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Occam’s Razor
A Widely Held “Axiom” in Machine Learning & Data Mining

“Entities are not to be multiplied beyond necessity"

William of Ockham (English Philosopher & Theologian)
1287 Surrey - 1347 Munich

“Everything should be made as simple as possible, but not simpler”

Albert Einstein 
1879 Munich- 1955 Princeton

“Simplest is Best”



What is Data Mining?

Data mining is the process of analyzing data in order 
to extract useful knowledge such as:

Clustering of  unlabeled data 
Unsupervised learning

Classifying labeled data 
Supervised learning

Feature selection
Suppression of irrelevant or redundant features

Optimization plays a fundamental role in data mining via:

Support vector machines  or kernel methods
State-of-the-art tool for data mining and machine 

learning



What is a Support Vector Machine?

An optimally defined surface
Linear or nonlinear in the input space
Linear in a higher dimensional feature space
Feature space defined by a linear or nonlinear kernel

A ∈ Rmân, X ∈ Rnâk, and Y ∈ Rmâk

K(A,X)→ Y,



Principal Topics
Data clustering as a concave minimization problem

K-median clustering and feature reduction
Identify class of patients that benefit from chemotherapy

Linear and nonlinear support vector machines (SVMs)
Feature and kernel function reduction

Enhanced knowledge-based classification
LP with implication constraints

Generalized Newton method for nonlinear classification
Finite termination with or without stepsize

Drug discovery based on gene macroarray expression
Identify class of patients likely to respond to new drug

Multisurface proximal classification
Nonparallel classifiers via generalized eigenvalue problem



Clustering in Data Mining

General Objective

Given: A dataset of m points in n-dimensional real space

Problem: Extract hidden distinct properties by clustering
the dataset into k clusters



Concave Minimization Formulation
1-Norm Clustering: k-Median Algorithm

, and a numberA ∈ Rmân
Given: Set A of  m points in Rn represented by the matrix

k of desired clusters

C1, . . ., Ck ∈ RnFind: Cluster centers that minimize
the sum of 1-norm distances of each point: 
A1, A2, . . ., Am, to its closest cluster center.

kObjective Function: Sum of m minima of linear functions,
hence it is piecewise-linear concave

Difficulty: Minimizing a general piecewise-linear concave
function over a polyhedral set is NP-hard



Clustering via Finite Concave Minimization

Minimize the sum of 1-norm distances between each data
Aipoint C` :and the closest cluster center

àDi` ô A0
i à C` ô Di`,

C` ∈ Rn, Di` ∈ Rn

P
i= 1

m

min
`=1. . .,k

{e 0Di`}min

s.t.
i = 1, . . .,m, ` = 1, . . ., k,

ewhere   e is a column vector of ones.



K-Median Clustering Algorithm
Finite Termination at Local Solution
Based on a Bilinear Reformulation

Step 0 (Initialization): Pick k initial cluster centers

Step 1 (Cluster Assignment): Assign points to the cluster with
the nearest cluster center in 1-norm

Step 2 (Center Update) Recompute location of center for each
cluster as the cluster median (closest point to all cluster
points in 1-norm)

Step3 (Stopping Criterion) Stop if the cluster centers are
unchanged, else go to Step 1

Algorithm terminates in a finite number of steps, at a local 
solution



Breast Cancer Patient Survival Curves
With & Without Chemotherapy



Survival Curves for 3 Groups:
Good, Intermediate & Poor Groups

(Generated Using k-Median Clustering)



Survival Curves for Intermediate Group:
Split by Chemo & NoChemo



Feature Selection in k-Median Clustering

Find a reduced number of input space features such that 
clustering in the reduced space closely replicates the 
clustering in the full dimensional space



Basic Idea 

Based on nondifferentiable optimization theory, make a 
simple but fundamental modification in the second step 
of the k-median algorithm
In each cluster, find a point closest in the 1-norm to all 
points in that cluster and to the zero median of ALL data 
points

Proposed approach can lead to a feature reduction as 
high as 69%, with clustering comparable to within 4% 
to that with the original set of features   

Based on increasing weight given to the zero data
median, more features are deleted from problem



3-Class Wine Dataset
178 Points in 13-dimensional Space
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Support Vector Machines

Linear & nonlinear classifiers using kernel functions



Support Vector Machines
Maximize the Margin between Bounding Planes

x0w = í + 1

x0w = í à 1

A+

A-

||w||0
2

w



Support Vector Machine
Algebra of 2-Category Linearly Separable Case

Given m points in n dimensional space
Represented by an m-by-n matrix A
Membership of each      in class +1 or –1 specified by:Ai

An m-by-m diagonal matrix D with +1 & -1 entries

D(Aw à eí)=e,
More succinctly:

where e is a vector of ones.

x0w = íæ 1 :Separate by two bounding planes,
Aiw=í + 1, for Dii = + 1,

Aiw5í à 1, for Dii = à 1.



Feature-Selecting 1-Norm Linear SVM 

1-norm SVM:

s. t.

÷e 0y + kwk 1

D(Aw à eí) + y > e

y> 0,w, í
min

,
where Dii=± 1 are elements of the diagonal matrix D 
denoting the class of each point Ai of  the dataset matrix A

Very effective in feature suppression
For example,  5 out of 30 cytological features are selected 

by the 1-norm SVM for breast cancer diagnosis  with over 
97% correctness.

In contrast, 2-norm and     -norm SVMs suppress no features.∞



1- Norm Nonlinear SVM

Linear SVM: (Linear separating surface: x 0w = í )

(LP)
÷e 0y + kw k 1

y > 0, w, í
D (Aw à eí) + y > e

min
s.t.

y>0, u, í

K (A , A 0)Replace AA 0 by a nonlinear kernel :
÷e 0y + kuk 1

D (K (A, A 0)Du à eí) + y>e

min
s.t.

in the “dual space”, gives:

÷e 0y + kuk 1
y>0, u, í

D (AA 0Du à eí) + y>e

min
s.t.

Change of variable w = A0Du and maximizing the margin



2- Norm Nonlinear SVM

y>0, u, í 2
÷
íí yíí 2

2
+

2
1ku , ík 2

2

D (K (A, A 0)Du à eí) + y>e

min
s.t.

min
2
÷
íí(eàD(KA,A0)Duà eí))+

íí2

2
+

2
1
ííu, ííí2

2

Equivalently:

u, í



The Nonlinear Classifier

K(A,A 0) : Rmân âRnâm7à→Rmâm

K (x 0, A 0)Du = í

The nonlinear classifier:

K is a nonlinear kernel, e.g.:
Gaussian (Radial Basis) Kernel :

εàökAiàAjk22, i, j=1, . . .,mK(A,A0)ij =

Can generate highly nonlinear classifiers

The ij-entry of K(A,A0) represents “similarity” 
between the  data points Ai Ajand (Nearest Neighbor)



Data Reduction in Data Mining

RSVM:Reduced Support Vector Machines



Difficulties with Nonlinear SVM 
for Large Problems

The nonlinear kernel K(A,A0) ∈ Rmâm is fully dense

Computational complexity depends on m
Complexity of nonlinear SSVMø O((m + 1)3)

Long CPU time to compute m × m elements of 
nonlinear kernel K(A,A0)

Runs out of memory while storing m × m elements of  
K(A,A0)

Separating surface depends on almost entire dataset
Need to store the entire dataset after solving the problem



Overcoming Computational & Storage Difficulties
Use a “Thin” Rectangular Kernel

Choose a small random sample A ∈ Rmân of A
The small random sample A is a representative sample
of the entire dataset

ATypically is 1% to 10% of the rows of A

Replace K(A,A 0) ∈ RmâmK(A, A 0) by with 
D ú Dcorresponding in nonlinear SSVM

the rectangular kernel
Only need to compute and storem â m numbers for 

Computational complexity reduces to O((m+1)3)

AThe nonlinear separator only depends on 
Using K(A,A0) gives lousy results!



Reduced Support Vector Machine Algorithm
Nonlinear Separating Surface: K (x 0, Aö 0)Dö uö = í

(i) Choose a random subset matrix ofA ∈ Rmân

entire data matrix A ∈ Rmân

(ii) Solve the following problem by a generalized Newton
method with corresponding D ú D :

2
÷k(e àD(K(A,A0)Dö uö à eí))+k22 + 2

1kuö, ík2
2

min
(u,í) ∈Rm+1

K (x 0, Aö 0)Dö uö = í

(iii) The separating surface is defined by the optimal
(u , í )solution in step (ii):



A Nonlinear Kernel Application
Checkerboard Training Set: 1000 Points in

Separate 486 Asterisks from 514 Dots
R2



Conventional SVM Result on Checkerboard 
Using 50 Randomly Selected Points Out of 1000

K(A,A0) ∈ R50â50



RSVM Result on Checkerboard 
Using SAME 50 Random Points Out of 1000

K(A,A0) ∈ R1000â50



Knowledge-Based Classification

Use prior knowledge to improve classifier correctness



Conventional Data-Based SVM



Knowledge-Based SVM 
via Polyhedral Knowledge Sets



Incoporating Knowledge Sets 
Into an SVM Classifier

Suppose that the knowledge set:                         
belongs to the class A+. Hence it must lie in the 
halfspace :              

è
x
⏐⏐Bx 6 b

é
è
x|x0w>í + 1

é
Bx6b ⇒ x 0w>í + 1

We therefore have the implication:

This implication is equivalent to a set  of 
constraints that can be imposed on the classification 
problem.



Knowledge Set Equivalence Theorem

Bx6 b =⇒ x0w>í + 1,

or, for a fixed (w, í) :

Bx6b, x0w < í + 1, has no solution x

∃u : B0u + w = 0, b 0u + í + 160, u>0

m {x
⎪⎪⎪⎪Bx 6 b}6=∅



Knowledge-Based SVM Classification

Adding one set of constraints for each knowledge set 
to the 1-norm SVM  LP, we have:



Numerical Testing
DNA Promoter Recognition Dataset
Promoter: Short DNA sequence that 

precedes a gene sequence.
A promoter consists of 57 consecutive 

DNA nucleotides belonging to {A,G,C,T} .
Important to distinguish between 

promoters and nonpromoters
This distinction identifies starting locations 

of genes in long uncharacterized DNA
sequences.



The Promoter Recognition Dataset
Numerical Representation

Input space mapped from 57-dimensional nominal space to 
a real valued 57 x 4=228 dimensional space.  

57 nominal values

57 x 4 =228
binary values



Promoter Recognition Dataset Prior Knowledge Rules 
as Implication Constraints

Prior knowledge consist of the following 64 rules:

R1
or
R2
or
R3
or
R4

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦
V

R5
or
R6
or
R7
or
R8

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦
V

R9
or
R10
or
R11
or
R12

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=⇒PROMOTER



Promoter Recognition Dataset
Sample Rules

R4 : (pà36 = T) ∧ (pà35 = T) ∧ (pà34 = G)

∧ (pà33 = A) ∧ (pà32 = C),

R8 : (pà12 = T) ∧ (pà11 = A) ∧ (pà07 = T),

R10 : (pà45 = A) ∧ (pà44 = A) ∧ (pà41 = A).

A sample rule is:

R4 ∧ R8 ∧ R10 =⇒ PROMOTER



The Promoter Recognition Dataset
Comparative Algorithms

KBANN Knowledge-based artificial neural network 
[Shavlik et al] 

BP: Standard back propagation for neural networks 
[Rumelhart et al]

O’Neill’s Method Empirical method suggested by 
biologist O’Neill [O’Neill]

NN: Nearest neighbor with k=3 [Cost et al]
ID3: Quinlan’s decision tree builder[Quinlan]
SVM1: Standard 1-norm SVM [Bradley et al]



The Promoter Recognition Dataset
Comparative Test Results

with Linear KSVM



Finite Newton Classifier

Newton for SVM as an unconstrained optimization problem



Fast Newton Algorithm for SVM Classification

Standard quadratic programming  (QP) formulation of SVM:

Once, but not twice differentiable. However Generlized Hessian exists!



Generalized Newton Algorithm

f(z) =
2
÷
íí(Cz à h)+

ww2
+

2
1
íízíí2

zi+1 = zi à ∂2f(zi)à1∇f(zi)

Newton algorithm terminates in a finite number of steps

Termination at global minimum 
Error rate decreases linearly
Can generate complex nonlinear classifiers

By using nonlinear kernels: K(x,y)

With an Armijo stepsize (unnecessary computationally)

∂2f(z) = ÷C0diag(Cz à h)ãC + I

∇f(z) = ÷C0(Cz à h)+ + z

where (Czà h)ã = 0 if (Czà h) ô 0, else (Czà h)ã = 1.



Nonlinear Spiral Dataset
94 Red Dots & 94 White Dots



SVM Application to Drug Discovery

Drug discovery based on gene expression



Breast Cancer Drug Discovery Based on Gene Expression
Joint with ExonHit - Paris (Curie Dataset)

35 patients treated by a drug cocktail 
9 partial responders; 26 nonresponders
25 gene expressions out of  692 selected by ExonHit
1-Norm SVM and greedy combinatorial approach selected 5 

genes out of 25
Most patients had 3 distinct replicate measurements
Distinguishing aspects of this classification approach:

Separate convex hulls of replicates
Test on mean of replicates



Separation of Convex Hulls of Replicates

10 Synthetic Nonresponders: 26  Replicates (Points) 
5 Synthetic Partial Responders: 14  Replicates (Points)



Linear Classifier in 3-Gene Space
35 Patients with 93 Replicates

26 Nonresponders & 9 Partial Responders

In 5-gene space, leave-one-out correctness was 33 out of 
35, or 94.2%



Generalized Eigenvalue Classification 

Multisurface proximal classification via generalized 
eigenvalues



Multisurface Proximal Classification

Two distinguishing features:
Replace halfspaces containing datasets A and B by 

planes proximal to A and B
Allow nonparallel proximal planes

First proximal plane: x0 w1-γ1=0
As close as possible to dataset A
As far as possible from dataset B

Second proximal plane: x0 w2-γ2=0
As close as possible to dataset B
As far as possible from dataset A



Classical Exclusive “Or” (XOR) Example

X

X

O

O

−2x −2x =−1
   1    2

x −x =0
 1   2

x +x −1=0
 1   2



Multisurface Proximal Classifier 
As a Generalized Eigenvalue Problem

Simplifying and adding regularization terms gives:

Define:



Generalized Eigenvalue Problem

The eigenvectors z1 corresponding to the smallest eigenvalue
λ1 and  zn+1 corresponding to the largest eigenvalue λn+1
determine the two nonparallel proximal planes. eig(G,H)



A Simple Example 

Linear  Classifier

80% Correctness

Generalized Eigenvalue
Classifier

100% Correctness

Also applied successfully to real world test problems



Conclusion

Variety of  optimization-based approaches to data mining
Feature selection in both clustering & classification
Enhanced knowledge-based classification
Finite Newton method for nonlinear classification
Drug discovery based on gene macroarrays
Proximal classifaction via generalized eigenvalues

Optimization is a powerful and effective tool for data 
mining, especially for implementing Occam’s Razor

“Simplest is best”
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