
SIAM J. CONTROL AND OPTIMIZATION
Vol. 17, No. 6, November 1979

1979 Society for Industrial and Applied Mathematics
0363-,0129/79/1706-0006 $01.00/0

NONLINEAR PERTURBATION OF LINEAR PROGRAMS*

O. L. MANGASARIAN" AND R R. MEYERf

Abstract. The objective function of any solvable linear program can be perturbed by a differentiable,
convex or Lipschitz continuous function in such a way that (a) a solution of the original linear program is also a
Karush-Kuhn-Tucker point, local or global solution of the perturbed program, or (b) each global solution of
the perturbed problem is also a solution of the linear program.

We are concerned here with the linear program

(1) Minimize px subject to Ax >-_ b,

where p and b are given vectors in R and R respectively and A is a given rn n real
matrix. We shall assume throughout this work that this problem has a nonempty
optimal solution set $c S ={x lAx >-_b}. We shall be interested in the perturbed
problem P(e) definied as follows"

(2) Minimize px + el(x) subject to Ax >-b,

where f: RnR and e is a nonnegative real number. For convenience we define the
optimal solution set of (2) as {(e). Note that g(0)= S-. Perturbed problems such as (2)
are considered in [3], [4]. In [3] it was shown that if (1) has a unique solution and f is a
differentiable function at , then there exists a positive 7 such that for all e in [0, g],
satisfies the Karush-Kuhn-Tucker conditions [1 ], [2] for the perturbed problem (2). By
considering a specific perturbation f(x) rx x in [4] an iterative technique is proposed
for solving linear programming problems. In this work we show that, under suitable
conditions, given by f there exists a positive number f such that some solution of the
linear program is a Karush-Kuhn-Tucker point or a local or global solution of the
perturbed problem (2) for e in the interval [0, 7]. In Theorem 1 we show that if f is
differentiable and has a bounded level set on , then there exists a Karush-Kuhn-
Tucker point of the perturbed problem (2) which also solves the original linear program
(1). In Theorem 2 we indicate how the same type of perturbation applies to a nonlinear
programming problem. The rest of the paper is again devoted to the perturbed linear
program. In Theorem 3 we show that if f satisfies a local Lipschitz or local convexity
property then there exists a solution of the linear program (1) which is a local solution of
the perturbed problem (2). Among other things Theorem 4 globalizes the result of
Theorem 3 and shows that for sufficiently small e => 0 the set of optimal solutions of the
perturbed problem is actually a subset of the solutions of (1). Corollary 1 deals with the
case when the linear program (1) has a unique solution, while Corollary 2 treats the case
when the perturbation function f is strictly convex on R n. We begin with the first result.

THEOREM 1. Let f be a function from R into R which is differentiable on the
nonempty solution set S of (1). Let either the level setL {x Ix S, f(x <= } be nonempty
and bounded ]’or some real number , or let 0 be the minimum value of (1) and let the
nonlinear program

(3) Minimize f(x) subject to Ax >-b, px <-0

have a Karush-Kuhn-Tucker point. Then there exists an in R and an f > 0 such that
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for eache in [0, g] there exists a a(e) in R"such that (2, ti (e)) is a Karush-Kuhn-Tucker
point of the perturbed problem (2), and is also a solution of the linear program (1). If in
addition f is convex or pseudoconvex at , then 2 solves the perturbed problem (2) for e in
[0, ].

Proof. By explicit assumption or by the boundedness of L, problem (3) has a
Karush-Kuhn-Tucker point (2, 5, /) in R "+’+1 which satisfies

V/(2)-A 7- + /p 0,

A2>-b,

(4) p2 0,

5(a2-b) 0,

#, /->0.

Since $ is also a solution of the linear program (1), there exists a in R such that

(5) -aT"+p=0, AY>=b, ff(AY-b)=0, >-0.

Case 1" 2 0. From (4) and (5) we have that for any e -> 0

e Vf(X)-a T( + e5) +p 0,

A2 => b,

(, + es)(a$ b) O,

Hence (, ff + eS) is a Karush-Kuhn-Tucker point of (2) for any e >= 0.
Case.2" /> 0. When z/> 0, it follows from (4) that (, K 5//) is a Karush-Kuhn-

Tucker point of (2) with e g 1 / /. From (4) and (5) we have for 35 > 0 and A [0, 1

Vf(2) AT((1 A)+A) +p =0,

that

A2 _-> b,

+A)(A$- b) 0,

(1-A)+h--=>0._

Hence (, (1-h) + h (5/z/)) is a Karush-Kuhn-Tucker point for (2) for e hg A/q
and A e [0, 1].

The last statement of the theorem follows from the standard sufficiency theory of
nonlinear programming [2, Thm. 10.1.2]. ]

We can apply the same proof technique above to a considerably more general
problem than (1), namely to the nonlinear programming problem:

(6) Minimize O(x) subject to g(x)=<O, h(x)=O,

where 0, g and h are functions from R" into R, R and R k respectively. However
because of a constraint qualification restriction the results apply to a narrow class
outside linear programs. Hence we shall merely state the result and omit the proof
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which is quite simil.ar to the proof of Theorem 1. We shall again associate with (6) a
perturbed problem, namely for some e >= 0
(7) Minimize O(x)+ef(x) subject to g(x)<=O, h(x)=0,

where f is from R into R. We shall assume that (6) has a local solution at 2 with
minimum value of 0 0() and that B is the open ball with center 2 such that
0() <= O(x) for all x in B satisfying the constraints g(x)<=0 and h(x)= 0. We further
admit the possibility of the nonuniqueness of and define ={xlO(x)= , g(x)<=0,
h(x)=O, xsB}.

THEOREM 2. Let (6) have a nonempty set of local optimal solutions satisfying a
constraint qualification. Let O, g, h. and f be differentiable on and let the nonlinear
program

Minimize f(x) subject to g(x) <- O,

(8) h(x) 0,

O(x)<-O, x B

have a Karush-Kuhn-Tucker point (2, , L /) in R n+"+k+l Then there exists an > 0
such thatforeach e in [0, f] there exists a (, ?)" [0, f]- R"/ksuch that (, t(e), ?(e)) is
a Karush-Kuhn-Tuckerpointfor the perturbed problem (7), and is also a local solution
of the nonlinearprogram (6). In fact it is possible to take 1 // when / > 0 and as any
positive number when /= O.

The main cause of the restrictive nature of this theorem outside linear program-
ming is that in order for (8) to have a Karush-Kuhn-Tucker point its constraints must in
general satisfy a constraint qualification. This is difficult when g, h and 0 are nonlinear
because of the constraint O(x) <= O. However when h is linear and 0 and g are pseudo-
concave or concave at 2 then a constraint qualification is automatically satisfied [2,
Thm. 11.3.6]. This is a somewhat restrictive extension which does however include the
case when (6) is a linear program.

The rest of the paper is devoted exclusively to the perturbation (2) of the linear
program (1). We will first show that, under appropriate assumptions, some element 2 of
the solution set S of (1) will be a local (global) solution of P(e) for all sufficiently small
e -> 0. We will then show that under slightly stronger assumptions, each global solution
of P(e) for sufficiently small e =>0 is also a solution of (1). We begin by assuming that
minx/(x) has a local (global) solution , so that there exists an open ball B with center
such that S f’)B is optimal for the problem

(9) Minimize f(x) subject to x g f’lB.
The proof of the subsequent results depends crucially on establishing a minimum

rate of increase of px in certain directions that lead "away" from S. These directions are
related to pro]ections of points in $ on $. The projection of a point x on S is denoted by
Ix (x) with Ix (x) S and

]l (x)-xll min I[ix -xli,

where I1"11 denotes the c norm throughout this paper unless otherwise subscripted. We
state now the key result which gives the desired lower bound on p(x Ix(x)) and give the
proof in the Appendix.

LEMMA 1. There exists an a > 0 such that

p (x Ix (x)) _-> a IIx Ix (x)[[ for all x S.,
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We shall also need the following Lipschitz property on the perturbation function
There exist positive numbers 8 and K such that

(10) f((x))-f(x)<-KIIx-m(x)ll for x S and IIx-(x)ll<=.

Note that it follows from the definition of/z (x) that Ilx (x)l[ whenever ]Ix
With the above concepts we establish our next principal result.

THEOREM 3. Let be a local solution of minxg/(x). Then, for sufficiently small
e >= O, is both a global solution of the linear program (1) and a local solution of the
perturbed problem (2) provided that either of the two following conditions holds"

(a) The Lipschitz property (1 O) holds.
(b) f is convex on some open set containing .
Proof. (a) Let (10) hold and let B B(, g) {xlllx < g} where g is chosen

such that 0 < 8-< 6 and is an optimal solution of (9). Note that if x e B(, 6), then

Hence by part (b) of Lemma A.3 of the Appendix we have upon noting the equality

ef()+p<--ef(x)+px forxeSB ,

Hence solves (2) for e e [0, /K] with the added constraint that x e B(, /2).
(b) Let be convex on B(, r) for some r>0. By Theorem 10.4 of [5] is

Lipschitzian on any open ball B(, 8) with 8 < r, and again we have that

IIx- (x)ll llx- ll< for x B(, 8).

Hence because f is Lipschitzian on B(, 8) the first inequality of (10) holds for
x B(, 8), and because [ is convex on B(, ), is an optimal solution of (9) with
B B(, 8). Again by part (b) of Lemma A.3 of the Appendix we have that

e() +p e(x) +px for x e S B ,
and e e 0,

Hence solves (2) for e e [0, /K] with the added constraint that x
Example 1. To illustrate the need for the Lipschitz property (10), let x e R , let

S {x 0}, p 1, [(x)=-x/. Note that is continuous on S, but does not have the
Lipschitz property in a neighborhood ol g {0}. (Note also that [ is convex on S, but
cannot be extended to a finite convex function on R .) In this case it is easily verified that
g(e) e/4 for e 0 and thus g(e) never includes {0} for any positive

Note that in Theorem 3, the Lipschitz property (10) is needed only
that lie in some open neighborhood of , since only such points are involved in the
statement of the theorem and its proof. On the other hand by using the full strength
(10) and under slightly stronger assumptions than those of Theorem 3 we can show that
each global solution of the perturbed problem (2) for suciently small e 0 is also a
solution o the linear program (1). In particular we have the following.

IIx (x)ll IIx 11 < ,
p plz(x) that
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THEOREM 4. Let S be a solution of minxgf(x) and letpx + e*f(x) be bounded
from below on S for some e*>0. Then S(e) S for sufficiently small e >=0 provided
that any of the following conditions holds"

(a) The Lipschitz property (10) holds.
(b) f is convex on some open convex set containing S.
(c) f has continuous first partial derivatives on some open set containing S and S is

compact.

Proof. We will first establish that $ S(e) S for sufficiently small e _->0 under
hypothesis (a) by showing that for sufficiently small e _-> 0

(11) p +ef().<px +el(x) for x S\S

and

(12) p2 + el(2) <-- px + ef(x) for x S.

Inequality (12) holds because 2 minimizes f on S. To establish (11), let x S\S; thus
x #/ (x), and consider the two following cases.

Case 1" O<llp,(x)-xll<-6. The strict inequality (11) follows from part (a) of
Lemma A.3 of the Appendix for e e [0, a/K) upon noting that p2 pi,(x).

Case 2" IIl(x)-xll>6. Let u be such that px+e*f(x)>= for x eS, so that
f(x) >- /e * px/e *. By defining

q -p/e* and p u/e* +f(2) + pY/e*

we have that

f(Y)-d(x)<=q(i.t(x)-x)+p forx 6S.

Because I]/ (x)- xll > 6 it follows upon using the H61der inequality that

e(f(X)-f(x))/[lx-l(x)ll<=e]lq[l+ep/ for x S

and consequently for e small enough, that is e [0, a/(]lq]l + p/6)), the right hand side
of the last inequality is less than a. Thus, for such e

e (f(2)-fix)) <  llx (x)ll

<-px p2 (by Lemma 1).
This establishes (11) for this second case also.

Now note that hypothesis (c) implies (a) and that hypothesis (b) also implies (a) in
the case that S is compact [5, Thin. 10.4], so that the proof will be completed by showing
that the result holds under hypothesis (b) even when is not compact. Let

T {x I[Ix :]]--< k},

where k is some positive number, let S’= S 0 T, and let S’ S 0 T. Note that S’ is a
compact polyhedral set and that S’ is the set of optimal solutions of minxes, px, so that
the preceding arguments imply that there exists an e’> 0 such that Y S’(e) S’ for
e [0, e’] where S’(e) denotes the solution set of min,sTpX +el(x). Now suppose
that for some e [0, e’], S(e) contains a point S. By the convexity of px + el(x),
S’(e) implies that S(e) (since a local solution of P(e) must also be a global solution),
and consequently by the convexity of S(e) it follows that

x(h)=(1-h)2+hS(e) for all h [O, 1].

However, for h (0, 1] we have that x (h) ,q and hence x (h) ’. But for sufficiently
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small A > 0, x(A) S’(e) c S’, which is a contradiction. Thus S(e) S for e [0, e’], and
since 2 S(e) the theorem is established under hypothesis (b). [q

In the terminology of point-to-set mappings the result S(e) S of Theorem 4 for
e -> 0 sufficiently small implies that the mapping S(e) is upper semi-continuous at 0 in a
strong sense. (Note that if px + el(x) is not bounded from below for any e > 0, then the
inclusion S(e)S holds trivially, since S(e) b for all e >0.)

To see that the compactness of S is necessary in hypothesis (c) of Theorem 4 we
give below an example in which the conclusion of Theorem 4 fails when the compact-
ness assumption of part (c) is dropped.

(0)Example 2. Let x R2’ P 1
S {(x1, x2)[1 <X1, 0=<x2 < 1} and f(x)

--XIX2q"X31X22. Note that on S, px +ef(x)>-e(-XlX2+(xlx2)2)>=-e/4. Moreover,

S {(X 1, x2)lXl 1, xz 0}

and f(x)= 0 on S, so that px + el(x)- 0 on S for all e-> 0. However for 0 < e 2,
2

xl 2/e, x2 e2/16, we have that (x, x.) S, px + ef(x) -e /32 < 0, and hence no
solution of minxgf(x) can be in S(e), the solution set of minxes px + el(x). It can also be
shown that S(e) is nonempty for all e > 0 so that $(e) is not contained in S.

Note that in the case that the linear program (1) has a unique solution, many of the
results above may be simplified. In particular, Theorems 1 and 4 yield the following.
(See also Remark 4 in [3].)

COROLLARY 1. Let S consist of a single point.2. Iff is differentiable at 2, then 2 is a
Karush-Kuhn-Tucker point of (2) for all sufficiently small e >-0. If, in addition,
S(e *) ( for some e * > O, then S(e) {2} for all sufficiently small e >- O.

Proof. The first conclusion follows directly from Theorem 1. The second follows
from the fact that S- {2} implies that /x(x)= 2 for all x S, so that the Lipschitz
property (10) holds as a consequence of differentiability of f at 2. This part of the
corollary then follows from Theorem 4.

A similar result also holds without assuming uniqueness in (1) if a strict convexity
property is assumed instead.

COROLLARY 2. Iff is strictly convex on some open set containing S and if 2 is the
solution of mingf(x), then S(e)= {2} ]:or all sufficiently small e >0.

Proof. The proof follows from Theorem 3 and the fact that, for e > 0, px + el(x) is
strictly convex and therefore assumes its minimum at not more than one point in S. [-1

Appendix.
LEMMA A. 1. There exists an a > 0 such that

p(x-z(x))=llx-(x)[[ for all x S.

Proof. Obviously the lemma holds trivially when x S or equivalently when
x =/z (x). Suppose now that x S\S and let e be a vector of ones in R n. Then

0 < IIx (x)ll Minimum {6I-e x 6e, AI >- b, plz <- }

Maximum {x(y -v)-0- + bwly -v -p+Arw O,

ey + ev 1, y, v, r, w -> 0}

(by linear programming duality)
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(A.1) Maximum {((px -)+ w(b -Ax)ly -v -p(+A7"w O,

ey + ev l, y, v, (, w >-O}.

((x)(px -ptt(x))+ w(x)(b-ax)

(since 0 ptz(x) and (y(x), v(x), (x), w(x)) is a
solution to the maximum problem)

<-(x)p(x-(x))

(since w(x)>--O, and b-Ax 0).

Thus ((x)> 0 for x SS, and in addition

(A.2) l(x)
p(x-(x))

for x S$2
I1-()11

But since (x) may be chosen as a component of a solution vertex of the linear program
(A. 1) and since the feasible region of (A. 1) is independent of x and has a finite number
of vertices, (x) for x SS may be bounded as follows

1
((x) -<--- := maximum {srl(y, v, sr, w) is a vertex of y v -p( +ATW O,

ey + ev l, y,v,r,w=>0}.

This bound on r(x) together with (A.2) establishes the lemma. 71
LEMMA A.2. If 2 S and x R then

[[t (x) 2[[ <- 211x 211.
Proof.

I1 (x)- xll <--11 (x)- xll + I[x

I1 xll + IIx 11 (since (x) is the projection of x on )

LZMMA A.3. Let the Lipschitz condition (10) hoM, let Y S B be a solution
mingn[(x) with the ball B B (Y, [or some g> O. Then for llx (x)ll 6 and
xSB(Y, 6/2)

(a) e(f($)-f(x))<p(x-(x)) [or x U(x) and e [0, a/K)

and

(b) e(f(2)-f(x))<=p(x-(x)) for e 6[0, a/K].

Proof. Let x S B(2, 6/2) and IIx -t(x)ll<--6; then

([()-(x)) _-< ([( (x))-f(x))

gll(x)-xll

<ll(x)-xll
<-p(x -(x))

(since by Lemma A.2 tz(x)eSfqB(2, 6))

(by (10) and

(for e [0, c/K) and x # t (x)),

(by Lemma A. 1).

This establishes part (a) of the lemma. Part (b) follows by changing the strict inequality
in the above string of inequalities to an inequality for the case of e [0, a/K]. 71
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