A SIMPLE CHARACTERIZATION OF SOLUTION SETS OF CONVEX PROGRAMS *

O.L. MANGASARIAN

Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison, WI 53706, USA

Received February 1987
Revised November 1987

By means of elementary arguments we first show that the gradient of the objective function of a convex program is constant on the solution set of the problem. Furthermore the solution set lies in an affine subspace orthogonal to this constant gradient, and is in fact in the intersection of this affine subspace with the feasible region. As a consequence we give a simple polyhedral characterization of the solution set of a convex quadratic program and that of a monotone linear complementarity problem. For these two problems we can also characterize a priori the boundedness of their solution sets without knowing any solution point. Finally we give an extension to non-smooth convex optimization by showing that the intersection of the subdifferentials of the objective function on the solution set is non-empty and equals the constant subdifferential of the objective function on the relative interior of the optimal solution set. In addition, the solution set lies in the intersection of the feasible region of an affine subspace orthogonal to some subgradient of the objective function at a relative interior point of the optimal solution set.

convex programs • solution sets • non-smooth optimization

The purpose of this work is to give some useful and simple properties of solution sets of convex programs. Surprisingly, these results have not been given before, to the best knowledge of the author. For example, given a differentiable convex function \(f \) on the \(n \)-dimensional real space \(\mathbb{R}^n \) and given a convex set \(X \) in \(\mathbb{R}^n \), the solution set of the minimization problem of \(f \) on \(X \) is characterized by a constant gradient of the objective as well as a constant scalar product of the gradient with the point at which the gradient is evaluated. This result can be employed, for example, to show the polyhedrality of certain solution sets as well as to characterize their boundedness. For non-smooth convex objective functions we show that the subdifferential of the objective function is constant on the relative interior of the solution set and give a number of useful characterizations of this set.

We begin with a lemma which shows that the gradient of the objective function of a convex programming problem is constant on the solution set of the problem.

Lemma 1. Let \(X \) be a convex set in the real \(n \)-space \(\mathbb{R}^n \) and let \(f \) be a twice continuously differentiable convex function on some open convex set containing \(X \). Let \(\bar{X} \) be the non-empty solution set of \(\min_{x \in X} f(x) \). Then the gradient \(\nabla f(x) \) is constant on \(\bar{X} \).

Proof. Let \(x, y \in \bar{X} \). Then by the minimum principle [5, Theorem 9.3.3, 2, p. 121, Proposition 1.3],
\[
\nabla f(y)(y - x) \geq \nabla f(x)(y - x) \geq 0,
\]
\[
\nabla f(x)(x - y) \geq \nabla f(y)(x - y) \geq 0.
\]

Hence,
\[
\nabla f(y)(y - x) = \nabla f(x)(y - x) = 0. \tag{1}
\]

* Research supported by National Science Foundation Grant DCR-8420963 and Air Force Office of Scientific Research Grant AFOSR-86-0172.

Now,
\[
\nabla f(y) - \nabla f(x) = \left[\nabla f(x + t(y - x)) \right]_{t=0}^{t=1} = \int_{t=0}^{t=1} \nabla^2 f(x + t(y - x))(y - x) \, dt
\]
\[
= C(y - x),
\]
where \(C \) is the \(n \times n \) symmetric matrix defined by
\[
C := \int_{t=0}^{t=1} \nabla^2 f(x + t(y - x)) \, dt.
\]
Since \(zCz \geq 0 \) for all \(z \) in \(\mathbb{R}^n \) it follows that \(C \) is positive semidefinite. We have then from (1) and (2) that
\[
0 = (y - x)(\nabla f(y) - \nabla f(x)) = (y - x)C(y - x).
\]
Since \(C \) is symmetric positive semidefinite, it follows from (3) and (2) that
\[
0 = C(y - x) = \nabla f(y) - \nabla f(x).
\]

The above lemma is extended in Lemma 1a in the sequel to a non-differentiable convex \(f \). In fact, by using Lemma 1a we can state Lemma 1 under the weaker assumption that \(f \) is convex and differentiable.

We now characterize the solution set of a convex program in terms of any of its solution points.

Theorem 1 (Characterization of the solution set of a convex program). Let \(X \) be a convex set in \(\mathbb{R}^n \), let \(f \) be a twice continuously differentiable convex function on some open convex set containing \(X \) and let \(\bar{x} \) be any point in the solution set \(\bar{X} \) of \(\min_{x \in X} f(x) \). Then \(\bar{X} = \bar{S} = \bar{S}' \), where
\[
\bar{S} := \{ x \in X, \nabla f(\bar{x})(x - \bar{x}) = 0, \nabla f(x) = \nabla f(\bar{x}) \},
\]
\[
\bar{S}' := \{ x \in X, \nabla f(\bar{x})(x - \bar{x}) \leq 0, \nabla f(x) = \nabla f(\bar{x}) \}.
\]

Proof (\(\bar{S} \subset \bar{X} \)). Let \(x \in \bar{S} \). It follows then from the convexity of \(f \) that
\[
f(\bar{x}) - f(x) \geq \nabla f(x)(\bar{x} - x) = \nabla f(\bar{x})(\bar{x} - x) \geq 0.
\]
Hence \(f(x) \leq f(\bar{x}) \) and \(x \in \bar{X} \). Thus \(\bar{S} \subset \bar{X} \).

Let \(x \in \bar{X} \). By Lemma 1 it follows that \(\nabla f(x) = \nabla f(\bar{x}) \). By the minimum principle we have that
\[
\nabla f(\bar{x})(x - \bar{x}) \geq 0,
\]
\[
\nabla f(x)(x - \bar{x}) \geq 0.
\]
Thus \(\nabla f(\bar{x})(x - \bar{x}) = 0 \) and \(x \in \bar{S} \). Hence \(\bar{X} \subset \bar{S} \).

Since \(\bar{S} \subset \bar{S}' \) it follows that \(\bar{S} = \bar{S} = \bar{S}' \). \(\square \)

It immediately follows from Theorem 1 that when \(f \) is quadratic, and \(X \) is polyhedral, then \(\bar{X} \) is also polyhedral. Thus we have the following consequences which can also be derived by other simple direct arguments.

Corollary 1 (Polyhedral characterization of the solution set of a convex quadratic program). Let \(X \) be a convex set in \(\mathbb{R}^n \). Consider the quadratic program
\[
\min_{x \in X} f(x) := \min_{x \in X} \frac{1}{2} x^T C x + d^T x,
\]
where \(C \) is an \(n \times n \) symmetric positive semidefinite matrix, \(d \in \mathbb{R}^n \) and let \(\bar{x} \) be any point in the solution set \(\bar{X} \) of \(\min_{x \in X} f(x) \). Then \(\bar{X} \) can be characterized as follows:
\[
\bar{X} = \bar{S} := \{ x \in X, d(x - \bar{x}) = 0, C(x - \bar{x}) = 0 \},
\]
\[
\bar{X} = \bar{S}' := \{ x \in X, d(x - \bar{x}) \leq 0, C(x - \bar{x}) = 0 \}.
\]

Consequently \(\bar{X} \) is a polyhedral set when \(X \) is polyhedral.
Proof. Follows from Theorem 1 by noting that for \(x \) in \(S, S, T \) or \(\bar{T} \)
\[
\nabla f(\bar{x})(x - \bar{x}) = (\bar{x}C + d)(x - \bar{x}) = d(x - \bar{x}). \quad \square
\]

We now give a polyhedral characterization of the solution set of the monotone linear complementarity problem [3] which is simpler than the Adler–Gale characterization [1] and which is very useful in deriving error bounds for monotone linear complementarity problems [7]. Consider the linear complementarity problem

\[
Mx + q \geq 0, \quad x \geq 0, \quad x(Mx + q) = 0,
\]
where \(M \) is an \(n \times n \) positive semidefinite matrix, not necessarily symmetric, and \(q \in \mathbb{R}^n \). We consider the equivalent formulation

\[
\min \{ x(Mx + q) | Mx + q \geq 0, \quad x \geq 0 \} = 0,
\]
and apply Corollary 1 to obtain the following characterization of the solution set of (10) or equivalently of (9).

Corollary 2 (Polyhedral characterization of the solution set of a monotone linear complementarity problem).

Let \(M \) be positive semidefinite and let \(\bar{x} \) be any point in the solution set \(\bar{X} \) of the linear complementarity problem (9). Then,

\[
\bar{X} = \mathcal{U} := \{ x | Mx + q \geq 0, \quad x \geq 0, \quad q(x - \bar{x}) = 0, \quad (M + M^T)(x - \bar{x}) = 0 \},
\]

\[
\bar{X} = \mathcal{U} := \{ x | Mx + q \geq 0, \quad x \geq 0, \quad q(x - \bar{x}) \leq 0, \quad (M + M^T)(x - \bar{x}) = 0 \}.
\]

We conclude with a boundedness characterization of the solution set of the monotone linear complementarity problem (9) and the convex quadratic program

\[
\min \frac{1}{2} x^T Cx + dx \quad \text{subject to} \quad Ax \geq b, \quad x \geq 0,
\]
where \(C \) and \(d \) are as in (7), \(A \) is an \(m \times n \) matrix and \(b \) is in \(\mathbb{R}^m \).

Theorem 2 (Boundedness of the solution set of a convex quadratic program). Let \(C \) be positive semidefinite and let the quadratic program (12) have a non-empty solution set \(\bar{X} \). \(\bar{X} \) is bounded if and only if either

\[
\bar{Y} := \{ y | Ay \geq 0, \quad 0 \neq y \geq 0, \quad dy = 0, \quad Cy = 0 \} = \emptyset,
\]

or

\[
\hat{Y} := \{ y | Ay \geq 0, \quad 0 \neq y \geq 0, \quad dy \leq 0, \quad Cy = 0 \} = \emptyset.
\]

Proof (Sufficiency). By Corollary 1 the solution set \(\bar{X} \) is given by \(\bar{X} = \bar{Y} \). Thus if \(\bar{X} \) unbounded, there exists a sequence \(\{ x_i \} \), such that \(x_i \neq 0 \) and \(\| x_i \| \to \infty \). Any accumulation point \(y \) of \(x_i / \| x_i \| \) is in \(\bar{Y} \subset \bar{Y} \), thus contradicting \(\bar{Y} = \emptyset \) or \(\hat{Y} = \emptyset \).

(Necessity). Suppose that \(y \in \bar{Y} \neq \emptyset \) and \(\bar{x} \in \bar{X} \). Then for any positive \(\lambda \), \(x(\lambda) = \bar{x} + \lambda y \in \bar{Y} = \bar{X} \) and \(\| x(\lambda) \| \to \infty \) as \(\lambda \to \infty \). This, however, contradicts the boundedness of \(\bar{X} \). \(\square \)

Theorem 2 can be also derived by invoking a result of convex analysis [9, Theorem 8.4]. We just note that \(\bar{Y} \cup \{ 0 \} \) and \(\hat{Y} \cup \{ 0 \} \) are the recession cones of \(\bar{T} \) and \(\hat{T} \), respectively, and by Theorem 8.4 [9], the latter are bounded if and only if the former consist of \(\{ 0 \} \) alone. It is interesting to note that the recession cone does not depend on either the solution point or the right hand side \(b \) of the constraint \(Ax \geq b \). We can thus say that the solution set of a convex quadratic program (12) is bounded (or empty) for each right hand side \(b \) if and only if it is non-empty and bounded for some \(b \), in which case the recession cone of the solution set contains the null element only. This latter characterization which is equivalent to (13) can be verified by solving a single linear program as follows:

\[
\max \{ ey | Ay \geq 0, \quad y \geq 0, \quad dy = 0, \quad Cy = 0 \} = 0,
\]

where \(e \) is a vector of ones in \(\mathbb{R}^n \). Thus (13) and (14) are equivalent to each other.
For the monotone linear complementarity problem (9) a slightly stronger boundedness result than Theorem 2 is possible if the characterization $\bar{X} = \bar{U}$ is used. This is because of the special structure of the quadratic program (10). The boundedness characterization here implies non-emptiness of the solution set of the complementarity problem as well. We thus have the following.

Theorem 3 (Non-emptiness and boundedness of the solution set of a monotone linear complementarity problem). Let M be positive semidefinite. The solution set \bar{X} of the linear complementarity problem (9) is non-empty and bounded if and only if

$$\mathcal{Z} := \{ z \mid Mz \geq 0, z \neq 0, qz \leq 0, (M + M^T)z = 0 \} = \emptyset.$$ \hspace{1cm} (15)

Proof. The proof of the necessity and sufficiency of (15) under the assumption that $\bar{X} \neq \emptyset$ is similar to the proof of Theorem 2 or because $\mathcal{Z} + \{ 0 \}$ is the recession cone of \bar{U}. We only need to show that (15) implies that $\bar{X} \neq \emptyset$. The solution set \bar{X} is empty if and only if there is no $x \geq 0$ such that $Mx + q \geq 0$. This, by Motzkin's theorem of the alternative [5], is equivalent to the existence of a u in \mathbb{R}^n such that

$$M^Tu \leq 0, \quad qu < 0, \quad u \geq 0.$$

But by the positive semidefiniteness of M this is equivalent to the existence of a u satisfying $(M + M^T)u = 0, Mu = -M^Tu \geq 0, qu < 0, u \geq 0$ which contradicts (15). \[\square \]

Theorem 3 is essentially contained in [6, Theorem 2] which was derived in a different manner for the broader class of copositive-plus matrices [3].

In the last part of the paper we extend Lemma 1 and Theorem 1 to non-smooth convex functions. Professor A. Ben-Tal pointed out to the author that the constant gradient condition of Lemma 1 can be replaced by the non-emptiness of the intersection of the subdifferentials of each pair of points in the optimal solution set. (See (18) below.) This fact as well as our more general extension (Lemma 1a below) follow from a slightly extended lemma of Demyanov and Vasilev [4, Lemma 5.8, p. 63].

Lemma 2 [4]. Let f be a convex function on \mathbb{R}^n, let $\partial f(x)$ denote its subdifferential at x, let $x^1 \neq x^2$, let $\lambda \in (0, 1)$ and let $x^\lambda := (1 - \lambda)x^1 + \lambda x^2$. Then,

$$\partial f(x^1) \cap \partial f(x^2) \neq \emptyset = \begin{cases} f(x^\lambda) = (1 - \lambda)f(x^1) + \lambda f(x^2), \\ \partial f(x^1) \cap \partial f(x^2) \subset \partial f(x^\lambda) \end{cases}$$ \hspace{1cm} (16)

$$\partial f(x^\lambda) = \partial f(x^1) \cap \partial f(x^2) \neq \emptyset = f(x^\lambda) = (1 - \lambda)f(x^1) + \lambda f(x^2).$$ \hspace{1cm} (17)

The slight extension consists of $\partial f(x^1) \cap \partial f(x^2) \subset \partial f(x^\lambda)$ in (16), and $\partial f(x^\lambda) = \partial f(x^1) \cap \partial f(x^2)$ in (17), both of which follow directly from the proof of [4, pp. 63–65].

Now if we let \bar{X} be the solution set of $\min_{x \in X} f(x)$ where X is a convex set in \mathbb{R}^n and f is a convex function on \mathbb{R}^n then

$$\partial f(x^1) \cap \partial f(x^2) \neq \emptyset \quad \forall x^1, x^2 \in \bar{X}$$ \hspace{1cm} (18)

follows immediately from (17) because $(1 - \lambda)x^1 + \lambda x^2 \in \bar{X}$ for $\lambda \in (0, 1)$. In fact we state and prove an extension of Lemma 1 which subsumes (18).

Lemma 1a. Let \bar{X} be the non-empty solution set of $\min_{x \in X} f(x)$ where X is a convex set in \mathbb{R}^n and f is a convex function on \mathbb{R}^n. Let \bar{X} be in the relative interior of a convex subset \bar{X} of \bar{X}. Then,

$$\partial f(\bar{X}) = \bigcap_{x \in \bar{X}} \partial f(x)$$

and consequently $\partial f(x)$ is constant on $\text{ri}(\bar{X})$.

24
Proof. \(\partial f(x) \subset \cap_{x \in S} \partial f(x)\): if this inclusion fails then \(\partial f(x) \not\subset \partial f(x_1)\) for some \(x_1 \in \bar{X}\) and \(x_1 \neq \bar{x}\). Since \(\bar{x} \in \text{ri}(\bar{X})\), let \(\bar{x} = (1 - \lambda)x^1 + \lambda x^2\) for some \(x^1 \in \bar{X}\) and \(\lambda \in (0, 1)\). Hence \(f(\bar{x}) = (1 - \lambda)f(x^1) + \lambda f(x^2)\), and by (17) of Lemma 2 we have that \(\partial f(\bar{x}) = \partial f(x^1) \cap \partial f(x^2)\) contradicting \(\partial f(x) \not\subset \partial f(x^1)\).

If \(\cap_{x \in S} \partial f(x) \subset \partial f(\bar{x})\): if this inclusion fails then for some \(v \in \cap_{x \in S} \partial f(x)\), \(v \not\in \partial f(\bar{x})\). Since \(\bar{x} \in \text{ri}(\bar{X})\), take \(x^1, x^2 \in \bar{X}\) such that \(\bar{x} = (1 - \lambda)x^1 + \lambda x^2\) and \(\lambda \in (0, 1)\). It follows by (16) of Lemma 2 that \(v \in \partial f(x^1) \cap \partial f(x^2) \subset \partial f(\bar{x})\) contradicting \(v \not\in \partial f(\bar{x})\).

We conclude by extending Theorem 1 to non-smooth convex functions by means of Lemma 1a.

Theorem 1a (Characterization of the solution set of a non-smooth convex program). Let \(\bar{X}\) be the non-empty solution set of \(\min_{x \in X} f(x)\), where \(X\) is a convex set in \(\mathbb{R}^n\) and \(f\) is a convex function on \(\mathbb{R}^n\). Let \(\bar{x} \in \bar{X}\) and let \(\text{ri}(\bar{X})\). Then,

\[\bar{X} = \bar{S} = \bar{S}_0 = \bar{S}_1 = \bar{S}_1.\]

where

\(\bar{S} = \{x \mid x \in X, \, v(x - \bar{x}) = 0 \text{ for some } v \in \partial f(\bar{x}) \cap \partial f(x)\}\),

\(\bar{S}_1 = \{x \mid x \in X, \, v(x - \bar{x}) \leq 0 \text{ for some } v \in \partial f(\bar{x}) \cap \partial f(x)\}\),

\(\bar{S}_0 = \{x \mid x \in X, \, v(x - \bar{x}) = 0 \text{ for some } v \in \partial f(\bar{x}) \subset \partial f(x)\}\),

\(\bar{S}_1 = \{x \mid x \in X, \, v(x - \bar{x}) \leq 0 \text{ for some } v \in \partial f(\bar{x}) \subset \partial f(x)\}\),

\(\bar{S}_1 = \{x \mid x \in X, \, v(x - \bar{x}) = 0 \text{ for some } v \in \partial f(x)\}\),

\(\bar{S}_0 = \{x \mid x \in X, \, v(x - \bar{x}) < 0 \text{ for some } v \in \partial f(x)\}\). The proof is similar to the smooth case.

Acknowledgement

The author is indebted to Professor A. Ben-Tal for pointing out relation (18) which prompted him to extend Lemma 1 and Theorem 1 to the non-smooth cases of Lemma 1a and Theorem 1a.
References