ran further tests to evaluate the effects
tion, and generated thresholds with different version®f each of the two types of pruning: general prunes,
of the same application, to simulate the common pracsuch as pruning the /SyncObject hierarchy from all but
tice of performance tuning successive versions of asynchronization-related hypotheses, are not specific to
implementation. a particular application or environment; historic
. . . L prunes, such as pruning a specific function with low
4.1 Using Pruning and Priority Directives execution time, are formulated based on data gathered
We ran our enhanced version of the Performance Conn one or more previous executions of the same appli-
sultant on an MPI application that solves the 2-D Poiscation. We see a substantial improvement with either
son problem([6], running on four nodes of an IBM SP/2.type of pruning, and also see that the combination
First we ran the PC on the application with no modifi-yields the best results: adding historic prunes resulted
cations, and saved the resource hierarchies, search hig-execution times 28% shorter than using only general
tory graph, and performance results. This run forms ouprunes.
base case and was allowed to run to completion t0 |n the second experiment, we studied the effects of
identify the complete (100%) set of possible bottle-ordering the search for bottlenecks using priorities. We
necks. Then we tested three variations of directedised historical data to generate priorities for each
searching: first we generated only pruning directiveshypothesis/focus pair as outlined in Section 3. We
second only priorities, and third a combined versionexpected that, compared to using the PC with no histor-

with both prunes and priorities. Identical search thTEShi'caJ data, we would reduce the time required to find the
olds were used in all runs. In each experiment, we

% No SISl Clile Priorities & All
B’necks L Prunes Only Prunes Prunes Priorities Only
Directives Prunes

Found Only Only

25% 115.2 80.0 (-30.6%) 102.4 108.8 80.0 (-30.6%) 51.2 (-55.6%0)
50% 182.4 83.2 (-54.4%) 121.6 204.8 124.8 (-31.6%) 57.6 (-68.4p0)
75% 1011.2 140.8 (-86.1% 169.6 281.6 211.2 (-79.1%) 86.4 (-91.4%)
100% 2611.2 169.4 (-93.5% 236.8 470.4 560.0 (-78.6%0) 147.2 (-94.4%)

Table 1: Time (in seconds) to Find all True Bottlenecks with Search Directives
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major (true) bottlenecks, and see no change in thesspectively). Individual processesand 4 are domi-
amount of instrumentation. We obtained a reduction ofated by wait time (81% and 86%) and significant
79% in time to locate all true bottlenecks. Thewaiting also occurred in processes 1 and 2 (46% and
improvement is more modest than the reduction o#7%).
93.5% we obtained using pruning directives. However, We investigated the quality of the PC’s diagnosis
reordering the search does not introduce the possibilitipy checking for the number of these areas reported as
of missing bottlenecks, which is an important advan-bottlenecks, either individually (e.g., functieigin) or
tage to the method. in combination (e.g., message tag for function

In the final experiment, we tested a combination ofmain). Full results are shown in Table 2. When a thresh-
prunes and priorities. Our goal was to improve on theold setting greater than 10% was used, bottlenecks we
time reduction obtained using only priorities, yet avoidpreviously determined to be significant were not
the possibility of pruning important tests from the reported by the PC. When the threshold was set to 12%
search. We included pruning of redundant and irrelethe tool reported close to the full set of bottlenecks; the
vant hierarchies, but did not include prunes for previ-default Paradyn setting of 20%, in contrast, resulted in
ously false hypothesis/focus pairs. This combined of the 26 bottlenecks being missed. The third column
approach may result in some retesting of false nodeshows how much instrumentation was used to diagnose
however, it will never miss new behaviors due to prun-the program run. Setting the threshold to 12% (shaded)
ing. We obtained a reduction of 94.4% for finding yields good results and also uses noticeably less instru-
100% of the true bottlenecks, which is a reduction ofmentation than a setting of 10% or 5%. The final col-
20 seconds from pruning without priorities. umn shows an efficiency metric determined by dividing
. . S the number of bottlenecks found by the number of
4.2 Using Thresholds Determined from Historical hypothesis/pairs tested. Efficiency decreases with

Datg . thresholds below 12%, an indication that lowering the
We studied the behavior of the Performance Consultanhreshold below 12% increases the amount of instru-

with Varying threshold values for the 2-D decomDOSi'mentation but does not improve the result.
tion apphca'[lon of Section 4.1 run across four nodes of In earlier studies we found similar results for an

an IBM SP/2. This sample application is strongly dom-gcean circulation modeling code using PVM, running
inated by synchronization waiting time, which gn SUN SPARCstations. We found an optimal syn-
accounts for approximately 75% of the total executionchronization threshold at 20%, from a starting point of
time. 45% of the total execution time for all four pro- 3096 (which yielded an incomplete diagnosis). Effi-
cessors is spent waiting in functieachng2, and 20%  cijency decreased below 20%, for example the number

in function main. This wait is Spllt between three mes- of metric-focus pairs instrumented was 326 for 20%
sage tagspz/0, 3/1, and 3/-1 (27%, 19%, and 20%

Synchronization Number of Bottlenecks Total Number of Efficienc
Bottleneck Threshold Reported by the . . y
: Hypothesis/Focus Pair{ (Bottlenecks Found Pe
Setting (% of total Performance .
L Tested Pair Tested)
execution time) Consultant
30% 9 30 0.3
20% 19 66 0.29
14% 22 76 0.29
12% 25 85 0.29
10% 26 107 0.24
5% 26 105 0.25

Table 2: Bottlenecks Found with Varying Threshold ValuesNumber of bottlenecks reported are rounded,

averaged values calculated from repeated tests.
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and jumped to 373 for 10%. The useful threshold inby approximately 92%.

this case differs from that found for the MPI applica- Next we examined Version B using search direc-
tion, showing the advantage of application-specific histives extracted from runs of Version A, and found a
torical performance data. 98% improvement in diagnosis time. We continued for
Versions C and D, each time running the Performance
Consultant with search directives extracted from each
individual prior run. We mapped each pair of machine
We studied the use of historical application knowledggesources so that search directives generated in one run
where the application has been revised over timegould be meaningfully used to refer to machine
While tuning an application, a developer repeatsesources discovered in a subsequent run. We also
through a cycle of profile-analyze-change. We permapped functions and modules between the different
formed a series of performance diagnoses using diffelcode versions, as described in Section 3.2. The full
ent versions of an MPI application on the IBM SP/2.egylts are shown in Table 3. In every case, adding his-
The application implements an iterative Poisson functgrical knowledge to the Performance Consultant
tion decomposition. We used several of the diﬁerenbreaﬂy improved its ability to quickly diagnose perfor-
versions of the implementation presented by Grepp mance bottlenecks: diagnosis time was reduced a mini-
al[6]. In each step of the study, we used results fromynym of 75% in all executions using historical
previous runs of the Performance Consultant to direcknowledge. In Table 3, each row represents the version
subsequent PC runs. There were four versions of thgf the application currently being diagnosed. Each col-
application: Version A is a 1-dimensional version thatymn represents the source from which we extracted the
uses blocking send and receive operators; Version B igearch directives used. The first column contains the
a non-blocking 1-dimensional version; Version C perime to reach a diagnosis using no search directives,
forms a 2-dimensional decomposition; and Version Dayng subsequent columns contain the time to reach a
runs the same code as Version C across 8 nodes (@flagnosis using search directives from different
others run on 4 nodes). We changed all versions tgoyrces. We used dedicated machine time and therefore
compute a fixed number of iterations, rather than stopsaw relatively low variability in run time for repeated
ping as soon as a solution is reached. executions of the same version.

We started by running the Performance Consultant  after completing the test runs, we analyzed the
on Version A without search directives, resulting in aperformance Consultant behavior to determine how it
time to locate true bottlenecks of 2272 seconds. Nextyas affected by the search directives we added. First
we repeated the same diagnosis on the same versiqfe examined the effects of using search directives from

this time inCIUding search directives generated from th%e base run of Aal, to diagnose a second run of A’
previous execution, and decreased the diagnosis time

4.3 Using Historical Data with Different Code Ver-
sions

Source of Search Directives
None A B C D
c A || 2272 183 (-92%)
% § B || 4454 96 (-98%) | 135 (-97%
29 | C 1021 186 (-82%) 173 (-83%)) 256 (-759
< D | 3411 554 (-84%)| 810 (-76%) 438 (-87%) 429 (-87%)

Table 3: Time (in seconds) to find all bottlenecks with search directives from different application versions.

Times reported are median values for several runs, reported in seconds. Standard Deviations range from 3 to 17
seconds. Each row contains the data for a particular application version, A through D. Each column contains the data
for a particular source of the search directives used with the Performance Consultant. For example, the cell found at
row “C” and column “B” contains the time to diagnose C using directives from a previous run of B. Time relative to

the base version (column “None”) is shown in parentheses.
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I;r;?trl:% A only B only Conly | A,Bonly| A,Conly| B,Conly| A, B,C TOTAL
High 16 13 3 10 10 9 46 107
Low 32 72 24 28 20 13 92 281
Both 48 85 27 38 30 22 138 388

Table 4: Similarity of Extracted Priorities Across Code VersionsEach column represents the source(s) of the
priority directives: a run of one or more of versions A, B, and C. The rows contain data for high priority, low priority,
and the complete set of both. The values are the number of priority directives for the particular category. For example,
of the total 107 different high priority directives, 16 were unique to version A and 46 were common to versions A, B,

and C.

a2. 81 hypothesis/focus pairs tested trueaih result- execution time varied between versions, the set of
ing in 81 search directives that set priority to high. Inresources responsible for the time was similar.
a2, a total of 103 hypothesis/focus pairs tested true. 78 We also investigated using results from multiple
were pairs that tested true &1 (and were included in previous runs to guide the current run. We looked at
the 81 search directives); of the remaining 25, 3 hadwo different approaches to combining search direc-
been set to low priority, 6 were intermediate leveltives from different versionsan B sets to a high/low
nodes not tested ial,and the remaining 16 were more priority only those hypothesis/focus pairs that tested
detailed/refined answers not testedaih due to cost true/false inboth Versions A and B.AOB sets to a
limits. In this case, using search directives resulted in &digh priority those hypothesis/focus pairs that tested
more detailed diagnosis than could be performed withtrye in either A or B, and sets to low priority those
out the directives. hypothesis/focus pairs which tested false in either ver-
Although we had anticipated search directivession and did not test true in A or B. We used the result-
from different versions would not be as effective asing set of directives to diagnose Version C. In this
search directives from the same version, the resultsarticular example, the lists of priorities that result
showed only small differences in most cases. We exanmfrom the two methods of combination have 59 common
ined the different runs of Version C, noting the differ- directives, with 38 additional directives unique to
ences in the sets of search directives extracted from thg; g, The resulting diagnosis times were 176 for
base runs of Versions A, B, and C. As shown inappg and 179 foran B . This difference is too small
Table 4, 36% of the priorities were common across alkor s to conclude the superiority of one combination

three sets of directives, 41% were unique t0 a singlenethod over the other. Which performs better is related
set, and the remaining 23% occurred in two of the threg, e similarity of the sets of directives generated

sets. High priority settings have a bigger impact; for,sing data from runs A and B, not the similarity in code
this cate_zgory, 43% were commo_n.to all three, 30%, platform of the versions.
were unique to one, and the remaining 27% were com-
mon to two.
The list of bottlenecks found did not vary between® RELATED WORK
the runs of C that used search directives extracted from
Versions A, B, or C. Of 115 total bottlenecks diagnosed/Ve know of no other existing tool for automated per-
as true by the Performance Consultant in any of thesirmance diagnosis that adapts its testing strategy
runs, 113 were common across all three, and th&Sing historical performance data. Chitra[7] generates
remaining 3 were common to two of the three. a parameterized empirical model fitting all observed
We conclude that, for this example, despite modifi-data from one or more program runs to predict future
cations to the communications primitives (blocking orProgram performance. The CMon and PSpec tools [8]
non-), and modifications to the algorithm (1-d or 2-d9ather data from multiple executions and produce a
decomposition), the bottleneck locations remained th&ingle summary of application behavior, checking for
same. So although total synchronization time and totaparticular metric values at predetermined execution
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points. There is no widely used set of benchmarks te@red later in an application run. We are also extending
measure effectiveness or correctness of parallel arthe ability to extract search directives to the case where
distributed performance diagnosis. Francioni [9] pro-results in the form of a Search History Graph from a
posed a test suite for debugging/performance analysjgevious PC run are not available, but we do have the
tools called SWAMP. Malony [10] conducted a detailedraw data needed to test hypotheses postmortem. This

study of performance perturbation due to instrumentawould allow us to study use of search directives
tion. Hondroudakis and Procter [11] classify the tasksextracted from results gathered with different monitor-
involved in parallel performance tuning based oning tools.

extensive user survey. Their results support the need for

performance data storage across multiple execution; REFERENCES

and across different tuning studies. A recent study by
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