Knowledge-Based Breast Cancer Prognosis

Computation and Informatics in Biology and Medicine Training Program Annual Retreat
October 13, 2006

Olvi Mangasarian
UW Madison & UCSD La Jolla
Edward Wild
UW Madison
Objectives

- **Primary objective:** Incorporate prior knowledge over *completely arbitrary sets* into:
 - function approximation, and
 - classification
 - without transforming (kernelizing) the knowledge

- **Secondary objective:** Achieve transparency of the prior knowledge for practical applications

- Use prior knowledge to improve accuracy on two difficult breast cancer prognosis problems
Classification and Function Approximation

- Given a set of m points in n-dimensional real space R^n with corresponding labels
 - Labels in $\{+1, -1\}$ for classification problems
 - Labels in R for approximation problems
- Points are represented by rows of a matrix $A \in R^{m \times n}$
- Corresponding labels or function values are given by a vector y
 - Classification: $y \in \{+1, -1\}^m$
 - Approximation: $y \in R^m$
- Find a function $f(A_i) = y_i$ based on the given data points A_i
 - $f : R^n \rightarrow \{+1, -1\}$ for classification
 - $f : R^n \rightarrow R$ for approximation
Graphical Example *with no* Prior Knowledge Incorporated

\[K(x', B')u = \gamma \]
Classification and Function Approximation

- **Problem**: utilizing only given data may result in a poor classifier or approximation
 - Points may be noisy
 - Sampling may be costly
- **Solution**: use prior knowledge to improve the classifier or approximation
Graphical Example with Prior Knowledge Incorporated

\[h_1(x) \leq 0 \]

\[g(x) \leq 0 \]

\[K(x', B')u = \gamma \]

\[h_2(x) \leq 0 \]

Similar approach for approximation
Kernel Machines

- Approximate f by a nonlinear kernel function K using parameters $u \in \mathbb{R}^k$ and γ in \mathbb{R}
- A kernel function is a nonlinear generalization of scalar product
- $f(x) \approx K(x', B')u - \gamma$, $x \in \mathbb{R}^n$, $K: \mathbb{R}^n \times \mathbb{R}^{n \times k} \to \mathbb{R}^k$
- $B \in \mathbb{R}^{k \times n}$ is a basis matrix
 - Usually, $B = A \in \mathbb{R}^{m \times n}$ = Input data matrix
 - In Reduced Support Vector Machines, B is a small subset of the rows of A
 - B may be any matrix with n columns
Kernel Machines

- Introduce *slack variable* s to measure error in classification or approximation

- Error s in kernel approximation of given data:
 - $-s \leq K(A, B')u - \gamma e - y \leq s$, e is a vector of ones in \mathbb{R}^m
 - Function approximation: $f(x) \approx K(x', B')u - \gamma$

- Error s in kernel classification of given data
 - $K(A^+, B')u - \gamma e + s^+ \geq e, s^+ \geq 0$
 - $K(A^-, B')u - \gamma e - s^- \leq -e, s^- \geq 0$

- More succinctly, let: $D = \text{diag}(y)$, the $m \times m$ matrix with diagonal y of ± 1’s, then:
 - $D(K(A, B')u - \gamma e) + s \geq e, s \geq 0$
 - Classifier: $f(x) \approx \text{sign}(K(x', B')u - \gamma)$
Kernel Machines in Approximation OR Classification

\[
\begin{align*}
\min_{(u, \gamma, s, a)} & \quad e' a + \nu e' s \\
\text{s.t.} & \quad -a \leq u \leq a \\
& \quad -s \leq K(A, B')u - \gamma e - y \leq s \\
& \quad \text{OR} \\
& \quad D(K(A, B')u - \gamma e) - s \geq e, \ s \geq 0
\end{align*}
\]

Positive parameter \(\nu \) controls trade off between

\[\text{solution complexity: } e'a = \|u\|_1 \text{ at solution}\]

\[\text{data fitting: } e's = \|s\|_1 \text{ at solution}\]
Nonlinear Prior Knowledge in Function Approximation

- Start with arbitrary \textit{nonlinear} knowledge implication
- \(g, h \) are arbitrary functions on \(\Gamma \)
- \(g: \Gamma \rightarrow \mathbb{R}^k, \ h: \Gamma \rightarrow \mathbb{R} \)
- \(g(x) \leq 0 \Rightarrow K(x', B')u - \gamma \geq h(x), \ \forall x \in \Gamma \subset \mathbb{R}^n \)
- \(\exists v \geq 0: \nu'g(x) + K(x', B')u - \gamma - h(x) \geq 0 \ \forall x \in \Gamma \)
- Linear in \(\nu, u, \gamma \)
Theorem of the Alternative for Convex Functions

Assume that $g(x)$, $K(x', B')u - \gamma$, $-h(x)$ are convex functions of x, that Γ is convex and $\exists x \in \Gamma : g(x) < 0$. Then either:

I. $g(x) \leq 0$, $K(x', B')u - \gamma - h(x) < 0$ has a solution $x \in \Gamma$, or

II. $\exists v \in \mathbb{R}^k$, $v \geq 0$: $K(x', B')u - \gamma - h(x) + v'g(x) \geq 0 \ \forall x \in \Gamma$

But never both.

If we can find $v \geq 0$: $K(x', B')u - \gamma - h(x) + v'g(x) \geq 0 \ \forall x \in \Gamma$, then by above theorem

$g(x) \leq 0$, $K(x', B')u - \gamma - h(x) < 0$ has no solution $x \in \Gamma$ or equivalently:

$g(x) \leq 0 \Rightarrow K(x', B')u - \gamma \geq h(x), \ \forall x \in \Gamma$
Incorporating Prior Knowledge

$$\min_{(u, \gamma, s, a, v)} e' a + v e' s$$

s.t.
$$-s \leq K(A, B')u - \gamma e - y \leq s,$$
$$-a \leq u \leq a,$$
$$K(x', B')u - \gamma - h(x) + v' g(x) \geq 0, x \in \Gamma$$
$$v \geq 0.$$

Discretize to obtain a finite linear program

$$\min_{(u, \gamma, s, a, v, z^i, \ldots, z^k)} e' a + v e' s + \sigma \sum_{i=1}^{k} z_i$$

s.t.
$$-s \leq K(A, B')u - \gamma e - y \leq s,$$
$$-a \leq u \leq a,$$
$$K(x^i, B')u - \gamma - h(x^i) + v' g(x^i) + z_i \geq 0,$$
$$v \geq 0, z_i \geq 0, i = 1, \ldots, k.$$

Add term in objective to drive prior knowledge error to zero

Slacks z_i allow knowledge to be satisfied inexactly at the point x^i

$$g(x^i) \leq 0 \Rightarrow K(x^i, B')u - \gamma \geq h(x^i), i = 1, \ldots, k$$
Incorporating Prior Knowledge in Classification
(Very Similar)

- Implication for positive region
 \[g(x) \leq 0 \Rightarrow K(x', B')u - \gamma \geq \alpha, \quad \forall x \in \Gamma \subset \mathbb{R}^n \]

- \[\exists \nu \geq 0, K(x', B')u - \gamma - \alpha + \nu'g(x) \geq 0, \quad \forall x \in \Gamma \]

- Similar implication for negative regions
- Add discretized constraints to linear program
Incorporating Prior Knowledge in Classification

\[\min_{(u, \gamma, s, a, v, p, z_1, \ldots, z_k, q_1, \ldots, q_t)} e'a + \nu e's + \sigma(\sum_{i=1}^{k} z_i + \sum_{j=1}^{t} q_j) \]

\[\text{s.t. } D(K(A, B')u - \gamma e) + s \geq e, \]
\[-a \leq u \leq a, \]
\[s \geq 0, \]
\[K(x^i', B')u - \gamma - \alpha + v'g(x^i) + z_i \geq 0, \]
\[v \geq 0, z_i \geq 0, i = 1, \ldots, k, \]
\[-K(x^j', B')u + \gamma - \alpha + p'h(x^j) + q_j \geq 0, \]
\[p \geq 0, q_j \geq 0, j = 1, \ldots, t. \]
Checkerboard Dataset: Black and White Points in R^2

- Classifier based on the 16 points at the center of each square and no prior knowledge.
- Prior knowledge given at 100 points in the two left-most squares of the bottom row.
- Perfect classifier based on the same 16 points and the prior knowledge.
Predicting Lymph Node Metastasis as a Function of Tumor Size

- Number of metastasized lymph nodes is an important prognostic indicator for breast cancer recurrence
 - Determined by surgery *in addition* to the removal of the tumor
 - Optional procedure especially if tumor size is small
- Wisconsin Prognostic Breast Cancer (WPBC) data
 - Lymph node metastasis and tumor size for 194 patients
- Task: predict the number of metastasized lymph nodes given tumor size alone
Predicting Lymph Node Metastasis

- Split data into two portions
 - Past data: 20% used to find prior knowledge
 - Present data: 80% used to evaluate performance

- Simulates acquiring prior knowledge from an expert
Prior Knowledge for Lymph Node Metastasis as a Function of Tumor Size

- Generate prior knowledge by fitting past data:
 - \(h(x) := K(x', B')u - \gamma \)
 - \(B \) is the matrix of the past data points

- Use density estimation to decide where to enforce knowledge
 - \(p(x) \) is the empirical density of the past data

- Prior knowledge utilized on approximating function \(f(x) \):
 - Number of metastasized lymph nodes is greater than the predicted value on past data, with tolerance of 1%
 - \(p(x) \geq 0.1 \Rightarrow f(x) \geq h(x) - 0.01 \)
Predicting Lymph Node Metastasis: Results

<table>
<thead>
<tr>
<th>Approximation</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior knowledge $h(x)$ based on past data 20%</td>
<td>6.12 RMSE</td>
</tr>
<tr>
<td>$f(x)$ without knowledge based on present data 80%</td>
<td>5.92 LOO</td>
</tr>
<tr>
<td>$f(x)$ with knowledge based on present data 80%</td>
<td>5.04 LOO</td>
</tr>
</tbody>
</table>

- **RMSE**: root-mean-squared-error
- **LOO**: leave-one-out error
- **Improvement due to knowledge**: 14.9%
Predicting Breast Cancer Recurrence Within 24 Months

- Wisconsin Prognostic Breast Cancer (WPBC) dataset
 - 155 patients monitored for recurrence within 24 months
 - 30 cytological features
 - 2 histological features: number of metastasized lymph nodes and tumor size

- Predict whether or not a patient remains cancer free after 24 months
- 82% of patients remain disease free
- 86% accuracy (Bennett, 1992) best previously attained
- Prior knowledge allows us to incorporate additional information to improve accuracy
Generating WPBC Prior Knowledge

- Gray regions indicate areas where $g(x) \leq 0$
- Simulate oncological surgeon’s advice about recurrence
- Knowledge imposed at dataset points inside given regions

![Graph showing tumor size in centimeters vs. number of metastasized lymph nodes with symbols indicating recurrence and cancer-free status.]

- Recur
- Cancer free
WPBC Results

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Misclassification Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Knowledge</td>
<td>18.1%</td>
</tr>
<tr>
<td>With Knowledge</td>
<td>9.0%</td>
</tr>
</tbody>
</table>

49.7 % improvement due to knowledge
35.7 % improvement over best previous predictor
Conclusion

- General nonlinear prior knowledge incorporated into kernel classification and approximation
 - Implemented as linear inequalities in a linear programming problem
 - Knowledge appears transparently

- Demonstrated effectiveness of nonlinear prior knowledge on two real world problems from breast cancer prognosis

Future work
- Prior knowledge with more general implications
- User-friendly interface for knowledge specification

More information
- http://www.cs.wisc.edu/~olvi/
- http://www.cs.wisc.edu/~wildt/