
BPatch Interface Reference

Version 0.1
July 31, 1998

John Robb

email:johnrobb@us.ibm.com

IBM Corporation

RS/6000 Development

522 South Road, MS P-963

Poughkeepsie, New York 12601

Copyright 1998 by IBM Corp.

Draft Document

7/31/98 Draft, Copyright 1998 by IBM Corp. bpatch_refTOC.doc iii

Table of Contents

About This Document: 9
Restrictions: 9
Comments: 9
Requirements: 9
1.0 Class BPatch . 1
 1.1 Constructors / Destructors . 1
 1.1.1 BPatch . 1
 1.1.2 ~BPatch . 1
 1.2 attachProcess - proposed . 2
 1.3 createProcess . 3
 1.4 getLastErrorCode. 4
 1.5 registerErrorCallback. 5
 1.6 registerExitCallback - proposed. 6
 1.7 registerDynamicLinkCallback - proposed . 7
2.0 Class BPatch_basicBlock - Proposed . 8
 2.1 getSources - proposed . 8
 2.2 getTargets - proposed. 9
 2.3 getSourceBlock - proposed . 10
3.0 Class BPatch_flowGraph - proposed . 12
 3.1 getEntryBasicBlock - proposed . 12
 3.2 getExitBasicBlock - proposed . 13
 3.3 getFunction - proposed . 14
 3.4 getLoops - proposed. 15
4.0 Class BPatch_flowGraphLoop - proposed . 16
 4.1 getBackEdges - proposed. 16
 4.2 getContainedLoops - proposed . 17
 4.3 getLoopBasicBlocks - proposed . 18
 4.4 getLoopHead - proposed . 19
 4.5 getLoopIterators - proposed. 20
5.0 Class BPatch_function . 22
 5.1 functionArgs - proposed . 22
 5.2 getFlowGraph - proposed . 23
 5.3 getLoops - proposed. 24
 5.4 getMangledName - proposed. 25
 5.5 getName . 26
 5.6 getSharedLibType - proposed . 27
 5.7 getSourceBlocks - proposed . 28
 5.8 moduleName - proposed . 29
 5.9 returnType - proposed . 30
 5.10 sharedLibraryName - proposed . 31

7/31/98 Draft, Copyright 1998 by IBM Corp. bpatch_refTOC.doc iv

6.0 Class BPatch_image . 32
 6.1 findLinePoint - proposed . 33
 6.2 findProcedurePoint . 34
 6.3 findType. 35
 6.4 getModules. 36
 6.5 getProcedures. 37
 6.6 getUniqueString - Proposed. 38
 6.7 lpType - proposed . 39
 6.8 programName - proposed . 40
 6.9 getLoadedFilenames - proposed . 41
7.0 Class BPatch_module . 42
 7.1 Supporting Data Types . 43
 7.1.1 BPatch_binding - proposed . 43
 7.1.2 BPatch_language - proposed . 43
 7.2 bindingType - proposed . 44
 7.3 getDataRelocFactor - proposed . 45
 7.4 getLanguage - proposed. 46
 7.5 getName . 47
 7.6 getProcedures. 48
 7.7 getSharedLibType - proposed . 49
 7.8 getTextRelocFactor - proposed . 50
 7.9 getUniqueString - proposed . 51
 7.10 setRelocFactor - proposed . 52
 7.11 sharedLibraryName - proposed . 53
8.0 Class BPatch_point . 54
 8.1 Supporting Data Types . 55
 8.1.1 BPatch_address - proposed . 55
 8.1.2 BPatch_procedureLocation - proposed . 55
 8.2 getAddress - proposed . 57
 8.3 getCalledFunction . 58
 8.4 getDisplacedInstruction - proposed . 59
 8.5 getPointType - proposed . 60
 8.6 instPtLine - proposed . 61
 8.7 showInstPoint - proposed. 62
9.0 Class BPatch_snippet . 64
 9.0.1 BPatch_snippet . 64
 9.0.2 BPatch_snippet . 64
 9.0.3 BPatch_snippet &operator . 64
 9.0.4 ~BPatch_snippet . 65
 9.0.5 getCost - proposed . 65
 9.0.6 getType . 65
 9.1 Class BPatch_arithExpr : public BPatch_snippet . 67

7/31/98 Draft, Copyright 1998 by IBM Corp. bpatch_refTOC.doc v

 9.1.1 BPatch_arithExpr. 67
 9.1.2 BPatch_arithExpr - proposed. 67
 9.2 Class BPatch_boolExpr : public BPatch_snippet . 69
 9.2.1 BPatch_boolExpr - proposed . 69
 9.2.2 BPatch_boolExpr . 69
 9.3 Class BPatch_constExpr : public BPatch_snippet. 71
 9.3.1 BPatch_constExpr . 71
 9.3.2 BPatch_constExpr . 71
 9.3.3 BPatch_constExpr . 71
 9.4 Class BPatch_funcCallExpr : public BPatch_snippet 73
 9.4.1 BPatch_funcCallExpr . 73
 9.5 Class BPatch_ifExpr : public BPatch_snippet. 74
 9.5.1 BPatch_ifExpr . 74
 9.5.2 BPatch_ifExpr . 74
 9.6 Class BPatch_nullExpr : public BPatch_snippet . 76
 9.6.1 BPatch_nullExpr . 76
 9.7 Class BPatch_paramExpr : public BPatch_snippet . 77
 9.7.1 BPatch_paramExpr . 77
 9.8 Class BPatch_retExpr : public BPatch_snippet . 78
 9.8.1 BPatch_retExpr . 78
 9.9 Class BPatch_sequence : public BPatch_snippet . 79
 9.9.1 BPatch_sequence . 79
10.0 Class BPatch_sourceBlock - proposed . 80
 10.1 Supporting Data Types . 81
 10.1.1 BPatch_sourceBlockType - proposed . 81
 10.2 getSourceBlocks - proposed . 82
 10.3 getSourceBlockType - proposed . 83
11.0 Class BPatch_sourceLoop - proposed . 84
 11.1 getContainedLoops - proposed . 84
 11.2 getContainingLoop - proposed . 85
 11.3 getLoopIterators - proposed. 86
12.0 Class BPatch_sourceObj- proposed . 88
 12.1 Supporting Data Types . 89
 12.1.1 BPatch_sourceType . 89
 12.2 findAllPoints - proposed . 90
 12.3 findPoint - proposed. 91
 12.4 findVariable . 92
 12.5 getAddressRange - proposed . 93
 12.6 getAllBasicBlocks - proposed . 94
 12.7 getBasicBlocks - proposed. 95
 12.8 getBasicBlockEnd - proposed . 96
 12.9 getBasicBlockStart - proposed. 97

7/31/98 Draft, Copyright 1998 by IBM Corp. bpatch_refTOC.doc vi

 12.10 getLineNumbers - proposed. 98
 12.11 getObjParent - proposed . 99
 12.12 getRange - proposed . 100
 12.13 getSrcType - proposed . 101
 12.14 getType - proposed . 102
 12.15 getVariables - proposed . 103
13.0 Class BPatch_statement - proposed . 104
 13.1 isCall - proposed . 104
14.0 Class BPatch_thread . 106
 14.1 catchSignal - proposed. 107
 14.2 continueExecution . 109
 14.3 deleteSnippet . 110
 14.4 detach . 111
 14.5 dumpCore. 112
 14.6 dumpImage - proposed . 113
 14.7 free . 114
 14.8 getImage. 115
 14.9 getPid . 116
 14.10 ignoreSignal - proposed . 117
 14.11 insertSnippet . 119
 14.12 insertSnippet . 120
 14.13 isStopped . 121
 14.14 isTerminated . 122
 14.15 malloc. 123
 14.16 malloc. 124
 14.17 oneTimeCode - proposed. 125
 14.18 setInheritSnippets - proposed. 126
 14.19 stopExecution. 127
 14.20 stopSignal. 128
 14.21 terminateExecution . 129
15.0 Class BPatch_type - proposed . 130
 15.1 Supporting Data Types . 130
 15.1.1 BPatch_typeType. 130
 15.2 Constructors - proposed . 131
 15.3 getComponents - proposed . 132
 15.4 getDescription - proposed . 133
 15.5 getName - proposed . 134
 15.6 getSize - proposed . 135
 15.7 getTypeNumber - proposed . 136
 15.8 isCompatible - proposed . 137
 15.9 isStructure - proposed . 138
 15.10 type - proposed. 139

7/31/98 Draft, Copyright 1998 by IBM Corp. bpatch_refTOC.doc vii

16.0 Class BPatch_variableExpr . 140
 16.1 Constructors . 141
 16.2 duplicateVariable - proposed . 142
 16.3 findPoint - proposed. 143
 16.4 getComponent - proposed . 144
 16.5 getComponents - proposed . 145
 16.6 getSize - proposed . 146
 16.7 getType - proposed . 147
 16.8 writeValue . 148
 16.9 writeValue . 149
References: 150

7/31/98 Draft, Copyright 1998 by IBM Corp. bpatch_refTOC.doc viii

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_intro.chp 9

About This Document:

This subroutine reference contains a description of the BPatch interface which is required for the
Dynamic Probe Classs Library (DPCL).

The functions and classes may have the word proposed next to them. This means that this is not yet
part of the DyninstAPI.

Some of the proposed functions are similar to the existing BPatch ones. If the existing BPatch inter-
face is not listed in this book, then it is not required by DPCL.

Restrictions:

Inserting probes in code segments loaded using the load system call is not supported at this time.

Comments:

1. BPatch_vector has been changed to STL vector.
2. Some functions will call the error callback routine. For each of these functions, the document should

indicate that an error callback routine bay be triggered. Do the parms passed to the error callback
need further definition? What if there is no callback registered?

3. In two places BPatch_sourceObj is exposed as a return value: getSourceBlock in BPatch_basicBlock
and getObjParent in BPatch_sourceObj

4. If the BPatch_sourceObj class is not exposed in the interface, what header will the user include to get
access to the member functions. Should be have two flavors of BPatch_sourceObj.h; one for the inter-
face and one internal one?

Requirements:

These are requirements that may drive changes and additions to the BPatch interface.

1. Elimination of the pre-link limitation
2. Source granularity down to loop level
3. Access to variables and their types
4. Support for 64 bit applications
5. Support for threaded applications
6. Ability to insert probes in objects loaded with the load system call. This involves adding an interface

to refresh the module list after a load or unload has been completed. Will refreshing the source struc-
ture after a load/unload be available just at BPatch level or at DPCL also?

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_intro.chp 10

dyninstAPI_init is called from BPatch constructor and returns success/failure -- should pass this
on somehow. 1
Need to define peer BPatch enum of??? containg the following 27
Need to define peer BPatch enum of??? containg the following 49
Should be BPatch_variableExpr 68
BPatch_sourceObj.h - Is it ok to expose this header file to provide access to the declarations of its
member functions? 88
Is the following correct? 94
Is the following correct? 95
Is the following correct? 96
Is the following correct? 97
Need to keep BPatch_sourceObj from being exposed. 99
Do we need a showCaughtSignals member? 107
What is the behavior of terminate (when True) if dumping core is not successful? Should termina-
tion not start until after the dump completes? If so we should say that upon failure, the dump did
not occur and the process was not terminated. 112
should this have a return value to indicate that the BPatch_variableExpr had not been malloc’ed
using BPatch_thread::malloc? 114
Do we need a showIgnoredSignals member? 117
Should return NULL on failure, but the function which it calls, inferiorMalloc, calls exit rather than
returning an error, so this is not currently possible in the current implimentation. 123
Should return NULL on failure, but the function which it calls, inferiorMalloc, calls exit rather than
returning an error, so this is not currently possible in the current implimentation. 124
What will an error return? 136
What is equal? name, description, size? 137
What about enumerated types? 138
What about arrays? 138
Does this eliminate the need for isStructure? 139
These constructors are not exposed currently in BPatch. To expose them, do we need to change the
interface from passing in a process class to passing in a BPatch_thread? 141
What will this return for arrays? 145

Class BPatch

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch.chp 1

1.0 Class BPatch

This is the main BPatch class. It contains information on all processes being traced. Only
one of these objects is allowed per tracing program.

1.1 Constructors / Destructors

1.1.1 BPatch

Synopsis

#include <BPatch.h>

BPatch()

Description

Constructor for BPatch. Performs one-time initialization needed by the library.

Note: dyninstAPI_init is called from BPatch constructor and returns success/failure --
should pass this on somehow.

1.1.2 ~BPatch

Synopsis

#include <BPatch.h>

~BPatch()

Description

Destructor for BPatch. Free allocated memory.

Class BPatch

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch.chp 2

1.2 attachProcess - proposed

Synopsis

#include <BPatch.h>

BPatch_thread *attachProcess(int pid)

Parameters

pid The id of the process to attach to.

Description

Attach to a running process and return a BPatch_thread representing it.

Return value

On Success, return a BPatch_thread.

Returns NULL upon failure.

See Also

createProcess

Class BPatch

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch.chp 3

1.3 createProcess

Synopsis

#include <BPatch.h>

BPatch_thread *createProcess(

char *path,

char *argv[],

char *envp[] = NULL);

Parameters

path The pathname of the executable for the new process.

argv A list of the arguments for the new process, terminated by a NULL

envp A list of values that make up the environment for the new process, ter-
minated by a NULL. If envp is NULL, the new process will inherit the
environment of the parent.

Description

Create a process and return a BPatch_thread representing it.

Return value

Upon Success, return a BPatch_thread.

Returns NULL upon failure.

See Also

attachProcess

Class BPatch

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch.chp 4

1.4getLastErrorCode

Synopsis

#include <BPatch.h>

short getLastErrorCode(void)

Description

Return the last error which occurred.

Class BPatch

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch.chp 5

1.5 registerErrorCallback

Synopsis

#include <BPatch.h>

BPatchErrorCallback registerErrorCallback(

BPatchErrorCallback func)

Parameters

func the function to be called

Description

This function registers the error callback function with the Bpatch class. The error callback is
explicitly registered (rather than using a pure a virtual function) so that Bpatch users can
change the error callback during program execution (i.e., one error callback before a GUI is
initialized, and a different one after).

Callback Data

typedef enum BPatchErrorLevel {

BPatchFatal, BPatchSerious, BPatchWarning, BPatchInfo };

typedef void (*BPatchErrorCallback) (

BPatchErrorLevel severity,

int number,

char **params);

This is the prototype for the error callback function. The severity indicates how important the
error is (from fatal to information/status). The number is a unique number that identifies this
error message. Params are the parameters that describe the detail about an error, For example,
the process id where the error occurred. The number and meaning of params depends on the
error, However, for a single error number, the number of parameters returned will always be
the same.

Return value

Returns the address of the previously registered error callback function.

Class BPatch

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch.chp 6

1.6 registerExitCallback - proposed

Synopsis

#include <BPatch.h>

BPatchThreadEventCallback registerExitCallback(

BPatchThreadEventCallback func)

Parameters

func the function to be called

Description

Registers a function that is to be called by the library when a thread terminates.

Callback Data

typedef void (*BPatchThreadEventCallback) (

BPatch_thread *thread);

This is the prototype for most callback functions associated with events that occur in a thread.
The thread parameter is the thread that the event has occurred in.

Return value

Returns the address of the previously registered exit callback function.

Class BPatch

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch.chp 7

1.7 registerDynamicLinkCallback - proposed

Synopsis

#include <BPatch.h>

BPatchThreadEventCallback registerDynamicLinkCallback(

BPatchThreadEventCallback func)

Parameters

func the function to be called

Description

Registers a function that is to be called by the library after a load or unload call in the applica-
tion has completed.

Callback Data

typedef void (*BPatchThreadEventCallback) (

BPatch_thread *thread);

This is the prototype for most callback functions associated with events that occur in a thread.
The thread parameter is the thread that the event has occurred in.

Return value

Returns the address of the previously registered dynamic link callback function.

Class BPatch_basicBlock - Proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_basicBlock.chp 8

2.0 Class BPatch_basicBlock - Proposed

This class represents a compiler basic block.

Following is the class hierarchy for the IBM implementation:

⇒ BPatch_basicBlock

⇒ BPatch_basicBlockLoop

2.1 getSources - proposed

Synopsis

#include <BPatch_basicBlock.h>

vector<BPatch_basicBlock> *getSources(void)

Description

Return the predecessors of the basic block.

Return value

Return a vector of all predecessors of the basic block. If the lookup fails to locate any prede-
cessors of the basic block, a list with zero elements is returned.

See Also

getTargets

Class BPatch_basicBlock - Proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_basicBlock.chp 9

2.2 getTargets - proposed

Synopsis

#include <BPatch_basicBlock.h>

vector<BPatch_basicBlock> *getTargets(void)

Description

Return all successors of the basic block.

Return value

Return a vector of all successors of the basic block. If the lookup fails to locate any successors
of the basic block, a list with zero elements is returned.

See Also

getSources

Class BPatch_basicBlock - Proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_basicBlock.chp 10

2.3 getSourceBlock - proposed

Synopsis

#include <BPatch_basicBlock.h>

BPatch_sourceBlock *getSourceBlock(void)

Description

Return the source block containing the basic block

Class BPatch_basicBlock - Proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_basicBlock.chp 11

Class BPatch_flowGraph - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_flowGraph.chp 12

3.0 Class BPatch_flowGraph - proposed

The flow graph is made up of compiler basic blocks. The BPatch_flowGraph is an attribute of a Func-
tionObj.

3.1 getEntryBasicBlock - proposed

Synopsis

#include <BPatch_flowGraph.h>

vector<BPatch_basicBlock> *getEntryBasicBlock(void)

Description

Return all basic blocks which do not have a predecessor (either we could not find one or it is
the first basic block in the procedure).

Return value

Return a vector of all basic blocks which do not have a predecessor. If the lookup fails to
locate any, a list with zero elements is returned.

Class BPatch_flowGraph - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_flowGraph.chp 13

3.2 getExitBasicBlock - proposed

Synopsis

#include <BPatch_flowGraph.h>

vector<BPatch_basicBlock> *getExitBasicBlock(void)

Description

Return all basic blocks which do not have a successor (either last blocks in procedure or the
successor could not be determined).

Return value

Return a vector of all basic blocks which do not have a successor. If the lookup fails to locate
any, a list with zero elements is returned.

Class BPatch_flowGraph - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_flowGraph.chp 14

3.3 getFunction - proposed

Synopsis

#include <BPatch_flowGraph.h>

Bpatch_function *getFunction(void)

Description

Returns the procedure containing this control flow graph (CFG).

Return value

Returns a Bpatch_function or NULL if the containing function cannot be determined.

Class BPatch_flowGraph - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_flowGraph.chp 15

3.4 getLoops - proposed

Synopsis

#include <BPatch_flowGraph.h>

vector<BPatch_basicBlockLoop> *getLoops(void)

Description

Return all outermost loops in the procedure.

Return value

Return a vector of all outermost loops in the procedure. If the lookup fails to locate any, a list
with zero elements is returned.

Class BPatch_flowGraphLoop - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_flowGraphLoop.chp 16

4.0 Class BPatch_flowGraphLoop - proposed

This is a subclass of the BPatch_basicBlock class which represents a loop.

4.1 getBackEdges - proposed

Synopsis

#include <BPatch_basicBlockLoop.h>

vector<BPatch_basicBlock> *getBackEdges(void)

Description

Returns the basic blocks which are the sources of the back edges defining the loop.

Return value

Return a vector of the back edges. If the lookup fails to locate any back edges, a list with zero
elements is returned.

Class BPatch_flowGraphLoop - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_flowGraphLoop.chp 17

4.2 getContainedLoops - proposed

Synopsis

#include <BPatch_basicBlockLoop.h>

vector<BPatch_basicBlock> *getContainedLoops(void)

Description

Get next level of contained loops.

Return value

Return a vector of all the contained loops. If the lookup fails to locate any contained loops, a
list with zero elements is returned.

Class BPatch_flowGraphLoop - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_flowGraphLoop.chp 18

4.3 getLoopBasicBlocks - proposed

Synopsis

#include <BPatch_basicBlockLoop.h>

vector<BPatch_basicBlock> *getLoopBasicBlocks(void)

Description

Return all basic blocks belonging to the loop.

Return value

Return a vector of the loops basic blocks. If the lookup fails to locate any basic blocks belong-
ing to the loop, a list with zero elements is returned.

Class BPatch_flowGraphLoop - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_flowGraphLoop.chp 19

4.4 getLoopHead - proposed

Synopsis

#include <BPatch_basicBlockLoop.h>

BPatch_basicBlock *getLoopHead(void)

Description

Return the basic block object of the loop head

Class BPatch_flowGraphLoop - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_flowGraphLoop.chp 20

4.5 getLoopIterators - proposed

Synopsis

#include <BPatch_basicBlockLoop.h>

vector<BPatch_variableExpr> *getLoopIterators(void)

Description

Return loop iteration.

Return value

Return a vector of the loop iterators. If the lookup fails to locate any loop iterators, a list with
zero elements is returned.

Class BPatch_flowGraphLoop - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_flowGraphLoop.chp 21

Class BPatch_function

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_function.chp 22

5.0 Class BPatch_function

An object of this class represents a function in the application. A BPatch_image or BPatch_module
object (see descriptions) can be used to retrieve a BPatch_function object representing a given func-
tion.

5.1 functionAr gs - proposed

Synopsis

#include <BPatch_function.h>

vector<BPatch_variableExpr *> *functionArgs(void)

Description

Get a list of the functions arguments in order to have access to the input values to the function.

Return value

The return value contains a vector of BPatch_variableExpr’s representing the functions argu-
ments. If functionArgs fails to locate any function arguments, a list with zero elements is
returned.

Class BPatch_function

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_function.chp 23

5.2 getFlowGraph - proposed

Synopsis

#include <BPatch_function.h>

BPatch_flowGraph *getFlowGraph(void)

Description

Get the Control Flow Graph of the function.

Return value

Return the Control Flow Graph, or NULL if none is available.

Class BPatch_function

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_function.chp 24

5.3 getLoops - proposed

Synopsis

#include <BPatch_function.h>

vector<BPatch_basicBlockLoop> *getLoops(void)

Description

Return all outermost loops in the function.

Return value

Return a vector of all outermost loops in the function. If the lookup fails to locate any, a list
with zero elements is returned.

Class BPatch_function

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_function.chp 25

5.4 getMangledName - proposed

Synopsis

#include <BPatch_function.h>

const char *getMangledName(void)

Description

Get the mangled name for the function. If there is no name mangling done for the function, the
name by which the linker knows the function will be returned.

Return value

Returns the mangled name of the function, or NULL is the name is not available.

Class BPatch_function

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_function.chp 26

5.5 getName

Synopsis

#include <BPatch_function.h>

const char *getName(void)

Description

Gets the name of the function.

Return value

Returns name of the function, or NULL is the name is not available.

Class BPatch_function

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_function.chp 27

5.6 getSharedLibType - proposed
Note: Need to define peer BPatch enum of??? containg the following

shared_public public shared object

shared_private private shared object

non-shared not a shared object

unknown unknown type

Synopsis

#include <BPatch_function.h>

BPatch_??? getSharedLibType(void)

Description

If the function is part of a shared library, get the type of the shared library which contains the
function.

Return value

Return a BPatch_??? representing the containing shared library type.

Class BPatch_function

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_function.chp 28

5.7 getSourceBlocks - proposed

Synopsis

#include <BPatch_function.h>

vector<BPatch_sourceBlock *> *getSourceBlocks(void)

Description

Get a list of the source blocks contained within the function.

Return value

The return value contains a vector of source blocks contained within the function. If the
lookup fails to locate any, a list with zero elements is returned.

Class BPatch_function

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_function.chp 29

5.8 moduleName - proposed

Synopsis

#include <BPatch_function.h>

const char *moduleName(void)

Description

Get the name of the source file that defines this function. Depending on whether the program
was compiled for debugging or the symbol table stripped, this information may not be avail-
able.

Return value

The return value contains a pointer to a string containing the source file name.

non-NULL contains the source file name

NULL failure, source file name is unavailable

Class BPatch_function

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_function.chp 30

5.9 returnType - proposed

Synopsis

#include <BPatch_function.h>

BPatch_type *returnType(void)

Description

Get the type that the function returns.

Return value

The return value contains a BPatch_type which represents the type the function returns.

non-NULL pointer to a BPatch_type

NULL unable to get return type

Class BPatch_function

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_function.chp 31

5.10 sharedLibraryName - proposed

Synopsis

#include <BPatch_function.h>

const char *sharedLibraryName(void)

Description

Return the name of the shared library that contains the function. If the function is not part of a
shared library, a NULL will be returned. The path will be returned if it is available.

Return value

The return value contains a char* representing the shared library name.

non-NULL contains the shared library name

NULL not part of a shared library

Class BPatch_image

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_image.chp 32

6.0 Class BPatch_image

Class BPatch_image defines a program image (the executable associated with a thread) which
includes information from the loaded a.out, any objects that are loaded at exec time or later and infor-
mation from the file which the objects were loaded from.

The only way to get a handle to a Bpatch_Image is via the Bpatch_thread member function getIm-
age().

The program structure contains two views:

1) Source view - Gives the program source structure. This is an hierarcial tree consisting of
modules, functions, blocks and variables

2) Compiler view - This is a directed graph which will be refered to as the control flow graph (CFG)
with additional information relevant to the way the program executed (like Loops)

The image components may also contain points of interest in the code (instrumentation points)

Class BPatch_image

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_image.chp 33

6.1 findLinePoint - proposed

Synopsis

#include <BPatch_image.h>

const BPatch_point *findLinePoint(

const char *filename,

int line)

Parameters

filename name of the file

line line number

Description

Return the last instrumentation point in a given file and before a line number.

Return value

non-NULL contains a BPatch_point* representing the line number

NULL no such point exists

Class BPatch_image

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_image.chp 34

6.2findProcedurePoint

Synopsis

#include <BPatch_image.h>

#include <BPatch_point.h>

vector<BPatch_point*> *findProcedurePoint(

const char *name,

const BPatch_procedureLocation loc)

Parameters

name The name of the procedure in which to look up the points.

loc The criteria which determines the points within the procedure to return.

Description

Return instrumentation points in a procedure according to criteria specified by the loc param-
eter.

Return value

Return a vector of specified points. If the lookup fails to locate any, a vector with zero
elements is returned.

Class BPatch_image

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_image.chp 35

6.3findType

Synopsis

#include <BPatch_image.h>

BPatch_type *findType(const char *name)

Parameters

name the name of the type to look up

Description

Lookup and return a handle to the named type. The handle can be used as an argument to mal-
loc in order to create new variables of the corresponding type.

Return value

non-NULL contains a BPatch_type* representing the named type

NULL no such type exists

Class BPatch_image

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_image.chp 36

6.4 getModules

Synopsis

#include <BPatch_image.h>

vector<BPatch_module *> *getModules(void)

Description

Returns a vector of all modules in the image

Return value

Return a vector of all modules in the image. If the lookup fails to locate any, a list with zero
elements is returned.

Class BPatch_image

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_image.chp 37

6.5getProcedures

Synopsis

#include <BPatch_image.h>

const vector<BPatch_function *> *getProcedures(void)

Description

Returns a vector of functions in the image. If the lookup fails to locate any functions, a list
with zero elements is returned.

Class BPatch_image

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_image.chp 38

6.6 getUniqueString - Proposed

Synopsis

#include <BPatch_image.h>

const char *getUniqueString(void)

Description

Get a string which uniquely identifies the image.

A unique string will be returned, possibly containing the compile date and time which will
allow determining when two images are the same and when they are different.

Return value

non-NULL return value contains a unique string

NULL unable to obtain a unique string

Class BPatch_image

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_image.chp 39

6.7 lpType - proposed

Synopsis

#include <BPatch_image.h>

BPatch_LpModel lpType(void)

Description

Find whether the image uses 32-bit or 64-bit addressing.

Return value

Returns a BPatch_LpModel , valid values are:

LP32 image is a 32-bit application

LP64 image is a 64-bit application

UNKNOWN_LP addressing mode unknown

Class BPatch_image

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_image.chp 40

6.8 programName - proposed

Synopsis

#include <BPatch_image.h>

const char *programName(void)

Description

Get the name of the program as it was passed to exec.

If the string passed to exec contained an absolute or relative pathname, it will not be returned
prepended to the program name.

Return value

non-NULL returns the name of the program

NULL unable to get the name of the program

Class BPatch_image

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_image.chp 41

6.9 getLoadedFilenames - proposed

Synopsis

#include <BPatch_image.h>

vector<char *> *getLoadedFilenames(void)

Description

Get a vector of filenames of any objects that are used by the image. This includes objects such
as shared libraries loaded at exec time and objects loaded using the load system call.

Return value

Return a vector of the loaded filenames in the image. If the lookup fails to locate any, a list
with zero elements is returned.

Class BPatch_module

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_module.chp 42

7.0 Class BPatch_module

A BPatch_module represents the objects that lie between the entire BPatch image and the
BPatch_function.

An object of this class represents a program module, which is part of a program’s executable image.
BPatch_module objects are obtained by calling the BPatch_image member function getModules().

In the simple case, the BPatch_module represents a source file which has been compiled to produce
an object file. A more complex case is that of an archive of shared and non-shared objects, for exam-
ple: libc.a. The shared library libc.a is in archive format and contains shared objects such as shr.o
which in turn contain multiple compiled source objects. It is likely that libc.a also contains other sim-
ple compiled source objects. There will be a BPatch_module for libc.a itself, shr.o and its peer shared
objects, the compiled source objects which are members of the shared objects and any other simple
compiled source objects contained in the archive libc.a.

The filename attribute will be used to distinguish if the modules are part of a different file.

Class BPatch_module

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_module.chp 43

7.1 Supporting Data Types

7.1.1 BPatch_binding - proposed

Synopsis

#include <BPatch_module.h>

enum BPatch_binding {

BPatch_static,

BPatch_dynamic,

BPatch_unknownBinding

}

Description

This enumeration type describes the type of binding that may be associated with the module.

7.1.2BPatch_language - proposed

Synopsis

#include <BPatch_module.h>

enum BPatch_language {

BPatch_c,

BPatch_cpp,

BPatch_fortran,

BPatch_fortran77,

BPatch_fortran90,

BPatch_assembley,

BPatch_mixed,

BPatch_hpf,

BPatch_unknownLanguage

}

Description

This enumeration type describes the language associated with the module.

Class BPatch_module

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_module.chp 44

7.2 bindingType - proposed

Synopsis

#include <BPatch_module.h>

Bpatch_Binding bindingType(void)

Description

Get the binding type of the module.

Return value

The return value contains the Bpatch_Binding associated with the module.

Class BPatch_module

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_module.chp 45

7.3getDataRelocFactor - proposed

Synopsis

#include <BPatch_module.h>

int getDataRelocFactor(void)

Description

Get the data relocation factor.

Return value

Returns the data relocation factor or -1 for failure.

See Also

getTextRelocFactor, setRelocFactor

Class BPatch_module

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_module.chp 46

7.4getLanguage - proposed

Synopsis

#include <BPatch_module.h>

BPatch_language getLanguage(void)

Description

Get the source language of the module.

Return value

The return value contains a BPatch_language which represents the source language in which
the module was written.

See Also

enum BPatch_language

Class BPatch_module

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_module.chp 47

7.5getName

Synopsis

#include <BPatch_module.h>

const char *getName(void)

Description

Gets the name of the module.

Return value

Returns name of the module, or NULL if the name is not available.

Class BPatch_module

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_module.chp 48

7.6 getProcedures

Synopsis

#include <BPatch_module.h>

const vector<BPatch_function *> *getProcedures(void)

Description

Returns a vector of functions in the module. If the lookup fails to locate any functions, a list
with zero elements is returned.

Class BPatch_module

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_module.chp 49

7.7 getSharedLibType - proposed
Note: Need to define peer BPatch enum of??? containg the following

shared_public public shared object

shared_private private shared object

non-shared not a shared object

unknown unknown type

Synopsis

#include <BPatch_module.h>

BPatch_??? getSharedLibType(void)

Description

If the module is part of a shared library, get the type of the shared library which contains the
module.

Return value

Return a BPatch_??? representing the containing shared library type.

Class BPatch_module

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_module.chp 50

7.8getTextRelocFactor - proposed

Synopsis

#include <BPatch_module.h>

int getTextRelocFactor(void)

Description

Get the text relocation factor.

Return value

Returns the text relocation factor or -1 for failure.

See Also

getDataRelocFactor, setRelocFactor

Class BPatch_module

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_module.chp 51

7.9 getUniqueString - proposed

Synopsis

#include <BPatch_module.h>

const char *getUniqueString(void)

Description

Get a string which uniquely identifies the module.

A unique string will be returned, possibly containing the compile date and time which will
allow determining when two modules are the same and when they are different.

Return value

non-NULL return value contains a unique string

NULL unable to obtain a unique string

Class BPatch_module

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_module.chp 52

7.10setRelocFactor - proposed

Synopsis

#include <BPatch_module.h>

int setRelocFactor(

unsigned long text = 0,

unsigned long data = 0)

Description

Get the text relocation factor.

Return value

Returns the text relocation factor or -1 for failure.

See Also

getDataRelocFactor, getTextRelocFactor

Class BPatch_module

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_module.chp 53

7.11 sharedLibraryName - proposed

Synopsis

#include <BPatch_module.h>

const char *sharedLibraryName(void)

Description

Return the name of the shared library that contains the module. If the module is not part of a
shared library, a NULL will be returned. The path will be returned if it is available.

Return value

The return value contains a char* representing the shared library name.

non-NULL contains the shared library name

NULL not part of a shared library

Class BPatch_point

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_point.chp 54

8.0 Class BPatch_point

An object of this class represents a location in an application’s code at which the library can insert
instrumentation. A BPatch_image, BPatch_module, BPatch_function, BPatch_sourceBlock or
BPatch_basicBlock (see descriptions) are used to retrieve a BPatch_point representing a desired point
in the application.

Class BPatch_point

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_point.chp 55

8.1 Supporting Data Types

8.1.1 BPatch_address - proposed

Synopsis

typedef BPatch_address unsigned long long;

Description

This typedef describes a type long enough to hold a 64 bit address.

8.1.2 BPatch_procedureLocation - proposed

Synopsis

#include <BPatch_point.h>

enum BPatch_procedureLocation {

BPatch_unknownType,

BPatch_entry, // entry to procedure

BPatch_exit, // exit from procedure

BPatch_subroutine, // location of calls to

// other subroutines

BPatch_longJump, // long jump statements

BPatch_basicBlockEntry, // compiler BB entry

BPatch_basicBlockExit, // compiler BB exit

BPatch_sourceBlockEntry, // source block entry

BPatch_sourceBlockExit, // source block exit

BPatch_sourceLoop, // loop

BPatch_sourceLoopEntry, // entry to source loop

BPatch_sourceLoopExit, // exit of source loop

BPatch_basicBlockLoopEntry, // compiler BB loop entry

BPatch_basicBlockLoopExit, // compiler BB loop exit

BPatch_statement, // beginning of a statement

BPatch_varInitStart, // start var initialization

BPatch_varInitEnd, // end of var initilization

Class BPatch_point

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_point.chp 56

BPatch_allLocations // all of the above

}

Description

This enumeration type describes the type of instrumentation point.

Class BPatch_point

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_point.chp 57

8.2 getAddress - proposed

Synopsis

#include <BPatch_point.h>

BPatch_address getAddress(void)

Description

Get the address of the first instruction at this point.

Return value

non-NULL the return value contains the address of the first instruction

NULL unable to get the address of the first instruction

Class BPatch_point

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_point.chp 58

8.3 getCalledFunction

Synopsis

#include <BPatch_point.h>

BPatch_function *getCalledFunction(void)

Description

Returns a BPatch_function representing the function that is called at the point. If the point is
not a function call site or the target of the call cannot be determined, then this function returns
NULL.

Return value

non-NULL success, returns BPatch_function*

NULL failure, point is not a function call site or the target of the
call cannot be determined

Class BPatch_point

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_point.chp 59

8.4 getDisplacedInstruction - proposed

Synopsis

#include <BPatch_point.h>

unsigned int getDisplacedInstruction(void)

Description

Return the instruction to be relocated at this point.

Class BPatch_point

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_point.chp 60

8.5 getPointType - proposed

Synopsis

#include <BPatch_point.h>

const BPatch_procedureLocation getPointType(void)

Description

Get the type of the instrumentation point.

Return value

Return the type of the instrumentation point. BPatch_unknown is returned if the type could
not be determined.

Class BPatch_point

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_point.chp 61

8.6 instPtLine - proposed

Synopsis

#include <BPatch_point.h>

unsigned int instPtLine(void)

Description

Get the approximate source line where the instrumentation point occurs. The source line num-
ber is offset from the beginning of the file.

Return value

non-zero success, returns the source line number

zero failure, unable to get the source line number

Class BPatch_point

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_point.chp 62

8.7 showInstPoint - proposed

Synopsis

#include <BPatch_point.h>

instPoint *showInstPoint(void)

Description

??? Need a definition for showInstPoint. If we don’t have one, lets delete this.

Return value

Returns ???.

Class BPatch_point

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_point.chp 63

Class BPatch_snippet

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_snippet.chp 64

9.0 Class BPatch_snippet

A snippet is an abstract representation of code to insert into a program. Snippets are defined by creat-
ing a new instance of the correct subclass of a snippet. For example, to create a snippet to call a func-
tion, you create a new instance of the class BPatch_funcCallExpr. Creating a snippet does not result in
code being inserted into an application. Code is generated when a request is made to insert a snippet
at a specific point in a program. Sub-snippets may be shared by different snippets (i.e. a handle to a
snippet may be passed as an argument to create two different snippets), but whether the generated
code is shared (or replicated) between two snippets is implementation dependent.

Following classes are implemented as derived classes of BPatch_snippet:

9.0.1 BPatch_snippet

Synopsis

#include <BPatch_snippet.h>

BPatch_snippet(void) : ast(NULL)

Description

9.0.2 BPatch_snippet

Synopsis

#include <BPatch_snippet.h>

BPatch_snippet(

const BPatch_snippet &src)

Parameters

src

Description

Copy constructor for BPatch_snippet.

9.0.3 BPatch_snippet &operator

Synopsis

#include <BPatch_snippet.h>

BPatch_snippet &operator=(const BPatch_snippet &)

Class BPatch_snippet

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_snippet.chp 65

Parameters

Description

9.0.4 ~BPatch_snippet

Synopsis

#include <BPatch_snippet.h>

virtual ~BPatch_snippet()

Description

Destructor for BPatch_snippet. Deallocates memory allocated by the snippet.

9.0.5 getCost -proposed

Synopsis

#include <BPatch_snippet.h>

float getCost(void)

Description

Return an estimate of the number of seconds it would take to execute the snippet. The prob-
lems with accurately estimating the cost of executing code are numerous and out of the scope
of this document. But, it is important to realize that the returned cost value is (at best) an esti-
mate.

Return value

non-NULL returns an estimate of the number of seconds it would take
to execute the snippet

NULL unable to get an estimate

9.0.6 getType

Synopsis

#include <BPatch_snippet.h>

const BPatch_type *getType()

Class BPatch_snippet

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_snippet.chp 66

Description

Get the type of the snippet.

Return value

non-NULL returns the type of the snippet

NULL unable to get the type of the snippet

Class BPatch_snippet

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_snippet.chp 67

9.1 Class BPatch_arithExpr : public BPatch_snippet
This is implemented as a derived class of BPatch_snippet.

9.1.1 BPatch_arithExpr

Synopsis

#include <BPatch_snippet.h>

BPatch_arithExpr(

BPatch_unOp op,

const BPatch_snippet &Operand)

Parameters

op the desired unary operation

Operand the operand of the operation

Description

Define a snippet consisting of a unary operator. The available unary operators are
BPatch_negate, and BPatch_address. BPatch_negate takes an integer snippet and returns the
negation of the snippet. BPatch_address takes a variable reference snippet and returns a
pointer to it. This is equivalent to the C operator (&) and is useful for call-by-reference param-
eters.

9.1.2 BPatch_arithExpr - pr oposed

Synopsis

#include <BPatch_snippet.h>

BPatch_arithExpr(

BPatch_binOp op,

const BPatch_snippet &lOperand,

const BPatch_snippet &rOperand)

Parameters

op the desired binary operation

lOperand the left operand for the operation

rOperand the right operand for the operation

Class BPatch_snippet

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_snippet.chp 68

Description

Construct a snippet representing a binary arithmetic operation.

The available binary operators are:

Operator Description

BPatch_assign assign the value of rOperand to lOperand

BPatch_plus add lOperand and rOperand

BPatch_minus subtract rOperand from lOperand

BPatch_divide divide rOperand by lOperand

BPatch_times multiply rOperand by lOperand

BPatch_mod compute the remainder of dividing rOperand into lOperand Not yet imple-
mented.

BPatch_ref array reference of the form lOperand[rOperand]

Note: Should be BPatch_variableExpr

BPatch_seq define a sequence of two expressions (similar to comma in C)

BPatch_min return the smaller of two operands

BPatch_max return the larger of two operands

BPatch_bit_and return the bitwise and of the two operands

BPatch_bir_or return the bitwise or of the two operands

BPatch_bit_xor return the bitwise exclusive or of the two operands

BPatch_left_shift bitwise shift to the left the lOperand rOperand times

BPatch_right_shift bitwise shift to the right the lOperand rOperand times

Class BPatch_snippet

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_snippet.chp 69

9.2 Class BPatch_boolExpr : public BPatch_snippet
This is implemented as a derived class of BPatch_snippet.

9.2.1 BPatch_boolExpr - proposed

Synopsis

#include <BPatch_snippet.h>

BPatch_boolExpr(

BPatch_unRelOp op,

const BPatch_snippet &Operand)

Parameters

op the operator for the boolean expression

Operand the operand of the boolean operation

Description

Constructs a snippet representing a unary boolean expression.

The available operators are:

Operator Function

Bpatch_not Return !Operand

The type of the returned snippet is boolean, and the operands are type checked.

9.2.2 BPatch_boolExpr

Synopsis

#include <BPatch_snippet.h>

BPatch_boolExpr(

BPatch_relOp op,

const BPatch_snippet&lOperand,

const BPatch_snippet &rOperand)

Parameters

op the operator for the boolean expression

lOperand the left operator

rOperand the right operator

Class BPatch_snippet

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_snippet.chp 70

Description

Constructs a snippet representing a binary boolean expression.

The available operators are:

Operator Function

Bpatch_lt Return lOperand < rOperand

Bpatch_eq Return lOperand == rOperand

Bpatch_gt Return lOperand > rOperand

Bpatch_le Return lOperand <= rOperand

Bpatch_ne Return lOperand != rOperand

Bpatch_ge Return lOperand >= rOperand

Bpatch_and Return lOperand && rOperand (Boolean and)

Bpatch_or Return lOperand || rOperand (Boolean or)

The type of the returned snippet is boolean, and the operands are type checked.

Class BPatch_snippet

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_snippet.chp 71

9.3 Class BPatch_constExpr : public BPatch_snippet
This is implemented as a derived class of BPatch_snippet.

9.3.1 BPatch_constExpr

Synopsis

#include <BPatch_snippet.h>

BPatch_constExpr(int value)

Parameters

value the desired value

Description

Construct a constant snippet of the type integer. This constructor creates a constant containing
the value specified by the parameter, which is copied into the application’s address space.
TheBPatch_constExpr that is created refers to the location where the integer constant exists.

9.3.2 BPatch_constExpr

Synopsis

#include <BPatch_snippet.h>

BPatch_constExpr(float value)

Parameters

value the desired value

Description

Construct a constant snippet of the type float. This constructor creates a constant containing
the value specified by the parameter, which is copied into the application’s address space. The
BPatch_constExpr that is created refers to the location where the float constant exists.

9.3.3 BPatch_constExpr

Synopsis

#include <BPatch_snippet.h>

BPatch_constExpr(

const char *value)

Parameters

value the desired constant string

Class BPatch_snippet

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_snippet.chp 72

Description

Construct a constant snippet of the type char*. This constructor creates a constant string; the
null-terminated string beginning at the location pointed to by the parameter is copied into the
application’s address space. The BPatch_constExpr that is created refers to the location to
which the string was copied.

Class BPatch_snippet

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_snippet.chp 73

9.4 Class BPatch_funcCallExpr : public BPatch_snippet
This is implemented as a derived class of BPatch_snippet.

9.4.1 BPatch_funcCallExpr

Synopsis

#include <BPatch_snippet.h>

BPatch_funcCallExpr(

const BPatch_function& func,

const vector<BPatch_snippet *> &args)

Parameters

func the function to be called

args a vector of the arguments to be passed to the function

Description

Construct a call to a function, the passed function must be valid for the current code region.
Args is a list of arguments to pass to the function. If type checking is enabled, the types of the
passed arguments are checked against the function to be called (Availability of type checking
depends on the source language of the application and program being compiled for debug-
ging).

Class BPatch_snippet

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_snippet.chp 74

9.5 Class BPatch_ifExpr : public BPatch_snippet
This is implemented as a derived class of BPatch_snippet.

9.5.1 BPatch_ifExpr

Synopsis

#include <BPatch_snippet.h>

BPatch_ifExpr(

const BPatch_boolExpr &conditional,

const BPatch_snippet &tClause)

Parameters

conditional contains a boolean expression used to determine whether to execute the
snippet clause

tClause snippet to execute if the boolean clause evaluates to true

Description

This constructor creates an if statement. The first argument, conditional , should be a Boolean
expression that is will be evaluated to decide if the clause should be executed. The second
argument, tClause , is the snippet to execute if the conditional evaluates to true.

9.5.2 BPatch_ifExpr

Synopsis

#include <BPatch_snippet.h>

BPatch_ifExpr(

const BPatch_boolExpr &conditional,

const BPatch_snippet &tClause,

const BPatch_snippet &fClause)

Parameters

conditional contains a boolean expression used to determine which of the snippet
clauses to execute

tClause snippet to execute if the boolean clause evaluates to true

fClause snippet to execute if the boolean clause evaluates to false

Class BPatch_snippet

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_snippet.chp 75

Description

Constructs a snippet representing a conditional expression with an else clause. The first argu-
ment, conditional , should be a Boolean expression that is will be evaluated to decide which
clause should be executed. The second argument, tClause , is the snippet to execute if the con-
ditional evaluates to true. The third argument, fClause , is the snippet to execute if the condi-
tional evaluates to false. Else-if statements, can be constructed by making the fClause of an if
statement another if statement.

Class BPatch_snippet

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_snippet.chp 76

9.6 Class BPatch_nullExpr : public BPatch_snippet
This is implemented as a derived class of BPatch_snippet.

9.6.1 BPatch_nullExpr

Synopsis

#include <BPatch_snippet.h>

BPatch_nullExpr(void)

Description

Construct a null snippet that can be used as a place holder. This snippet contains no executable
statements; however it is a useful place holder for the destination of a goto.

Class BPatch_snippet

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_snippet.chp 77

9.7 Class BPatch_paramExpr : public BPatch_snippet
This is implemented as a derived class of BPatch_snippet.

9.7.1 BPatch_paramExpr

Synopsis

#include <BPatch_snippet.h>

BPatch_paramExpr(int paramNum)

Parameters

paramNum the position of the parameter (0 is the first parameter, 1 the second, and
so on)

Description

This constructor creates an expression whose value is a parameter being passed to a function.
paramNum specifies the number of the parameter to return (starting at 0). Since the contents
of parameters may be changed during subroutine execution, this snippet type is only valid at
points that are entries to subroutines, or when inserted at a call point with the when parameter
set to BPatch_callBefore.

Class BPatch_snippet

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_snippet.chp 78

9.8 Class BPatch_retExpr : public BPatch_snippet
This is implemented as a derived class of BPatch_snippet.

9.8.1 BPatch_retExpr

Synopsis

#include <BPatch_snippet.h>

BPatch_retExpr(void)

Description

This snippet results in an expression that evaluates to the return value of a subroutine. This
snippet type is only valid at BPatch_exit points, or at a call point with the when parameter set
to BPatch_callAfter.

Class BPatch_snippet

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_snippet.chp 79

9.9 Class BPatch_sequence : public BPatch_snippet
This is implemented as a derived class of BPatch_snippet.

9.9.1 BPatch_sequence

Synopsis

#include <BPatch_snippet.h>

BPatch_sequence(const vector<BPatch_snippet *> &items)

Parameters

items the list of snippets that are to make up the sequence

Description

Construct a snippet representing a sequence of snippets. The passed snippets will be executed
in the order in which they appear in the list.

Class BPatch_sourceBlock - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceBlock.chp 80

10.0 Class BPatch_sourceBlock - proposed

This class is part of the source view and represents a source level block (text inside brackets for C
code) such as:

loop blocks The code contained within the loop body.

conditional blocks The code executed depending on the result of a condition such as an if state-
ment.

scope blocks A set of curly braces in C which are not associated with a function, loop or
conditional statement. This block can be used to further define variable scope
within a function.

Class BPatch_sourceBlock - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceBlock.chp 81

10.1 Supporting Data Types

10.1.1 BPatch_sourceBlockType - proposed

Synopsis

#include <BPatch_module.h>

enum BPatch_sourceBlockType{

BPatch_sourceLoop,

BPatch_sourceOuterLoop,

BPatch_sourceLoopHead,

BPatch_sourceStatement,

BPatch_sourceUnknown

}

Description

This enumeration type describes the type of source block.

Class BPatch_sourceBlock - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceBlock.chp 82

10.2 getSourceBlocks - proposed

Synopsis

#include <BPatch_sourceBlock.h>

vector<BPatch_sourceBlock *> *getSourceBlocks(void)

Description

Get a list of the source blocks contained within the source block.

Return value

The return value contains a vector of source blocks contained within the source block.If the
lookup fails to locate any source blocks, a list with zero elements is returned.

Class BPatch_sourceBlock - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceBlock.chp 83

10.3 getSourceBlockType - proposed

Synopsis

#include <BPatch_sourceBlock.h>

BPatch_sourceBlockType getSourceBlockType(void)

Description

Determine if the source block is a loop, outerloop, loop head, statement...

Return value

Return a BPatch_sourceBlockType representing the type of the source block.

Class BPatch_sourceLoop - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceLoop.chp 84

11.0 Class BPatch_sourceLoop - proposed

This class is a special case of BPatch_sourceBlock. Class BPatch_sourceLoop represents a source
program block containing a loop.

11.1 getContainedLoops - proposed

Synopsis

#include <BPatch_sourceLoop.h>

vector <BPatch_sourceLoop> *getContainedLoops(void)

Description

Return all top level contained loops.

Return value

Return a vector of all top level contained loops. If the lookup fails to locate any top level con-
tained loops, a list with zero elements is returned.

See Also

getContainingLoops

Class BPatch_sourceLoop - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceLoop.chp 85

11.2 getContainingLoop - proposed

Synopsis

#include <BPatch_sourceLoop.h>

BPatch_sourceLoop *getContainingLoop(void)

Description

Return containing loop in the loop hierarchy. For outermost loops NULL will be returned

See Also

getContainedLoops

Class BPatch_sourceLoop - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceLoop.chp 86

11.3 getLoopIterators - proposed

Synopsis

#include <BPatch_sourceLoop.h>

vector<BPatch_variableExpr> *getLoopIterators(void)

Description

Return loop iterators.

Return value

Return a vector of all loop iterators. If the lookup fails to locate any loop iterators, a list with
zero elements is returned.

Class BPatch_sourceLoop - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceLoop.chp 87

Class BPatch_sourceObj- proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceObj.chp 88

12.0 Class BPatch_sourceObj- proposed

This class BPatch_sourceObj itself will not be exposed. The member functions will be inherited and
available to its derived classes.

Following is the class hierarchy for the IBM implementation.

⇒ BPatch_sourceObj

⇒ BPatch_image

⇒ BPatch_module

⇒ BPatch_function

⇒ BPatch_sourceBlock

⇒ BPatch_sourceLoop

⇒ BPatch_statement

???: BPatch_sourceObj.h - Is it ok to expose this header file to provide access to the decla-
rations of its member functions?

Class BPatch_sourceObj- proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceObj.chp 89

12.1 Supporting Data Types

12.1.1 BPatch_sourceType

Synopsis

#include <BPatch_sourceObj.h>

enum BPatch_sourceType {

BPatch_unknown_type,

BPatch_program,

BPatch_module,

BPatch_function,

BPatch_outerLoop,

BPatch_loop,

BPatch_block,

BPatch_statement,

BPatch_LAST_TYPE

}

Description

This enumeration type describes whether the source object to which it applies represents a
whole program, module, function, data object,etc.

Class BPatch_sourceObj- proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceObj.chp 90

12.2 findAllPoints - proposed

Synopsis

#include <BPatch_sourceObj.h>

vector<BPatch_point *> *findAllPoints(

const BPatch_procedureLocation loc)

Parameters

loc the type of points within the object to return

Description

Lookup the instrumentation points from an object and in its included objects.

The points returned depends on the object being used.

BPatch_image points contained within the programs contained objects below

BPatch_module points contained within the modules contained objects below

BPatch_function points contained within the function and its contained objects below

BPatch_sourceBlock points contained within the source block and its contained objects below

BPatch_sourceLoop points contained within the source loop

BPatch_sourceStatementpoints contained within the source statement

Return value

Returns a vector of the objects’s instrumentation points inclusively. If the lookup fails to
locate any points of the requested type, a list with zero elements is returned.

See Also

findPoint, BPatch_point

Class BPatch_sourceObj- proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceObj.chp 91

12.3 findPoint - proposed

Synopsis

#include <BPatch_sourceObj.h>

vector<BPatch_point *> *findPoint(

const BPatch_procedureLocation loc)

Parameters

loc the type of points within the object to return

Description

Lookup the instrumentation points from an object, but not in included objects.

The points returned depends on the object being used.

BPatch_image returns an empty list

BPatch_module returns an empty list

BPatch_function BPatch_entry and BPatch_exit points within the function

BPatch_sourceBlock all but BPatch_entry and BPatch_exit points in the source block

BPatch_sourceLoop all but BPatch_entry and BPatch_exit points in the source loop

BPatch_sourceStatement

Return value

Returns a vector of the objects’s instrumentation points exclusively. If the lookup fails to
locate any points of the requested type, a list with zero elements is returned.

See Also

findAllPoints, BPatch_point

Class BPatch_sourceObj- proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceObj.chp 92

12.4 findVariable

Synopsis

#include <BPatch_sourceObj.h>

const BPatch_variableExpr *findVariable(const char *name)

Parameters

name the name of the variable to look up

Description

Lookup and return a handle to the named variable within the object. The returned
BPatch_variableExpr can be used to create references (uses) of the variable in subsequent
snippets.

First look for the name with an “_” prepended to it, and if that is not found try the original
name.

The type of variable depends on the object being used.

BPatch_image global variables

BPatch_module global and static variables defined at the module level

BPatch_function function parameters

BPatch_sourceBlock variables declared in the source block

BPatch_sourceLoop variables declared within the source loop

BPatch_sourceStatementreturns NULL

Return value

non-NULL contains a BPatch_variableExpr* representing the named
global variable

NULL failure, no such variable exists

See Also

getVariables

Class BPatch_sourceObj- proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceObj.chp 93

12.5 getAddressRange - proposed

Synopsis

#include <BPatch_sourceObj.h>

bool getAddressRange(

BPatch_address startAddress

BPatch_address endAddress)

Parameters

startAddress this gets set to the address of the start of the object

endAddress this gets set to the address of the end of the object

Description

Get the beginning and ending addresses of the object. For example, if the object is a function,
the addresses of the starting and ending instructions of the function will be returned.

Return value

True start and end addresses have been set

False unable to get start and end addresses

Class BPatch_sourceObj- proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceObj.chp 94

12.6 getAllBasicBlocks - proposed

Synopsis

#include <BPatch_sourceObj.h>

vector<BPatch_basicBlock *> *getAllBasicBlocks(void)

Description

Return a list of all of the basic blocks included in this source object and any of its contained
source objects.

Return value

The return value contains a vector of BPatch_basicBlocks. If the lookup fails to locate any
BPatch_basicBlocks, a list with zero elements is returned.

???: Is the following correct?

When this function is used from the following objects, an empty list is always returned:

BPatch_image

BPatch_module

See Also

getBasicBlockStart, getBasicBlockEnd, getBasicBlocks

Class BPatch_sourceObj- proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceObj.chp 95

12.7 getBasicBlocks - proposed

Synopsis

#include <BPatch_sourceObj.h>

vector<BPatch_basicBlock *> *getBasicBlocks(void)

Description

Return a list of all of the basic blocks included in this source object but not from any of its
contained source objects.

Return value

The return value contains a vector of BPatch_basicBlocks. If the lookup fails to locate any
BPatch_basicBlocks, a list with zero elements is returned.

???: Is the following correct?

When this function is used from the following objects, an empty list is always returned:

BPatch_image

BPatch_module

See Also

getBasicBlockStart, getBasicBlockEnd, getAllBasicBlocks

Class BPatch_sourceObj- proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceObj.chp 96

12.8 getBasicBlockEnd - proposed

Synopsis

#include <BPatch_sourceObj.h>

vector<BPatch_basicBlock *> *getBasicBlockEnd(void)

Description

Return a list of all basic blocks which have a successor outside the object or which have an
unknown successor.

Return value

The return value contains a vector of BPatch_basicBlocks. If the lookup fails to locate any
BPatch_basicBlocks, a list with zero elements is returned.

???: Is the following correct?

When this function is used from the following objects, an empty list is always returned:

BPatch_image

BPatch_module

See Also

getBasicBlockStart, getAllBasicBlock, getBasicBlocks

Class BPatch_sourceObj- proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceObj.chp 97

12.9 getBasicBlockStart - proposed

Synopsis

#include <BPatch_sourceObj.h>

vector<BPatch_basicBlock *> *getBasicBlockStart(void)

Description

Return a list of all basic blocks which have a predecessor outside the object or which do not
have a known predecessor.

Return value

The return value contains a vector of BPatch_basicBlocks. If the lookup fails to locate any
BPatch_basicBlocks, a list with zero elements is returned.

???: Is the following correct?

When this function is used from the following objects, an empty list is always returned:

BPatch_image

BPatch_module

See Also

getBasicBlockEnd, getAllBasicBlock, getBasicBlocks

Class BPatch_sourceObj- proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceObj.chp 98

12.10 getLineNumbers - proposed

Synopsis

#include <BPatch_sourceObj.h>

bool getLineNumbers(

int &start,

int &end)

Parameters

start this gets set to the first source line number of the object

end this gets set to the last source line number of the object

Description

Gets the first and last line number in the object.

Use this function to get the approximate starting and ending source line numbers of the object
which are relative to the start of the containing file.

For functions, the start line will reflect the first line number in the line number table that falls
between the starting and ending address of the function. This is generally the first source line
that generates executable code.

Return value

The return value indicates if getLineNumbers was able to get the source line numbers.

True start and end have been set

False unable to get start and or end

Function getLineNumbers returns false if their is no line number information available (i.e.,
stripped or compiled without debugging).

For the following objects, false will always be returned:

BPatch_image

See Also

getRange

Class BPatch_sourceObj- proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceObj.chp 99

12.11 getObjParent - proposed

Synopsis

#include <BPatch_sourceObj.h>

BPatch_sourceObj getObjParent(void)

Note: Need to keep BPatch_sourceObj from being exposed.

Description

This function returns the parent object of this object. For example, the parent object of a func-
tion object is a module object. The parent object of a program object is itself.The parent object
of a block may be another block object, a loop block object or a function object.

Return value

Returns the parent object of the object.

See Also

getSrcType

Class BPatch_sourceObj- proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceObj.chp 100

12.12 getRange - proposed

Synopsis

#include <BPatch_sourceObj.h>

bool getRange(

BPatch_statement *starts,

BPatch_statement *ends)

Parameters

starts this gets set to the first BPatch_statement of the object

ends this gets set to the last BPatch_statement of the object

Description

Gets the first and last statement in the object.

Return value

The return value indicates if getRange was able to get the statements.

True start and end have been set

False unable to get start and or end

For the following objects, false will always be returned:

BPatch_image

See Also

getLineNumbers

Class BPatch_sourceObj- proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceObj.chp 101

12.13 getSrcType - proposed

Synopsis

#include <BPatch_sourceObj.h>

BPatch_sourceType getSrcType(void)

Description

Get the type of the object. The source object type corresponds to various objects within a pro-
gram, such as modules, functions, variables, etc. If the source object does not correspond to a
program or part of a program, the source object type is “unknown”

Return value

Returns the type of the object.

See Also

getObjParent

Class BPatch_sourceObj- proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceObj.chp 102

12.14getType - proposed

Synopsis

#include <BPatch_sourceObj.h>

#include <BPatch_type.h>

Bpatch_type getType(char *name)

Bpatch_type getType(int typeNumber)

Parameters

name The name of the type.

typeNumber The typeNumber is an unique number (per BPatch_module) given by
the compiler to any type appearing in the module.

Description

Get the specified type.

Return value

Return the required type or NULL for failure.

See Also

class BPatch_type

Class BPatch_sourceObj- proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_sourceObj.chp 103

12.15 getVariables - proposed

Synopsis

#include <BPatch_sourceObj.h>

vector<BPatch_variableExpr *> *getVariables(void)

Description

Get a list of variables contained in the scope of the object.

The type of variables in the list depends on the object being used.

BPatch_image returns empty list

BPatch_module global and static variables defined in the module

BPatch_function function parameters

BPatch_sourceBlock variables declared in the source block

BPatch_sourceLoop variables declared within the source loop

BPatch_sourceStatementreturns empty list

Return value

The return value contains a vector of BPatch_variableExpr’s representing the variables con-
tained in the object. If the lookup fails to locate any variables, a list with zero elements is
returned.

See Also

findVariable

Class BPatch_statement - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_statement.chp 104

13.0 Class BPatch_statement - proposed

This class represents a single statement in the source view.

13.1 isCall - proposed

Synopsis

#include <BPatch_statement.h>

bool isCall(void)

Description

Returns true if the statement contains a call site

Class BPatch_statement - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_statement.chp 105

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 106

14.0 Class BPatch_thread

The BPatch_thread class operates on (and creates) code in execution.

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 107

14.1 catchSignal - proposed
???: Do we need a showCaughtSignals member?

Synopsis

#include <sys/signal.h>

#include <BPatch_thread.h>

bool catchSignal(sigset_t sa_mask)

Parameters

sa_mask used to specify the individual signals to be caught

Description

The catchSignal call allows setting the BPatch reaction to particular signals that occur in the
application. After catchSignal has completed successfully, signals represented in the
signal_mask parameter will be placed in the list of caught signals.

A process under ptrace control executes normally until it encounters a signal. Processes that
were started by the daemon using createProcess or attached to with attachProcess are under
ptrace control. They will continue to be under ptrace control until detach is issued. After the
process under ptrace control encounters a signal, the process enters the stopped state and the
daemon is notified with a SIGCHLD.

When the application encounters a “caught” signal, the application will remain in the stopped
state until being restarted by the daemon.

Then the application encounters an “ignored” signal, BPatch will restart the application as
soon as possible and allow the application to handle the signal in its own fashion.

The following signals are caught by default:

 ???

The following signals should always be caught:

 SIGSTOP used by the bpatch library

 SIGTRAP used to implement debugger breakpoints

The following signals should always be ignored:

 SIGPROF used to implement Dais phases

The following signals should always be ignored when instrumenting poe jobs running with the
signal based MPI library:

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 108

 SIGALRM used by MPI

 SIGPIPE used by MPI

 SIGIO used by MPI

The following signals should always be ignored when instrumenting poe jobs running with the
threads based MPI library:

 SIGPIPE used by MPI

 SIGIO used by MPI

Return value

True the signals specified by sa_mask will be caught

False failure, no change has been made to the list of signals which
were previously caught

See Also

ignoreSignal, stopSignal, signal.h

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 109

14.2 continueExecution

Synopsis

#include <BPatch_thread.h>

bool continueExecution(void)

Description

Puts the thread into the running state.

Return value

The return value indicates if continueExecution was able to get the thread to run.

True the thread was run

False unable to run the thread

See Also

stopExecution, terminateExecution, isStopped, isTerminated, stopSignal

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 110

14.3 deleteSnippet

Synopsis

#include <BPatch_thread.h>

bool deleteSnippet(BPatchSnipperHandle *handle)

Parameters

handle The handle returned by insertSnippet when the instance to be deleted
was created.

Description

Deletes an instance of a snippet.

Return value

The return value indicates if the handle passed in was valid for the thread.

True valid handle passed in

False invalid handle passed in

See Also

insertSnippet, setInheritSnippets

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 111

14.4 detach

Synopsis

#include <BPatch_thread.h>

void detach(bool cont)

Parameters

cont True if the thread should be continued as the result of the detach, false
if it should not.

Description

Detach from the thread represented by this object.The thread must be stopped to call this func-
tion. The cont parameter is used to indicate if the thread should be continued as a result of
detaching.

Return value

none

See Also

stopExecution, isStopped

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 112

14.5 dumpCore

Synopsis

#include <BPatch_thread.h>

bool dumpCore(

const char *file,

bool terminate)

Parameters

file the name of the file to which the state should be written

terminate indicates whether or not the thread should be terminated after dumping
core. True indicates that it should, false that it should not.

Description

Causes the thread to dump its state to a file, and optionally to terminate. If terminate is set to
false and the application is to continue, the application will not continue until after the dump
is complete.

???: What is the behavior of terminate (when True) if dumping core is not successful?
Should termination not start until after the dump completes? If so we should say that
upon failure, the dump did not occur and the process was not terminated.

Return value

Returns true upon successfully completing a dump, and false upon failure.

True success

False failure

See Also

dumpImage

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 113

14.6 dumpImage - proposed

Synopsis

#include <BPatch_thread.h>

bool dumpImage(const char *file)

Parameters

file the name of the file to which the image should be written

Description

This function causes the thread to write the in-memory version of the program to the specified
file.

Return value

Returns true upon successfully completing an image dump, and false upon failure.

True success

False failure

See Also

dumpCore

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 114

14.7 free

Synopsis

#include <BPatch_thread.h>

void free(const BPatch_variableExpr &ptr)

Parameters

ptr A BPatch_variableExpr representing the memory to free.

Description

Free memory that was allocated with BPatch_thread::malloc.The programmer is responsible
to verify that all code that could reference this memory will not execute again (either by
removing all snippets that refer to it, or by analysis of the program).

Return value

none

???: should this have a return value to indicate that the BPatch_variableExpr had not been
malloc’ed using BPatch_thread::malloc?

See Also

BPatch_thread::malloc

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 115

14.8 getImage

Synopsis

#include <BPatch_thread.h>

const BPatch_image *getImage(void)

Description

Get the executable file associated with this BPatch_image object and return a handle to it.

Return value

Returns a BPatch_image*.

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 116

14.9getPid

Synopsis

#include <BPatch_thread.h>

pid_t getPid(void)

Description

Return the process id represented by the current object.

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 117

14.10 ignoreSignal - proposed
???: Do we need a showIgnoredSignals member?

Synopsis

#include <sys/signal.h>

#include <BPatch_thread.h>

bool ignoreSignal(sigset_t sa_mask)

Parameters

sa_mask used to specify the individual signals to be ignored

Description

The ignoreSignal call allows setting the BPatch reaction to particular signals that occur in the
application. After ignoreSignal has completed successfully, signals represented in the
signal_mask parameter will be placed in the list of ignored signals.

A process under ptrace control executes normally until it encounters a signal. Processes that
were started by the daemon using createProcess or attached to with attachProcess are under
ptrace control. They will continue to be under ptrace control until detach is issued. After the
process under ptrace control encounters a signal, the process enters the stopped state and the
daemon is notified with a SIGCHLD.

When the application encounters a “caught” signal, the application will remain in the stopped
state until being restarted by the daemon.

Then the application encounters an “ignored” signal, BPatch will restart the application as
soon as possible and allow the application to handle the signal in its own fashion.

The following signals are caught by default:

 ???

The following signals should always be caught:

 SIGSTOP used by the bpatch library

 SIGTRAP used to implement debugger breakpoints

The following signals should always be ignored:

 SIGPROF used to implement Dais phases

The following signals should always be ignored when instrumenting poe jobs running with the
signal based MPI library:

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 118

 SIGALRM used by MPI

 SIGPIPE used by MPI

 SIGIO used by MPI

The following signals should always be ignored when instrumenting poe jobs running with the
threads based MPI library:

 SIGPIPE used by MPI

 SIGIO used by MPI

Return value

True the signals specified by sa_mask will be ignored

False failure, no change has been made to the list of signals which
were previously ignored

See Also

catchSignal, stopSignal, signal.h

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 119

14.11 insertSnippet

Synopsis

#include <BPatch_thread.h>

BPatchSnippetHandle *insertSnippet(

const BPatch_snippet &expr,

const BPatch_point &point,

BPatch_callWhen when = BPatch_callBefore,

BPatch_snippetOrder order = BPatch_firstSnippet)

Parameters

expr the snippet to insert

point the point at which to insert it

when when the snippet is to be called

order insertion point relative to any other snippets already installed at the
same point

Description

Insert a code snippet at a given instrumentation point. The when argument specifies when the
snippet is to be called; a value of BPatch_callBefore indicates that the snippet should be
inserted just before the specified point or points in the code, and a value of BPatch_callAfter
indicates that it should be inserted just after. The order argument specifies where the snippet is
to be inserted relative to any other snippets previously inserted at the same point. The values
BPatch_firstSnippet and BPatch_lastSnippet can be used to indicate that the snippet should be
inserted be-fore or after all such snippets, respectively.

Return value

Returns a handle to the created instance of the snippet.

Success returns the snippet handle

Failure returns NULL

See Also

deleteSnippet, setInheritSnippets

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 120

14.12 insertSnippet

Synopsis

#include <BPatch_thread.h>

BPatchSnippetHandle *insertSnippet(

const BPatch_snippet &expr,

const vector<BPatch_point *> &points,

BPatch_callWhen when = BPatch_callBefore,

BPatch_snippetOrder order = BPatch_firstSnippet)

Parameters

expr the snippet to insert

points the list of points at which to insert it

when when the snippet is to be called

order insertion point relative to any other snippets already installed at the
same point

Description

Insert a code snippet at each of a list of instrumentation points. The when argument specifies
when the snippet is to be called; a value of BPatch_callBefore indicates that the snippet should
be inserted just before the specified point or points in the code, and a value of
BPatch_callAfter indicates that it should be inserted just after. The order argument specifies
where the snippet is to be inserted relative to any other snippets previously inserted at the
same point. The values BPatch_firstSnippet and BPatch_lastSnippet can be used to indicate
that the snippet should be inserted be-fore or after all such snippets, respectively.

Return value

Returns a handle to the created instances of the snippet, which can be used to delete them (as
a unit).

Success returns the snippet(s) handle

Failure returns NULL

See Also

deleteSnippet, setInheritSnippets

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 121

14.13 isStopped

Synopsis

#include <BPatch_thread.h>

bool isStopped(void)

Description

This function queries the status of the thread to see if it is currently stopped. If the thread is
stopped, then stopSignal can be called to find out what signal caused the thread to stop.This
function may be called multiple times and will not affect the state of the thread.

Valid states for a thread are:

neonatal thread is involved in BPatch initialization

running thread is executing

stopped thread is stopped, which allows certain BPatch calls to be made

exited thread has terminated and is no longer available for BPatch control

Return value

The return value indicates if the thread is currently stopped.

True the thread is stopped

False the thread is not stopped

See Also

continueExecution, stopExecution, terminateExecution,
isTerminated, stopSignal

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 122

14.14 isTerminated

Synopsis

#include <BPatch_thread.h>

bool isTerminated(void)

Description

This function queries the status of the thread to see if it has terminated. This function may be
called multiple times and will not affect the state of the thread.

Valid states for a thread are:

neonatal thread is involved in BPatch initialization

running thread is executing

stopped thread is stopped, which allows certain BPatch calls to be made

exited thread has terminated and is no longer available for BPatch control

Return value

The return value indicates if the thread has terminated.

True the thread is terminated

False the thread is not terminated

See Also

continueExecution, stopExecution, terminateExecution,
isStopped, stopSignal

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 123

14.15 malloc

Synopsis

#include <BPatch_thread.h>

BPatch_variableExpr *malloc(int n)

Parameters

n The number of bytes to allocate

Description

Allocate memory in the thread’s address space.

Return value

Returns a pointer to a BPatch_variableExpr representing the memory.

Returns NULL on failure.

Note: Should return NULL on failure, but the function which it calls, inferiorMalloc, calls
exit rather than returning an error, so this is not currently possible in the current impli-
mentation.

See Also

BPatch_thread::free

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 124

14.16 malloc

Synopsis

#include <BPatch_thread.h>

BPatch_variableExpr *malloc(const BPatch_type &type)

Parameters

type The type of variable for which to allocate space.

Description

Allocate memory in the thread’s address space for a variable of the given type

Return value

Returns a pointer to a BPatch_variableExpr representing the memory.

Returns NULL on failure.

Note: Should return NULL on failure, but the function which it calls, inferiorMalloc, calls
exit rather than returning an error, so this is not currently possible in the current impli-
mentation.

See Also

BPatch_thread::free

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 125

14.17 oneTimeCode - proposed

Synopsis

#include <BPatch_thread.h>

void oneTimeCode(const BPatch_snippet &expr)

Parameters

expr the snippet to insert

Description

Cause snippet to be evaluated once at the next available opportunity. This interface is useful to
cause an initialization function to be called in the application. The process must be stopped to
call this function.

Return value

none

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 126

14.18 setInheritSnippets - proposed

Synopsis

#include <BPatch_thread.h>

void setInheritSnippets(bool inherit)

Parameters

inherit true if snippets should be inherited by the forked process

Description

Set a flag to indicate if instrumentation snippets should be inherited when the thread forks. By
default, instrumentation snippets are inherited by the child process.

Return value

none

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 127

14.19 stopExecution

Synopsis

#include <BPatch_thread.h>

bool stopExecution(void)

Description

Puts the thread into the stopped state.

Return value

The return value indicates whether the thread was stopped by stopExecution or not.

True the thread was stopped

False the thread was not stopped by stopExecution for one of a
variety of reasons such as, already stopped, thread is before
the initial stop point, thread has exited...

See Also

continueExecution, terminateExecution, isStopped,
isTerminated, stopSignal

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 128

14.20 stopSignal

Synopsis

#include <BPatch_thread.h>

int stopSignal(void)

Description

This function queries the signal number which caused the thread to stop. It can only be called
if the thread is in the stopped state. Use function isStopped to find out if the thread is in the
stopped state. This function may be called multiple times and will not affect the state of the
thread.

If stopSignal is called when the thread is not in the stopped state, the previous signal encoun-
tered by the application will be reported.

Valid states for a thread are:

neonatal thread is involved in BPatch initialization

running thread is executing

stopped thread is stopped, which allows certain BPatch calls to be made

exited thread has terminated and is no longer available for BPatch control

Return value

The return value contains the signal number which caused the thread to stop.

See Also

continueExecution, stopExecution, terminateExecution,
isStopped, isTerminated, signal.h

Class BPatch_thread

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_thread.chp 129

14.21 terminateExecution

Synopsis

#include <BPatch_thread.h>

bool terminateExecution(void)

Description

Terminates execution of the thread.

Return value

The return value indicates if the thread was terminated by terminateExecution.

True the thread was terminated

False the thread was not terminated by terminateExecution for
one of a variety of reasons such as, thread has exited, not a
valid BPatch_thread, more?

See Also

continueExecution, stopExecution, isStopped, isTerminated,
stopSignal

Class BPatch_type - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_type.chp 130

15.0 Class BPatch_type - proposed

This class represents the type information of a variable.

15.1Supporting Data Types

15.1.1BPatch_typeType

Synopsis

#include <BPatch_type.h>

enum BPatch_typeType {

BPatch_unknown_type,

BPatch_primitive,

BPatch_scalar,

BPatch_enumerated,

BPatch_structure,

BPatch_union,

BPatch_array,

BPatch_type_number,

BPatch_pointer,

BPatch_LAST_TYPE

}

Description

This enumeration type describes the general types available for BPatch_type.

Class BPatch_type - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_type.chp 131

15.2 Constructors - proposed

Synopsis

#include <BPatch_type.h>

BPatch_type(char *name)

BPatch_type(

char *name,

BPatch_module *module,

bool nulltype=false)

Parameters

name The type name (can be NULL)

module Module where the type is defined.

nulltype If true then this is typeless.

Description

The first constructor with just the name parameter creates a BPatch_type which is available in
all modules.

The second constructor creates a BPatch_type which is available in the module specified.

Class BPatch_type - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_type.chp 132

15.3getComponents - proposed

Synopsis

#include <BPatch_type.h>

vector <BPatch_variableExpr> *getComponents(

BPatch_variableExpr var)

Parameters

var The complex variable to expand.

Description

Get a vector containing the fields of the passed in structure or union.

Return value

Return a list of the components contained in the complex variable designated by the var
parameter. If the components of the variable cannot be found or if var is a scaler type variable,
then a list of zero elements is returned.

Class BPatch_type - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_type.chp 133

15.4getDescription - proposed

Synopsis

#include <BPatch_type.h>

vector<char *> *getDescription(void)

Description

This API should be the complete description for all the posible types in the executable. The
type is classified with the type enumerated (from the type() API) and according to that, the
user will know the format of the vector of strings returned by this API. For now we wil return
the string appearing at the XCOFF file, parsing is user dependent. Structures and unions are
described with the getComponents API

Structure or Union:

fieldName, fieldTypeNumber, fieldOffset, fieldName, fieldTypeNumber, fieldOffset, etc...

Enumerated (always integer):

eumValue, value, enumValue, value. etc...

Array

arrayTypeNumber, dimension

Pointer :

*, typeNumberPointed

TypeNumber

typeNumber

Primitive

NULL (primitive type has always a name)

Return value

Return a list of strings which describe the types contained in the executable. A list with no ele-
ments is returned if the type descriptions cannot be determined.

Class BPatch_type - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_type.chp 134

15.5getName - proposed

Synopsis

#include <BPatch_type.h>

const char *getName(void)

Description

Get the name of the type.

Return value

Return the name of the type or NULL of the name is not available.

Class BPatch_type - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_type.chp 135

15.6getSize - proposed

Synopsis

#include <BPatch_type.h>

int getSize(void)

Description

Get the size of the type.

Return value

Return the size of the type or -1 if the size cannot be determined.

Class BPatch_type - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_type.chp 136

15.7getTypeNumber - proposed

Synopsis

#include <BPatch_type.h>

int getTypeNumber(void)

Description

Get the number of the type. The type number will be negative if it is a primitive type.

Return value

Return the number of the type.

???: What will an error return?

See Also

dbxstclass.h

Class BPatch_type - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_type.chp 137

15.8isCompatible - proposed

Synopsis

#include <BPatch_type.h>

bool isCompatible(const BPatch_type &otype)

Parameters

otype The other type to compare with this type.

Description

Compare two types. Return true if either one of the type is typeless or they are equal.

???: What is equal? name, description, size?

Class BPatch_type - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_type.chp 138

15.9isStructure - proposed

Synopsis

#include <BPatch_type.h>

bool isStructure(void)

Description

Return true if the type is a structure or union.

???: What about enumerated types?

???: What about arrays?

Return value

Return true for complex types and false for scaler types.

Class BPatch_type - proposed

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_type.chp 139

15.10type - proposed

Synopsis

#include <BPatch_type.h>

BPatch_Typetype type(void)

Description

Get the type of the object.

???: Does this eliminate the need for isStructure?

Return value

Return an enum representing the type of the object. If the type cannot be determined, return
BPatch_unknown_type.

Class BPatch_variableExpr

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_variableExpr.chp 140

16.0 Class BPatch_variableExpr

This class represents both a variable expression in the source view and also a variable which
may be used in building an expression.

The BPatch_variableExpr class is another class derived from snippet. It represents a variable or area
of memory in a thread’s address space. A BPatch_variableExpr can be obtained from a BPatch_thread
using the malloc member function, or from a BPatch_image using the findVariable member function.
BPatch_variableExpr provides additional member functions not provided by other types of snippets.

This is implemented as a derived class of BPatch_snippet.

Class BPatch_variableExpr

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_variableExpr.chp 141

16.1 Constructors
???: These constructors are not exposed currently in BPatch. To expose them, do we need

to change the interface from passing in a process class to passing in a BPatch_thread?

Synopsis

#include <BPatch_variableExpr.h>

BPatch_variableExpr(

process *in_process,

void *in_address,

const BPatch_type *type)

BPatch_variableExpr(

char *name,

process *in_process,

void *in_address,

const BPatch_type *type)

Parameters

name name of the new variable

in_process process for which to generate the variable

in_address address in process space for the variable

type type of the variable

Description

Create a BPatch_variableExpr. If in_address is NULL, the variable will be allocated in the
process heap.

Class BPatch_variableExpr

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_variableExpr.chp 142

16.2 duplicateVariable - proposed

Synopsis

#include <BPatch_variableExpr.h>

BPatch_variableExpr *getComponent(const char *dupname)

Parameters

dupname name of the new duplicate variable

Description

Returns a duplicate of the variable.

Return value

Return NULL if the variable cannot be duplicated.

Class BPatch_variableExpr

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_variableExpr.chp 143

16.3 findPoint - proposed

Synopsis

#include <BPatch_variableExpr.h>

vector<BPatch_point *> *findPoint(void)

Description

Returns all instrumentation points defined for the variable. Instrumentation points for a vari-
able are before and after initialization.

Return value

Returns a vector of the variables’s instrumentation points. If the lookup fails to locate any
points, a list with zero elements is returned.

Class BPatch_variableExpr

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_variableExpr.chp 144

16.4 getComponent - proposed

Synopsis

#include <BPatch_variableExpr.h>

BPatch_variableExpr *getComponent(const char *name)

Parameters

name name of the component

Description

Get a component of a complex variable.

Return value

Returns a component of a complex variable.

Returns NULL if the variable is scalar.

Class BPatch_variableExpr

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_variableExpr.chp 145

16.5 getComponents - proposed

Synopsis

#include <BPatch_variableExpr.h>

vector <BPatch_variableExpr> *getComponents(void)

Description

Get the components of a complex variable such as a structure or union.

Return value

Returns a vector of the components of a complex variable. If the lookup fails to locate any
components (which will happen for a scalar variable), a list with zero elements is returned.

???: What will this return for arrays?

Class BPatch_variableExpr

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_variableExpr.chp 146

16.6getSize - proposed

Synopsis

#include <BPatch_variableExpr.h>

int getSize(void)

Description

Get the size of the variable.

Return value

Return the size of the variable or -1 if the size cannot be determined.

Class BPatch_variableExpr

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_variableExpr.chp 147

16.7 getType - proposed

Synopsis

#include <BPatch_variableExpr.h>

BPatch_type *getType(void)

Description

Get the type of the variable.

Return value

Return the type of the variable or NULL is no type information is available.

Class BPatch_variableExpr

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_variableExpr.chp 148

16.8 writeValue

Synopsis

#include <BPatch_snippet.h>

void writeValue(const void *src)

Parameters

src A pointer to a buffer in which to place the value of the variable. It is
assumed to be the same type as the variable.

Description

Changes the value of the variable in an application’s address space that is represented by this
BPatch_variableExpr. The src parameter should point to a value of the variable’s type.

Return value

none

Class BPatch_variableExpr

7/31/98 Draft, Copyright 1998 by IBM Corp. BPatch_variableExpr.chp 149

16.9 writeValue

Synopsis

#include <BPatch_snippet.h>

void writeValue(

const void *src,

int size)

Parameters

src buffer in which to place the value of the variable

size number of bytes to write

Description

Changes the value of the variable in an application’s address space that is represented by this
BPatch_variableExpr for size bytes.

Return value

none

7/31/98 Draft, Copyright 1998 by IBM Corp. reference.pge 150

References:

1. Jeffrey K. Hollingsworth & Bryan Buck, “DyninstAPI Programmer’s Guide”
2. Avi Zehavi, “A.OUT Reader New API’s”
3. DyninstAPI source files
4. Avi Zehavi & Guillermo Rabinovich, “BPatch Design”

