Designing Memory Consistency Models for

Shared-Memory Multiprocessors

Sarita V. Adve

Computer Sciences Department

University of Wisconsin-Madison

The Big Picture

Assumptions
Parallel processing important for future

Shared-memory is desirable model

Challenge
To build shared-memory systems that
give high performance

are easy to program

Memory Consistency Model: Definition

Memory Consistency Model

Order in which memory operations will
appear 10 execute

= What value can a read return?

Affects ease-of-programming and performance

The Uniprocessor Model

Program text defines total order = program order

Uniprocessor Model

Memory operations appear to execute
one-at-a-time in program order

= Read returns value of last write

BUT uniprocessor hardware

overlap, reorder operations
(e.g., write buffers)

Model maintained as long as

maintain control and data dependences

— Easy to use + high performance

Implicit Multiprocessor Model

Sequential Consistency (SC) [Lamport 79]
Each process executes in program order
All operations in some sequential order

(i.e., atomic, one-at-a-time)

Programmers’ view (no buffers or caches)
PL e
—

;

MEMORY

SC: Implications

Processor -
Read, Y Write
Buffer 000
Cache |y X ™
J(! Invalidate, X
\\ /,/”Invalidate, X
\ . NETWORK
\ !
\YVrite, X L
S | Invalidate, X~
N \
N
\A \\ K //,
N \H,’
X [ONONE]

In practice [Scheurich,Dubois87]

Execute in program order and atomically

But optimizations becoming more important

Alternative?

Many alternative models
Allow hardware optimizations (hardware-centric)
BUT 3P criteria
— Programmability
— Portabllity
+/— Performance

No common framework

This work gives a programmer-centric framework
Enhances 3Ps of many current models
+ Programmability
+ Portability
+ Performance

Exposes design space for future

Thesis Contributions

(I) Programmer-centric view of problem

[ISCA90, TPDS93]
Model = Contract
System gives sequential consistency

If programmer gives information

(II) Four programmer-centric models

[ISCA90, TPDS93, JPDC92]

Enhance 3Ps of many current models

(III) The design space of memory models
Formalize and simplify design process
Expose unexploited potential, new models

Characterize the design space

(IV) Debugging with relaxed models [ISCA91]

Demonstrate use of SC techniques

Outline

Background: Hardware-Centric Models
Programmer-Centric Approach and Four Models
The Design Space

Conclusions

Hardware-Centric Examples

Weak Ordering (WO) [Dubois et al. 86]

Motivation
Ordering important only at synchronization
Can reorder data between synchronization

Distinguish synchronization from data

Weak Ordering (WO): Definition

Exposes non-atomicity of memory operations

Op performs with respect to processor P; when
Op = Write: P; can read value of Op

Op = Read: P; cannot change value of Op

Op globally performs when
Op = Write: Op performed w.r.t all

Op = Read: Op and write whose value Op
returns performed w.r.t all

Definition (“previous” is by program order)

e Synchronization is SC

e Before issuing synchronization, globally perform
previous data

e Before issuing data, globally perform previous syn-
chronization

Hardware-Centric Examples (Cont.)

Total Store Ordering (TSO) [SUN 91]
Reads can pass writes +

Writes partially non-atomic (can read early from
own write buffer)

Processor consistency (PC) [Gharachorloo 90]
Optimizations of TSO +

Writes fully non-atomic

Release consistency (RCpc) [Gharachorloo 90]
Optimizations of WO +

Can reorder data separated by some synchroni-
zation +

Synchronization is PC

Hardware-Centric Models: Assessment

Sequential Consistency

—— T

7?77 Weak Ordering ‘Total Store Ordering
/ Processor Consistency ‘7

Rel t (R
elease Consistency (RCsc) / Partial Store Ordering

&////

Release ConS|stency (RCpc)

stricter hardware

l

weaker hardware

+ Better performance than SC [GAG91,92, ZuB92]

BUT,

— Programmability (Lost intuitive interface of SC)
— Portability (Many different models)

+/— Performance (Can do better)

Outline

Background: Hardware-Centric Models

Programmer-Centric Approach and Four Models

The Programmer-Centric Approach
One Model In Detail
Overview of Three Models

The Design Space

Conclusions

A Programmer-Centric Approach

Motivation

Many models give informal software rules
assuming informal notion of correctness

Why not
Formalize one notion of correctness (base model)

Specify other models as software rules that give
appearance of base model

+ Programmability (if base model simple)
+ Portability (programmers see one model)

+ Performance (no unnecessary constraints)

Which base model?

Sequential Consistency Normal Form (SCNF)

Contribution |

Specify memory model as a contract
System gives sequential consistency

IF programmer provides some information

(Sequential Consistency Normal Form)

Four SCNF Models

Contribution Il

Four SCNF models (exploit increasing information)
Data-race-free-0 [Adve & Hill 90]
Data-race-free-1 [Adve & Hill 92]

PlLpcl

} (based on joint work [GAG92])
PLpc2

Enhance 3Ps of many current models

Outline

Background: Hardware-Centric Models

Programmer-Centric Approach and Four Models

The Programmer-Centric Approach

One Model In Detail
Motivation
Definition
Programming With Data-Race-Free-0
Implementing Data-Race-Free-0
Comparison With Weak Ordering

Overview of Three Models

The Design Space

Conclusions

Clarification: Static vs. Dynamic Issues

Programmer High-level language program
Compile-time system L

Low-level language program

Runtime system

Input2 © © © Inputic © ©

Execution E1.1 E12 El1; E2.1E22 Ei.1Ei.2

<>

Runtime system

Programmer

Compile-time system

Models specify constraints on execution
Models require distinguishing dynamic operations

Programmer must make distinctions in static program

Data-Race-Free-0: Motivation

Different operations have different semantics

Pl P2
A = 100 while (valid != 1) {3}
valid = 1; .. = A;

valid = Synchronization; A, B = Data
Can reorder data operations
Distinguish data and synchronization

Need to
- Characterize data / synchronization

- Prove characterization allows optimizations
without violating SC

Data-Race-Free-0: Definitions

(Consider SC executions = global total order)

Two operations conflict if
access same location
at least one is a write
Two conflicting operations race if

from different processors,
execute one after another (consecutively)

P1 P2
Write, A, 100
Write, B, 200 Read, valid, O

Write, valid, 1
Read, valid, 1

Read, B, _
Read, a, _

Races usually “synchronization,” others “data”

Can optimize operations that never race

Data-Race-Free-0: Definition

Information required: This operation never races
(in any SC execution)

1. Write program assuming sequential consistency
2. For every memory operation specified in the program do:

START

don’t know or

yes don’t care

distinguish as
data

distinguis as
synchronization

Data-Race-Free-0 Program

All races distinguished as synchronization
(in any SC execution)

Data-Race-Free-0 Model

Guarantees SC to data-race-free-0 programs

Programming With Data-Race-Free-0

SC interface
Knowledge of races needed even with SC

“Don’t-know’ option helps

P1 P2
A=..; data while (valid!=1) {;} synch
B=..; data ... = B; data
valid =1; synch ... = A data

To distinguish at high-level, can use annotations

P1 P2
data = ON synchronization = ON
A= while (valid !=1) {;}
B=..; data = ON
synchronization = ON ... = A
valid = 1; ... = B;

For hardware, can use different reads/writes

DRFO: Implementations

Proved that we can

Reorder, overlap data between consecutive
synchronization

Make data writes non-atomic

Pl P2
A=..; data while (valid !=1){;} synch
B=..; data ... = B; data
valid =1; synch oo = A} data

— Weak Ordering obeys DRFO

DRFO also allows more aggressive hardware
Can postpone writes of A, B to

Read,valid,1 ortoreads of A,B
[Adve&Hill 90, 93]

Data-Race-Free-0 vs. Weak Ordering

Programmability
DRFO programmer can assume SC

WO requires reasoning with performs with respect
to, out-of-order execution

Portability
DRFO programs correct on more implementations

(thesis gives four other than WO)

Performance
DRFO allows higher performance implementations
Caveats
Asynchronous programs

Theoretically possible to distinguish
operations better than DRFO

Other Models: Definitions

1. Write program assuming sequential consistency

2. For every memory operation specified in the program do:

START

don’t know or
distinguish as don’t care

data

distinguish as
synchronization

don’t know or
never don’t care
orders -

data?

distinguish as Y€S
unpairable

no

distinguish as
pairable

don’t know or

distinguish as don’t care

loop

distinguish as
non-loop

1
|
|
|
|
|
|
|
|
|
|
!

PLpc2 further distinguishes loop and data as atomic/non-atomic

Four SCNF Models: Summary

PLpc2

PLpcl
— DATA-RACE-FREE-1 —

— DATA-RACE-FREE-0 —

Weak Ordering
Lazy Release Consistency
Specifications from Thesis

Release Consistency (RCsc)
Specifications from Thesis

Total Store Ordering
Partial Store Ordering
Alpha
Specification from Thesis

Processor Consistency
Release Consistency (RCpc)
IBM 370

Specification from Thesis

Programmability, portability, performance for all

Four SCNF Models: Summary

PLpc2

PlLpcl
— DATA-RACE-FREE-1 —

— DATA-RACE-FREE-0 —

Weak Ordering
Lazy Release Consistency
Specifications from Thesis

Release Consistency (RCsc)
Specifications from Thesis

Total Store Ordering
Partial Store Ordering
Alpha
Specification from Thesis

Processor Consistency
Release Consistency (RCpc)
IBM 370

Specification from Thesis

Programmability, portability, performance for all

But can we do better?

Outline

Background: Hardware-Centric Models
Programmer-Centric Approach and Four Models
The Design Space

Conclusions

The Design Space: Motivation

P P2 P3

if (Pred) { i (not Pred) { "TIe ((;21':;)) é{&_f‘
A =100; A = 300; ... = B;
B = 200; B = 400; . = A;
Fl=1, F2 =1,

} }

Intuition: Reads on F1, F2 can be in parallel

But not allowed by previous models

Are parallel reads of F1, F2 really safe?
How to design model to allow this optimization?

Better goal

When is any optimization safe?

How to design model to allow any optimization?

The Design Space: The Key

Memory Model

Obtain information from programmer
to allow optimizations without violating SC

Previous models
Obtain information for some optimizations

Mostly ad hoc, complex analysis

Can we formalize and simplify the design process?

Key: Mapping between optimizations and information

The Design Space

Contribution Il

Formalize and simplify design process
What optimizations possible?

What information will make optimization safe?

Expose unexploited potential in design space

New memory models

Characterize the design space

Outline

Background: Hardware-Centric Models

Programmer-Centric Approach and Four Models

The Design Space
Analysis for Mapping
Mapping between Optimizations and Information
Application of mapping: a new memory model

Characterization of design space

Conclusions

Analysis for Designing Memory Models

Program
P1 P2 P3
. . while ((F1 !1=1) &&
if (Pred if (not Pred
(Predy - HinotPred) (F21=1)) ()
A =100; A = 300; ... = B;
B = 200; B = 400; .. = A
Fl=1; F2 =1;
} }
Execution
P2 P3
Write, A, 300 Read, F1, 0
Write, B, 400 Read, F2, 1
Write, F2, 1 Read, B, _

Read, A,

Analysis for Designing Memory Models (Cont.)

P2 P3

Write, A, 300 Read, F1, 0

Write, B, 400 Read, F2, 1

Write, F2, 1 Read, B, _
Read, A,

Ordering Path

Path between conflicting operations
using program and conflict orders

(Conflict Order from X to Y if
X, Y conflict and X executes before Y)

For SC execution

If there is an ordering path from X to Y,
then execute X before Y

— Execute ordering paths safely
(Others have derived different forms)

Analysis for Designing Memory Models (Cont.)

P2 P3

Write, A, 300 Read, F1, 0

Write, B, 400 Read, F2, 1

Write, F2, 1 Read, B, _
Read, A, _

Easy way to get SC

Enforce program order and atomicity on ordering
paths

Key Observation

Not all paths need be executed safely

Necessary paths = critical pathsJr

TTerm “critical” inspired by [Shasha&Snir88]

Example Non-Critical Paths

P2 P3

Write, a, 300 Read, F1, 0

Write, B, 400 Read, F2, 1

Write, F2, 1 Read, B, _
Read, A, _

Between one pair of conflicting operations,
only one path is critical

— Operations on A, B can be in parallel

Other observations imply other non-critical paths
Unessential operations

Self-ordered operations

Mapping Between Optimizations and Information

To get SC,

system must execute critical paths safely

Can optimize non-critical paths

if information indicates non-critical cases

Useful optimization
All critical paths safe (slow)

Some non-critical paths unsafe (fast)

Information to allow optimization

|dentify cases where optimization will not
make critical paths unsafe

Optimizations and Information: A Problem

BUT
Programmer has info only from SC executions

Information from SC executions must make
non-SC hardware appear SC
(Key Complexity in Analysis)

Solution: Control Condition

Pre-condition on hardware that ensures SC
information sufficient

Commonly obeyed, but hard to prove

Can now analyze only SC executions

Application of Mapping

P1 P2

if (Pred) { if (not Pred) {
A =100; A = 300;
B = 200; B = 400;
Fl=1; F2 =1;

P3

while ((F1 != 1) &&
(F21=1)) {3

Are parallel reads of F1, F2 really safe?

YES

How to design model to allow this optimization?

One example next

A New Memory Model

Provide special signal, await constructs
Signal writes location
e.g., F1=1
Await loops on one or more locations

e.g., while (F1 =1 && F2 !=1) {;}

Allowed use in any phase of an SC execution
Only one signal per location per await

Signal,await location not used by others

Simple analysis reveals

Two await reads of a processor never on
critical path

— Can do await reads in parallel

Analysis for Two Await Reads R1, R2

Two concepts

Unessentials: Can ignore unsuccessful iterations of
synchronization loops

e.g., while (F1 !=1 && F2!=1){;}

Self-ordered loops: Can ignore paths from some
writes to successful read of synchronization loop

e.g., path from signal to successful await
always safe since successful await always
after signal

When will R1 > R2 be on a critical path?
Case 1: R2 is the last operation on the path
Path begins with signal write for R2
But R2 is self-ordered w.r.t. its signal write
Case 2: R2 is not the last operation on the path
Then next op must be conflicting write

But then R2 is unessential

Implies two await reads never on critical path

A New Memory Model (Cont.)

New memory model
System appears SC if

Program uses constructs only as allowed

New memory model allows

Parallel await reads
Parallel signal writes

Non-atomic signal writes

Many other optimizations in thesis

Short and intuitive reasoning

Characterization of Design Space

Key characteristic of model
Executes certain ordering paths safely

Called Valid Paths

Generic Memory Model
If critical paths (of SC executions) are valid paths

Then system appears SC

Performance potential of model

How well valid paths capture critical paths?

Programmability and portability of model

How easy to convert critical paths to valid paths?

Implementing Generic Model

Valid Path Requirement
Valid path from X to Y = all see X before Y
Enforce program order arcs on valid paths

Make writes on conflict order arcs on valid
paths atomic

Control Requirement (allows SC-only info)
Write must wait until read that “controls” it done

Block on write until previous operations
resolved

Writes must terminate

Loop writes must be coherent

The Design Space: Summary

Formalized and simplified design process

Mapping between optimizations and information

New memory models with more optimizations

More reordering, more pipelining,
more non-atomic updates, fewer acks

A characterization of the design space

Memory model = valid paths

Not yet done
How much remaining potential useful?

Which is the best model?

Overall Conclusions: Previous Work

Memory Model

Affects programmability, portability, performance

Intuitive model: sequential consistency
+ Programmability
+ Portability

— Performance

Many alternative models: many hardware-centric
— Programmability
— Portability

+/— Performance

Overall Conclusions: This Work

(I) Programmer-centric approach
Model = Contract
System gives sequential consistency

If programmer gives information

(II) Four programmer-centric models
DRFO, DRF1, PLpc1, PLpc2

Enhance 3Ps of many current models

(III) The design space of memory models
Formalized and simplified design process
Showed unexploited potential, new models

Characterized the design space

(1V) Detecting unidentified races on DRF systems

Can use SC techniques on DRF systems

What Next?

Which is best SCNF model?
Hardware to exploit new parallelism
Compiler benefits

Programming language extensions
Support for debugging, verification

Leave sequential consistency?

