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ABSTRACT

When a computer system supports both paged virtual memory and large real-indexed caches, cache
performance depends in part on the main memory page placement. To date, most operating systems
place pages by selecting an arbitrary page frame from a pool of page frames that have been made
available by the page replacement algorithm. We give a simple model that shows that this naive
(arbitrary) page placement leads to up to 30% unnecessary cache conflicts. We develop several page
placement algorithms, called careful-mapping algorithms, that try to select a page frame (from the
pool of available page frames) that is likely to reduce cache contention. Using trace-driven simula-
tion, we find that careful-mapping results in 10-20% fewer (dynamic) cache misses than naive map-
ping (for a direct-mapped real-indexed multi-megabyte cache). Thus, our results suggest that
careful-mapping by the operating system can get about half the cache miss reduction that a cache size
(or associativity) doubling can.

1. Introduction

Most general purpose computer systems support both paged virtual memory [DENN68] and caches

[SMIT82]. Virtual memory caches pages by translating virtual addresses to their corresponding real addresses

(often by consulting a page table). This translation from virtual pages to real page frames is usually fully associa-

tive: any page frame in the physical main memory can hold any page. In contrast, hardware caches usually have a

more restrictive set-associative mapping that only allows a cache block to reside in one of the few frames in a set.

A real-indexed (virtual-indexed) selects the set for an incoming reference by extracting index bits from the
�����������������������������������
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at Cray Research, Inc., Chippewa Falls, WI.
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reference’s real (virtual) address.

Figure 1 depicts virtual address translation together with cache set-indexing. A large real-indexed cache

requires so many index bits that some of them must come from the address translation output1. We call the index

bits coming from the address translation the bin-index and the group of sets selected by them a bin2. Address

translation affects large real-indexed cache performance because page translation (implicitly) selects the cache bin

that the cache blocks in the page reside in. In this study, we examine this interaction between page placement and

cache performance. We focus on large real-indexed caches because page placement has no affect on a cache that

is either small or virtual-indexed.

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Figure 1. Virtual Memory and Set-Indexing Interaction.

This figure shows translation stages that index a virtually addressed memory location into a large set-
associative CPU cache. The cache takes index bits directly from the virtual address for a virtually-indexed
cache, and it takes the bits from the real address for a real-indexed cache. Any of the A (A is the associa-
tivity) cache block frames in the set chosen by the index bits can contain the addressed memory location.
This figure depicts bins that are four cache sets. This paper only considers large real-indexed caches with
bit-selection indexing [SMIT82].

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Two trends warrant an examination of the interaction between virtual memory page mapping and large

real-indexed caches. First, real-indexed caches are commonly implemented because they handle virtual address

synonyms (aliases) and virtual address space changes (e.g., context switches) more simply than do virtual-indexed
�����������������������������������

1. A large cache is defined to be one whose size divided by its associativity exceeds the page size. The associativity of
the cache is the number of cache block frames in each set.

2. Note that the superset of Goodman [GOOD87] is different from a bin. Pieces of a superset span all bins.
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caches [SMIT82]. Real-indexing is particularly appropriate for secondary caches (e.g., level-two caches: those that

service the references from primary, or level-one, caches) in hierarchical CPU cache configurations, because the

address translation cost of real-indexing has a smaller performance impact [TADF90, WABL89]. Second, typical

cache sizes are growing, so large caches, even multi-megabyte ones, are now feasible design alternatives

[BOKW90]. Page mapping has a greater effect on these large caches because they have many more bins.

1.1. Previous Work

Few previous studies examine the page mapping interaction with real-indexed cache performance because

large real-indexed caches are a recent trend. Sites and Agarwal [SITA88] compare the performance of virtual-

indexed caches to real-indexed caches. They find that real-indexed caches perform worse than their correspond-

ing virtual-indexed caches unless there is frequent context switching.

Only a few systems optimize their page placements for cache performance. In the Sun 4/110, the operating

system maps instruction pages and data pages [KELL90] to even and odd page frames to partition the instructions

and data in the 4/110’s SCRAM cache [GOOC84]. MIPS uses a variant of Page Coloring, described in Section 3,

to improve and stabilize its real-indexed cache performance [TADF90]. With trace-driven simulation, Bray, et al.,

[BRLF90] verify that Page Coloring reduces the mean and variance of the cache miss ratio, particularly for large

caches. They also model the effective main memory size reduction of a strict version of Page Coloring that

assumes a page must always be placed in a frame of the correct color. This model does not apply to our work (or

to MIPS’ implementation) because it implies that page replacement may be required even when frames (of the

wrong color) are available. Rather, we require page replacement only when there are no available page frames.

Finally, many others [FERR76, HWUC89, LARW91, MCFA89, STAM84] have examined changing virtual-

address reference patterns to improve cache performance. These techniques can be used in conjunction with our

work, since our techniques alter real addresses, not virtual addresses.

1.2. Contributions of this Paper

Operating systems place (map) new pages into main memory by selecting from a pool of available page

frames. This pool consists of page frames that have not been used recently and can be reallocated to new pages.

The selection process is usually arbitrary; often the first available frame in the pool is reclaimed by the new page.

We call this random (or naive) page mapping because the operating system does not care where it places the new

page. We introduce better page placement algorithms that we call careful page mapping algorithms. They are

small modifications to the existing operating system virtual memory management software that improve dynamic

- 3 -



-- --

cache performance with better static page bin placement decisions. When the pool of available page frames

allows some mapping flexibility, rather than just choosing an arbitrary page (like the first available), a careful

mapping algorithm chooses one of the available page frames that best suits some simple static cache bin place-

ment heuristics.

These careful mapping algorithms are low-overhead, particularly since they may only execute once when

each page is mapped, while they may improve cache performance on each reference to the page. Furthermore,

our careful mapping algorithms need not impact the page fault rate by changing page replacement decisions,

because they never force a page replacement when there are any page frames in the available page frame pool,

and because the contents of the available page frame pool are determined solely by the operating system’s page

replacement algorithm, not by the careful mapping algorithms. Our algorithms provide the opportunity for cache

performance improvements when the operating system has more frames available for placement. When main

memory is under-utilized, careful mapping algorithms are a cheap way to improve cache performance because it

is easy to have a large available pool. When main memory is more highly-utilized, only a small pool will be

available so careful mapping will be less effective (and less needed because page swapping may dominate perfor-

mance).

Section 2 motivates the static improvements that these careful mapping algorithms rely on. It first shows

how the operating system can improve static page bin placement. A simple static analysis then shows the poten-

tial careful mapping static improvements: as many as 30% of the pages from an address space unnecessarily

conflict in a direct-mapped cache when using random mapping. This analysis also correctly predicts that the larg-

est gain from careful page mapping comes when the cache is direct-mapped.

Section 3 describes Page Coloring and introduces several more careful page mapping algorithms. Page

Coloring matches the real-indexed bin to its corresponding virtual-indexed bin. Bin Hopping places successively

mapped pages in successive bins. Best Bin selects a page frame from the bin with the fewest previously allocated

and most available page frames. Hierarchical is a tree-based variant of Best Bin that executes in logarithmic

time, and produces cache size independent placement improvements (i.e. it improves static placement in many dif-

ferent cache sizes simultaneously).

Section 4 discusses some of the methods used to get the trace-driven simulation results of this paper. Sec-

tion 5 uses the simulation results to measure the cache miss reduction from the careful mapping algorithms. It

shows that careful page mapping reduces the direct-mapped cache miss rate by 10-20% with our traces. This is
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about half of the improvement available from either doubling the size or the associativity of a direct-mapped

cache. Section 5 also compares the performance of the different careful page mapping implementations for one

multiprogrammed trace, showing that the Page Coloring implementations perform poorly, and that Best Bin

results in the fewest cache misses.

The implication of this research is that careful mapping can improve the performance of systems with large

real-indexed caches. We believe that careful mapping is appropriate for future operating system implementations

since it improves cache performance with small software changes and no hardware changes.

2. Motivation for Careful Page Mapping

This section shows the potential static real-indexed page placement improvement of careful mapping over

random mapping. Figure 2 depicts two placements of the code, data, and stack pages from an address space in the

real-indexed cache; the left one might be a random placement of the pages and the right one might be a careful

placement of the same pages. The random placement puts many pages in the same cache bins; this competition is

undesirable since it can cause more cache conflict misses [HILS89]. Some of the randomly-mapped pages could

be placed in the unused bins to reduce conflict misses.

We quantitatively measure the potential static careful mapping improvement by counting the page conflicts,

C, which is the number of pages in a bin beyond the associativity of the cache. If u pages land in a cache bin with

associativity A, then we say max (0, u − A) conflicts occur3. With a direct-mapped cache there are six conflicts in

the random mapping of Figure 2, and there are four conflicts in the careful mapping. Similarly, with a two-way

set-associative cache, there are three and zero conflicts.

We can calculate the average page conflicts from random mapping if we assume each page frame is

independently and equally likely to hold a page4. Let N be the cache size in pages and B = N/A be the number of

bins. A binomial distribution gives the probability that exactly u of U pages fall in one of the B bins5:

P (u in bin) = (u
U)(

B
1��� )u(1 −

B
1��� )U−u. (1)

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
3. We use u-A rather than u because we feel that it more correctly predicts the magnitude of the conflict. If we instead

used u, then conflicts would be minimized by first filling the cache (placing A pages in each bin), and then placing all the
rest of the pages in a single bin; it is unlikely that this mapping would minimize dynamic cache misses.

4. We assume an infinite main memory, but the results for a finite main memory are similar for the parameters we con-
sider.

5. Both Thiebaut and Stone [THIS87] and Agarwal, et al. [AGHH89] use binomial distributions for similar analysis.
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Figure 2. Random and Careful Real-Indexed Bin Placements.

This figure shows two mappings of the code, data, and stack pages of an address space into a real-indexed
cache. The left bin placement might result from random mapping and the right one might be a careful
mapping. The horizontally stacked pages are the (competing) ones that the virtual to real address transla-
tion indexes to the same bin.

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Using Equation 1, Equation 2 calculates the expected conflicts resulting from a random placement of U pages

across all cache bins:

Cavg = B
u = A + 1

Σ
U

(u − A) . P (u in bin). (2)

The left graph in Figure 3 plots Cavg and its bounds for various address space sizes (U) with a direct-

mapped cache. In the worst case, almost all the pages cause conflicts because they are placed in the same bin, so

C max is linear with the address space size. In the best case, the pages are evenly spread across the cache bins, so

no conflicts occur until the cache is full of pages, and then each additional page adds a new conflict. Cavg remains

closer to C min than C max , particularly for small and large values of U.

The right graph in Figure 3 illustrates the difference between Cavg and C min more dramatically for direct-

mapped, two-way, and four-way set-associative caches. It plots what we call the mapping conflicts (Cavg − C min),
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Figure 3. Static Cache Placement Conflicts.

This figure shows the potential improvement of careful mapping by comparing the average number of stat-
ic page conflicts in a random mapping to bounds. The left graph shows Cavg (as calculated by Equation 2),
C max (max (0, U − A)), and C min (max (0, U − N)) for various address space sizes (U) with a direct-mapped
(A = 1) 64-bin cache (N = B = 64). The right graph shows the difference between the conflicts resulting
from a naive mapping and the minimum conflicts, the mapping conflicts (Cavg − C min), for different address
space sizes and cache associativities (A = 1,2,4, N = 64, B = N/A).
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which is the random conflicts less the minimum, and the potential static conflict savings of careful page mapping.

It shows that the mapping conflicts are maximized at the point where the address space size equals the cache size.

Cavg − C min is low for small address spaces since many collisions by few pages is unlikely. It is also low for large

address spaces since the bins are likely to be highly utilized regardless of the page mapping, so there is little

potential for improvement. This data shows that careful page mapping can reduce the static conflicts from random

mapping; as many as 30% of the pages from an address space are unnecessarily in conflict with random mapping.

It also shows that careful mapping is most useful for direct-mapped caches because they have more static page

conflicts. In the opposite extreme, there are never any mapping conflicts in a fully associative cache.

3. Implementing Careful Mapping

This section presents four careful page mapping implementations. A key aspect of all these algorithms is

that they do not use any dynamic referencing information to improve page placements. Rather, they place pages

into the bins of a large unified6 cache using solely static criteria. Static placement decisions are appropriate
�����������������������������������

6. We do not consider mapping functions that statically improve the page placement in split caches. An example of
split caches is split instruction and data caches [SMIT82]. With split caches, the mapping function may want to minimize
the contention in both caches concurrently (or independently).
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because dynamic information, such as cache references (misses) or page references (faults), may not be available

to the page mapper. Section 5 shows that the static improvements of these algorithms eliminate many dynamic

cache misses.

We consider systems in which multiple address spaces share the same main memory, so both intra-address-

space and inter-address-space conflicts occur. Except for certain obvious circumstances, the careful mapping

algorithms primarily try to remove intra-address-space conflicts, and only secondarily try to reduce inter-address-

space conflicts. This is appropriate for future high-performance processors because the memory within a single

address space may be referenced many thousands, or even millions, of times before any inter-address-space

conflicts cause any cache misses (only as a result of context switches).

In order to strictly differentiate between page replacement (making a frame available for reuse by placing it

in the available pool) and page placement (choosing a frame from the pool), the careful mapping algorithms

always select frames that were previously in the available pool. Thus, page replacement needs to occur only when

the pool is empty7. Since the placement algorithms do not require an available pool with any specific characteris-

tics, and many operating systems try to maintain a pool anyway (to smooth out peaks in memory demand, for

example [BABJ81]), we consider placement independently from how the available pool is replenished (either by

page deallocation or replacement). The placement algorithms need not force any page replacement modifications,

though clearly the size of the available pool can determine the page placement quality, and too large of a pool can

increase the page fault rate because of poorer page replacement decisions. Since the pool size may be limited,

careful mapping algorithms should preferably produce better placements with smaller pools.

3.1. Page Coloring

The simplest careful mapping technique simply makes a real-indexed cache perform like a virtual-indexed

cache by matching bits of the virtual page with bits from the real page frame number. MIPS has implemented a

variant of this, called page coloring [TADF90]. In our simple implementation of Page Coloring, the page map-

ping function simply examines the pool of available page frames to find one with the proper bit value(s). When it

finds a match, it extracts the frame and places the page in it. When there is not a matching frame in the pool, our

implementation chooses an arbitrary frame (the first available in the pool). Given the complexity of current

memory systems, the simplicity of Page Coloring is a virtue.
�����������������������������������

7. Bray, et al. [BRLF90], on the other hand, assume that a page is alway placed in a frame of the correct color, even if a
page replacement must be initiated to get one.
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Page Coloring minimizes cache contention because sequential virtual pages do not conflict with each other

in the cache. Mostly-contiguous address spaces (the common case) will usually have little cache contention with

Page Coloring. However, the exact match of virtual bits with real bits, as described above, can lead to excessive

inter-address-space contention in a multiprogrammed workload because it places commonly-used virtual

addresses from different address spaces (like the stack, for instance) in the same bin. We consider two versions of

Page Coloring: (1) an exact match of bin bits, and (2) a match of bin bits exclusive-ored with the process’

identifier (PID-hashing). PID-hashing makes it unlikely the same virtual address from two different address

spaces maps to the same bin, thereby reducing contention when some virtual addresses are frequently used (e.g.,

if the top of stack for all processes is at the same virtual address). It is our understanding that MIPS uses a variant

of PID-hashing [TADF90].

3.2. Bin Hopping

Bin Hopping is another simple way to equalize cache bin utilization. It allocates sequentially mapped pages

in sequential cache bins, irrespective of their virtual addresses. Bin Hopping reduces cache contention because it

sequentially distributes the pages from an address space across different bins (until it must wrap-around). It

exploits temporal locality because the pages it maps close in time tend to be placed in different bins. If pages

mapped together are also referenced together, this will be a useful property for reducing cache contention.

The Bin Hopping implementation simply traverses the bins until it finds one of them that has an available

page frame. Then it remembers where it placed the last page, so the next traversal can start from there. It main-

tains a separate traversal path per address space to minimize contention within each address space separately. The

simplicity of Bin Hopping, like Page Coloring, is its largest asset. An advantage of Bin Hopping over Page Color-

ing is that it is more flexible when there are few pages available. Instead of choosing an arbitrary page when one

is not available in the desired bin, it skips to another bin that is almost as good as the previous one. Bin Hopping

is able to do this because it remembers the last page placement for each address space8.

3.3. Best Bin

The strength of Page Coloring and Bin Hopping could also be considered their weakness. They both have

simple implementations that require little (or no) storage, but their decision-making is not very sophisticated.

When there are few available page frames, Page Coloring and Bin Hopping may not produce a good mapping.
�����������������������������������

8. We initialize this state to a random location before any mapping occurs.
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Best Bin uses the counter pair <used, free> associated with each bin to select a bin. Used is the number of previ-

ously placed pages from a given address space, and free is the number of page frames available (system-wide) in

this bin9. Best Bin reduces contention by placing a page in the bin with the smallest used and largest free value.

The choice of the smallest used value minimizes intra-address-space contention because all bins become equally

used by each address space, and the secondary choice of the largest free value tends to minimize inter-address-

space contention because large free values may imply bin underutilization.

As an example of a choice made by Best Bin, consider a cache with four bins and <used, free> pairs of <0,

0>, <1, 3>, <1, 1>, and <2, 4>. Best Bin would select the <1, 3> bin. <0, 0> could not be selected because there

are no available frames, even though it has the minimal used count. <1, 3> is better than <1, 1> because there are

more available frames, and <1, 3> is better than <2, 4> because its used count is smaller. After choosing it, Best

Bin modifies the <1, 3> bin to <2, 2> to reflect the altered system state.

3.4. Hierarchical

The execution time of Best Bin may be linear in the number of bins, which is too slow when there are too

many bins. Alternatively, Hierarchical can choose a bin in logarithmic time with a tree whose leaves contain

<used, free> values for each bin and where each interior node value contains the sum of the values of its chil-

dren10. Hierarchical selects a bin by beginning at the tree’s root and traversing down to it leafs. At each interior

node, Hierarchical chooses a traversal direction by comparing <used, free> values of the children, using same

priorities as Best Bin.

Figure 4 shows Hierarchical on a simple example. Traversal starts from the root of the bin tree. From

there, Hierarchical decides based on the <4, 6> and <5, 5> pairs corresponding to its sub-trees. It chooses <4, 6>

since it has less used pages. Next, Hierarchical chooses <1, 3> over <3, 3>, again because there are less used

pages. Finally, it chooses <1, 3> over <0, 0> because <1, 3> has available page frames. Bin tree traversal is then

complete since a leaf node is reached. Note that Best Bin would choose the same bin in this example. To update

the state to account for the page mapping, Hierarchical modifies the values of the traversed nodes to <2, 2>, <2,
�����������������������������������

9. While it is possible to determine these counts from the complete mapping of virtual pages to page frames, Best Bin
can store them in a more readily-available form for greater execution efficiency. The added storage required by Best Bin is
the used counter per bin in each address space, since the space to store the single system-wide free counters is minimal.
Even the used counter storage is modest when compared to the complete page mapping information.

10. Hierarchical actually uses a single system-wide free bin tree, but it needs a used bin tree with each address space,
just like Best Bin needs a bin array per address space. The storage for the used bin tree need not be more than twice that re-
quired for a bin array, still a small amount compared to the complete page mapping information. This study uses binary
trees; higher branching factors also could be used, but they may not maintain size independence with all caches.
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2>, <5, 5>, and <10, 10> from bottom to top, respectively.

An important feature of Hierarchical is its cache size independence. Hierarchical can simultaneously

optimize page placement for many caches sizes if the tree is constructed so the children of each internal node have

bin numbers with the most least-significant bits in common [KESS91]. The tree for eight bins, for example, has

eight leaf nodes 000, 001, ..., 111. One level higher up in the tree, there are only four nodes: 00, 01, 10, 11. For

Hierarchical to be size-independent, 00 should parent 000 and 100, 01 should parent 001 and 101, 10 should

parent 010 and 110, and 11 should parent 011 and 111. That way, each tree level selects one more (high-order)

bit, or equivalently, optimizes for the next larger cache. For example, size-independence is extremely important

with a hierarchy of large real-indexed caches, since the performance of all caches (e.g. both primary and secon-

dary) can be improved with a single size-independent page placement. Size-independent page placement also has

a simulation advantage: many different-size caches can be simultaneously simulated.

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Figure 4. Bin Tree Traversal.

This figure shows an example of a bin choice when mapping a virtual page by <used, free> bin tree traver-
sal with Hierarchical. The values of the tree nodes are given. The used values of the leaves show the
number of pages already placed in the corresponding bin. The free values of the leaves show the number
of page frames available for replacement in the corresponding bin.

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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4. Trace-Driven Simulation Methodology

This section discusses some of the methods used for the simulation results shown in Section 5.

4.1. The Traces

The traces used in the study were collected at DEC Western Research Laboratory (WRL)

[BOKL89, BOKW90] on a DEC WRL Titan [NIEL86], a load/store (‘‘RISC’’) architecture. Each trace consists of

the execution of three to six billion instructions of large workloads on a load/store architecture, including mul-

tiprogramming but not operating system references. Each trace references from 8-megabytes to over 100-

megabytes of unique memory locations. The traces are sufficiently long to overcome the cold-start intervals of

even the very large caches considered in this study; we present cold-start results, but the error cannot be more than

a few percent for even the largest cache. We chose programs with large memory requirements because large

application sizes will likely be more common as main memories of hundreds of megabytes become common.

The traces of the multiprogrammed workloads represent the actual execution interleaving of the processes

on the traced system with switch intervals that may be appropriate for future high-performance processors. The

Mult2 trace includes a series of compiles, a printed circuit board router, a VLSI design rule checker, and a series

of simple UNIX commands, all executing in parallel (about 40-megabytes active at any time) with an average of

134,000 instructions executed between each process switch. The Mult2.2 trace is the Mult2 workload with a

switch interval of 214,000 instructions. The Mult1 trace includes the processes in the Mult2 trace plus an execu-

tion of the system loader (the last phase of compilation) and a Scheme (Lisp variant) program (75-megabytes

active) and has a switch interval of 138,000 instructions. The Mult1.2 trace is the Mult1 workload with a switch

interval of 195,000 instructions. Sor is a uniprocessor successive over-relaxation algorithm that uses large, sparse

matrices (62-megabytes). Tv is a VLSI timing verifier that first builds a large data structure and then traverses it

with little locality (96-megabytes). Tree is a Scheme program that searches a large tree data structure (64-

megabytes). Lin is a power supply analyzer that uses sparse matrices (57-megabytes).

4.2. The Simulator

Previous trace-driven cache simulation results either assume small or virtual-indexed caches, or that operat-

ing system policies are fixed and independent of the studied caches. Our simulator incorporates memory manage-

ment policies of the operating system along with hardware cache management implementations because we exam-

ine the interaction of hardware and software memory system components. Consequently, the results expose the

interaction between hardware and software system components.
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We arbitrarily chose a global least-recently-used (LRU) replacement policy for this study. The simulator

maintains an exact ordering of the page frames from most recently used to least recently used (an LRU list, ran-

domly initialized when simulation begins, to model a system that has been executing for some time). We assume

a page placement policy can select any page frame in a pool of available page frames the end of the LRU list.

(The simulator does not place frames in the available pool when a process exits and its pages are deallocated, only

when they are least-recently-used.) The size of the available page frame pool is constant throughout the simula-

tions of this study, even at the beginning of a simulation when the entire main memory is unmapped. The default

pool size is 4-megabytes of 16-kilobyte pages. The main memory size of 128-megabytes is large enough that the

simulations required no process swapping, so we use the static execution interleaving captured on each trace to

model context-switching.

The simulated CPU cache configuration is a two-level hierarchical system that does not maintain multi-level

inclusion [BAEW88]. The primary (level-one) caches are split direct-mapped write-allocate, write-back11 instruc-

tion and data caches of 32-kilobytes each with 32-byte blocks. They are backed up by a 1-megabyte to 16-

megabyte unified secondary (level-two) write-back cache with a random replacement policy and 128-byte blocks.

We simulate many different secondary cache configurations, and we focus on the large secondary caches since

they are most likely to be real-indexed and have the most to gain from careful page mapping.

4.3. Misses Per Instruction

Our simulation tools report cache performance in misses per instruction (MPI). In this study, we only com-

pare alternatives for the large secondary caches, so the MPI results are proportional to global miss ratio (cache

misses divided by processor references [PRHH89]), and relative changes in MPI are equal to relative changes in

global miss ratio. We do not use local miss ratio (cache misses divided by cache accesses [PRHH89]), because

careful mapping can cause the local miss ratio of a secondary cache to increase even as system performance

improves (by reducing primary cache misses and hence secondary cache accesses). Kaplan and Winder

[KAPW73] provide good arguments for using misses per instruction.

�����������������������������������
11. On a write miss, space is allocated and the cache block is read in (write-allocate). On a miss to the data cache that

requires a write of a dirty block, the write-back is executed followed by the block read.
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5. Trace-Driven Simulation Results

This section first shows that the static page placement improvements of careful page mapping (Hierarchi-

cal) eliminate many dynamic cache misses. Then it compares the alternative careful mapping implementations

using one of the multiprogrammed traces.

5.1. The Usefulness of Careful Page Mapping

We compare Hierarchical mapping to random mapping in this section because Hierarchical’s size-

independence reduces simulation time, and because Hierarchical performs well compared to the other careful

mapping schemes (as will be shown in Section 5.2). For 1-megabyte (top), 4-megabyte, and 16-megabyte caches

(bottom), Figure 5 plots 100 million instruction averages of the Mult2.2 misses per instruction (MPI) for four dif-

ferent simulations, each with a different virtual to real page mapping. The cache performance is different for each

simulation because they each place the same pages in different frames. Note that random mapping does not imply

random page replacement; it means that the simulation places the page in the page frame at the bottom of the LRU

list. Thus, in the random runs the simulator places the page in a random (arbitrary) bin that is determined by the

page frame number at the bottom of the LRU list.

Figure 5 shows, for the Mult2.2 trace, that the careful (Hierarchical) mappings have consistently lower MPI

than random (since the solid lines are usually below the dotted lines). This clearly indicates that the static page

placement improvements of careful mapping do reduce dynamic cache misses for this trace. Over most of the

trace, the careful mapping MPI’s are only a few percent better than random. But in addition to this small and con-

stant improvement, there are bursts of cache misses from poor random page mapping that occasionally double or

triple the MPI for the 100 million instruction intervals12. These bursts increase the mean improvement of careful

mapping beyond only a few percent.

To get a better idea of the quantitative dynamic cache performance improvements of careful mapping, we

wish to determine the average cache MPI when using random and Hierarchical mapping. To do this, we averaged

the results from multiple simulation runs that use different page mappings. While the MPI of one simulation is an

unbiased estimate of the true mean MPI, Figure 5 suggests that the MPI results from simulations can substantially

vary, so we don’t know how close one simulation result is to the true mean MPI. With a sample of size four, the
�����������������������������������

12. Note that some bursts appear in the random mappings of both the 1-megabyte and 4-megabyte cache simulations.
This occurs since the simulations of different cache sizes are of the same virtual to real page mapping, and the results are
correlated. The results for each individual cache are not correlated, however.
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Figure 5. Mult2.2 Results for Different Page Mappings.

This figure shows the real-indexed MPI resulting from four different virtual to real mappings generated by
Hierarchical (solid lines) and generated randomly (dotted lines) on the misses of three different secondary
caches. It shows the average MPI for the previous 100 million instructions of the Mult2.2 trace for 1-
megabyte (top), 4-megabyte (middle), and 16-megabyte (bottom) secondary direct-mapped caches. Note
that the scales are different for each graph.

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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variations across the simulations were sufficiently small that the four-sample mean could serve as a good estimate

of the true mean (most simulations are within a few percent of the sample mean). It seems that each trace was

long enough that the individual simulation runs already averaged out enough of the variance in cache perfor-

mance. Luckily, a sample of size four was sufficient, since each long-trace simulation takes days. With shorter

traces, we likely would have needed many more simulations to obtain the same accuracy13. Below, we use four-

sample means to quantitatively evaluate the improvement of careful mapping for 1-megabyte, 4-megabyte, and

16-megabyte secondary caches with direct-mapped, two-way, and four-way set-associativity.

Figure 6 shows the direct-mapped Hierarchical miss reductions. This gives the relative amount that the

four-sample Hierarchical MPI is lower than the four-sample random mapping MPI. The figure shows that careful

page mapping is useful for a variety of workloads. Careful mappings eliminate up to 55% of the direct-mapped

cache misses from random mapping. On the average over all the traces, it reduces the random-mapping direct-

mapped cache misses per instruction by about 10-20%. A similar look at the results for two- and four-way associ-

ativities suggests that careful mapping eliminates about 4-10% of the misses in a two-way set-associative cache

with random replacement, and about 2-5% of the misses in a four-way set-associative cache with random replace-

ment (on average). This verifies that the largest gain from careful mapping comes with a direct-mapped cache, as

predicted by the simple static analysis of Section 2. Higher set-associativities can more easily reduce contention

without static placement improvements because they spread contending blocks across the cache block frames in a

set. Static improvements that avoid contention are more valuable with direct-mapping because direct-mapped

caches cannot handle contention for the same set (block frame).

The direct-mapped Hierarchical miss reduction is positive in all cases except once with Lin, where the mean

MPI slightly increases with careful mapping. The multiprogrammed trace behaviors are all similar, except for

Mult1.2, where one bad page placement in one simulation biased the results and cut the direct-mapped Hierarchi-

cal reduction in about half (for the 1-megabyte and 4-megabyte caches). Careful mapping doesn’t help Tv much

because most of its misses occur while it traverses a large data structure with little locality; it cannot eliminate

many misses during this traversal because the memory locations tend to be randomly accessed, and the Tv address

space is too large for much static placement improvement. (Figure 3 shows how there is little room for static

mapping improvements when the active address space size is large relative to the cache size.) The improvements
�����������������������������������

13. The statistical significance of these and many more results can be checked by consulting Kessler’s thesis [KESS91].
In most cases, our results are accurate to within ±5%.

- 16 -



-- --

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

0 0.1 0.2 0.3 0.4 0.5
Reduction (Fraction of Misses Eliminated)

Lin

Tree

Sor

Tv

Mult2.2

Mult2

Mult1.2

Mult1
T

ra
ce

Hierarchical Reduction for Direct-Mapped Caches

13%
10%
10%

7%
3%

30%

19%
14%

13%

21%
16%
16%

3%
2%
3%

1%
12%

34%

37%
25%

30%

-1%
33%

55%

1M

4M

16M

Figure 6. Direct-Mapped Hierarchical Miss Reductions for All Traces.

This figure shows, for different direct-mapped secondary caches and traces, the Hierarchical reduction,
which is the fraction of the misses (produced from random mapping) that Hierarchical could eliminate.

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

of both Sor and Lin relate closely to the benefits of associativity. There is little careful mapping or associativity

improvement with the 1-megabyte cache, but both careful mapping and associativity improve performance greatly

for the 16-megabyte cache because some arrays fit fully in the cache. Though the results in Figure 6 vary greatly

for the different traces, the rest of this study examines Mult2.2 in detail because of its ‘‘average’’ behavior; the

Mult2.2 Hierarchical reductions are close to the average of all the traces.

Figure 7 shows the Mult2.2 results in another graphical way to put the careful mapping miss reduction in its

proper perspective. By interpolating between the simulation results for different cache sizes and associativities, it
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estimates the effect of software careful mapping relative to hardware cache design changes. The dashed line in

the left graph finds the equivalent associativity change of Hierarchical with a 1-megabyte direct-mapped cache.

Careful mapping reduces misses by more than half as much as a random-mapping associativity increase does; it is

about equivalent to an associativity increase from direct-mapped to 1.6-way with Mult2.2. For a direct-mapped

cache, the dashed line in the right graph compares the careful mapping miss reduction (with a 1-megabyte cache)

to the reduction from a randomly-mapped cache size increase. Careful mapping also removes nearly as many

misses as a direct-mapped cache size doubling does; it makes a 1-megabyte direct-mapped cache act about like a

1.7-megabyte direct-mapped cache for Mult2.2.
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Figure 7. Mult2.2 Careful Mapping Improvement.

This figure shows the (mean) Mult2.2 simulation data. The misses per thousand instructions is plotted
versus the cache associativity and size for random (dotted) page mappings and Hierarchical (solid) page
mappings. The left graph shows MPI versus associativity for the different cache sizes. The right graph
shows MPI versus cache size for different associativities (square = direct-mapped, triangle = two-way, and
circle = four-way)
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Most importantly, as we have shown, careful page mapping reduces mean MPI (across different page map-

pings) by avoiding poor page mappings. But a secondarily useful trait of careful mapping is a reduction in the

MPI variance for different runs of a trace. Variance in cache behavior is undesirable because it increases the exe-

cution time variance of a workload. Figure 5 shows that the Mult2.2 mappings produced carefully have less MPI

variations than the random mappings because all of the solid (Hierarchical) lines are much closer together than the

dotted (random) lines. The different careful mapping simulations tend to follow an outline that the workload
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dictates, but the random mapping simulations show the bursts that are caused by random contention for cache

locations. Poor random mappings into the cache, not the workload references themselves, cause many of the ran-

dom mapping misses. We found that when Hierarchical removes the most misses, it also tends to eliminate the

most variance. This isn’t surprising since most of the MPI reduction comes from eliminating bursts of misses that

increase both the mean and variance of the MPI. Hierarchical had a lower four-sample MPI variance than random

mapping for 57 out of the 72 cases we examined. With fourteen out of the twenty-four direct-mapped caches, the

random mapping four-sample variance is more than five times larger than Hierarchical. This strongly suggests

that Hierarchical will yield more predictable execution times than random mapping.

5.2. Careful Mapping Alternatives

In this section, we compare the Heuristics from Section 3 using the Mult2.2 trace. The size of the available

page frame pool has an important affect on the comparison. The implementations that produce the fewest misses

with the least available page frames are preferred because they are adaptable to the most situations. For the

Hierarchical results given so far in this study, the pool is 4-megabytes. As an experiment to learn the impact of

the available pool size, Table 1 compares the 4-megabyte direct-mapped Mult2.2 MPI of the different heuristics

(four-sample mean) with a 4-megabyte pool of available pages (large) and a 256-kilobyte pool (small)14. On the

average there was one available page frame in each bin with the large pool, and 0.0625 available page frames in

each bin with the 256-kilobyte pool.

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Page Coloring (equal) 0.69 (15%) 0.85 (30%)
Page Coloring (hash) 0.64 ( 8%) 0.71 ( 7%)
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Table 1. Careful Mapping Comparison.

This table compares results of the different mapping heuristics outlined in Section 3 for different page
frame pool sizes for the Mult2.2 trace. It shows the four-sample mean MPI for 4-megabytes of available
page frames (Large Pool) and 256-kilobytes of available page frames (Small Pool). In parenthesis, it also
gives the relative difference from the Hierarchical results for each pool size. The results shown are for a
4-megabyte direct-mapped cache.

$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$

%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%
14. Most of these results are accurate to within ± 0.02 or less.
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Equality Page Coloring performs poorly in the Mult2.2 comparison presented in Table 1. Its particularly

high mean MPI for the small pool comes from the exceptionally high MPI of two (out of the four) simulations.

This is a symptom of the basic problem with equality page coloring: the placement of commonly used virtual

pages from different address spaces in the same cache bins often leads to many unnecessary cache misses. Prob-

ably because of this problem, MIPS does not use the strict equality match Page Coloring simulated here. The

PID-hashed Page Coloring implementation performs much better for Mult2.2, yet it still performs poorly com-

pared to the other careful mapping schemes. The limited flexibility of the Page Coloring implementation is the

cause of this poor performance: if Page Coloring does not find an available page frame in the matching bin, it

abandons the search and chooses any arbitrary page frame. With the small pool, an exact match is unlikely (pro-

bability 0.0625), so the placement is almost random. The other careful mapping schemes are more adaptable to

situations with few available page frames.

The data in Table 1 shows that Best Bin produces superior placements because a smaller pool doesn’t

significantly affect its performance, while it causes the four simulations with the other heuristics to have more

cache misses. With the 4-megabyte pool of available page frames in Table 1, Bin Hopping, Best Bin, and

Hierarchical perform nearly equivalently. Each of them finds it easy to reduce cache contention when there is one

available page frame in each bin on average. With 0.0625 available page frames per bin, Best Bin produces the

fewest misses. This shows that Best Bin is the most flexible across all pool sizes, and that it can improve Mult2.2

cache performance under a wide variety of page-availability conditions.

We only show results for a 4-megabyte direct-mapped cache in Table 1. We also found, when using a sin-

gle placement to simulate many cache sizes, that Hierarchical eliminated the most misses over the range of sizes.

This verifies the size-independence advantage of Hierarchical.

6. Conclusions

When a real-indexed cache is large, the virtual to real page mapping function and the cache mapping func-

tion interact to determine cache performance. This gives the page mapping policy the opportunity to improve

cache performance by carefully choosing the virtual to real page mapping of an address space. This paper shows

the usefulness of careful virtual to real page mapping policies, describes several practical careful mapping imple-

mentations, and shows their resulting cache miss reduction using trace-driven simulation. It is worthwhile to

expend a little effort to map a page carefully since it can improve memory system performance on all following

accesses to the page.
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We feel that careful virtual to real page mapping is a useful, low-cost, technique to improve the perfor-

mance of large, real-indexed CPU caches in many circumstances. We introduced careful mapping algorithms that

require no page replacement policy changes: they never force a page replacement when there are page frames in

the available page frame pool, and the contents of the available page frame pool are determined solely by the

operating system’s page replacement algorithm. Our algorithms provide the opportunity for cache performance

improvements when the operating system makes more pages available for placement. When main memory is

under-utilized, careful mapping algorithms are a cheap way to improve cache performance because it is easy to

maintain a large available pool. When main memory is more highly-utilized, only a small pool will be available

so careful mapping will be less effective (and less needed because page swapping may dominate performance).

An increase in the available page frame pool size gives the careful mapping algorithms more freedom, perhaps

with little or no corresponding page fault rate increase since a modest-sized pool provides sufficient flexibility.

(Unfortunately, our traces were not long enough to quantify the relationship between page fault rate and pool

size.)

This paper shows that static cache bin placement optimizations can produce dynamic cache performance

improvements. A simple static analysis shows that random page placement causes many of the pages from an

address space to be unnecessarily in conflict, so there is potential for static mapping improvements with careful

mapping. This analysis also correctly predicts that conflicts are less of a problem in caches of higher associativity.

This paper describes Page Coloring and introduces several other practical careful page mapping heuristics

that improve the cache bin placement of pages based solely on static information. These algorithms equalize

cache bin utilization and eliminate much unnecessary cache contention. They range from the simple Page Color-

ing and Bin Hopping to the more sophisticated Best Bin and Hierarchical. This study quantitatively compares the

MPI improvements of the heuristics with trace-driven simulations of a multiprogrammed trace (Mult2.2). This

comparison shows that Bin Hopping, Best Bin, and Hierarchical perform well. Under this comparison, equality

match Page Coloring performed poorly because it maps frequently used areas of the virtual memory space from

different address spaces to the same cache bin. A PID-hashed version of Page Coloring that fixes this problem

still does not compare favorably to the other careful mapping schemes. We found that Best Bin produces the best

page placements with the smallest pool of available page frames; it is more adaptable across the range of possible

page-availability conditions. Hierarchical has good computational efficiency and cache size independent map-

pings; these properties are desirable, particularly for hierarchies of real-indexed caches.
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This paper presents simulation results from several workloads to measure the improved MPI mean and vari-

ance of careful page mapping (Hierarchical). The improvement depends on the workload, but with our traces we

found that careful mapping reduced the direct-mapped cache misses per instruction by about 10-20%. Thus, at no

hardware cost, software careful page mapping gets about half the improvement of either doubling the cache size

or associativity.

7. Acknowledgements

We would like to thank The Western Research Laboratory of Digital Equipment Corporation, especially

Anita Borg and David Wall, for the traces used in this study. Joel Bartlett, Renato De Leone, Jeremy Dion, Norm

Jouppi, Bob Mayo, and Don Stark all were a tremendous help in providing traceable applications. Paul Vixie and

Colleen Hawk were a great help in storing the traces. Jim Goodman, Viranjit Madan, Guri Sohi, and David Wood

from the Wisconsin Architecture Group provided valuable feedback. Paul Beebe and the Systems Lab were able

to satisfy our enormous computing needs. Mike Litzkow and Miron Livny were a great help in adapting Condor

to the requirements of these simulations. Special thanks to Harold Stone for his useful comments. The referees

also greatly improved the presentation in this paper.

8. Bibliography

[AGHH89] A. AGARWAL, M. HOROWITZ and J. HENNESSY, ‘‘An Analytical Cache Model,’’ ACM Transactions
on Computer Systems, vol. 7, no. 2, May 1989, pp. 184-215.

[BABJ81] O. BABAOGLU and W. JOY, ‘‘Converting a Swap-Based System to do Paging in an Architecture
Lacking Page-Referenced Bits,’’ Proceedings of the 8th Symposium on Operating System Principles,
1981, pp. 78-86.

[BAEW88] J. BAER and W. WANG, ‘‘On the Inclusion Properties for Multi-Level Cache Hierarchies,’’
Proceedings of the 15th Annual International Symposium on Computer Architecture, 1988, pp. 73-80.

[BOKL89] A. BORG, R. E. KESSLER, G. LAZANA and D. W. WALL, ‘‘Long Address Traces from RISC
Machines: Generation and Analysis,’’ Research Report 89/14, Western Research Laboratory, Digital
Equipment Corporation, Palo Alto, CA, September 1989.

[BOKW90] A. BORG, R. E. KESSLER and D. W. WALL, ‘‘Generation and Analysis of Very Long Address
Traces,’’ Proceedings of the 17th Annual International Symposium on Computer Architecture, 1990,
pp. 270-279.

[BRLF90] B. K. BRAY, W. L. LYNCH and M. J. FLYNN, ‘‘Page Allocation to Reduce Access Time of Physical
Caches,’’ Technical Report CSL-TR-90-454, Computer Systems Laboratory, Stanford University,
Stanford, CA, November 1990.

[DENN68] P. J. DENNING, ‘‘The Working Set Model for Program Behavior,’’ Communications of the ACM, vol.
11, no. 5, May 1968, pp. 323-333.

[FERR76] D. FERRARI, ‘‘The Improvement of Program Behavior,’’ IEEE Computer, November 1976, pp. 39-47.

[GOOC84] J. R. GOODMAN and M. CHIANG, ‘‘The Use of Static Column RAM as a Memory Hierarchy,’’
Proceedings of the 11th Annual International Symposium on Computer Architecture, 1984, pp. 167-
174.

- 22 -



-- --

[GOOD87] J. R. GOODMAN, ‘‘Coherency For Multiprocessor Virtual Address Caches,’’ Proceedings of the
Second International Conference on Architectural Support for Programming Languages and
Operating Systems, October 1987, pp. 72-81.

[HILS89] M. D. HILL and A. J. SMITH, ‘‘Evaluating Associativity in CPU Caches,’’ IEEE Transactions on
Computers, vol. 38, no. 12, December 1989, pp. 1612-1630.

[HWUC89] W. W. HWU and P. P. CHANG, ‘‘Achieving High Instruction Cache Performance with an Optimizing
Compiler,’’ Proceedings of the 16th International Symposium on Computer Architecture, 1989, pp.
242-251.

[KAPW73] K. R. KAPLAN and R. O. WINDER, ‘‘Cache-Based Computer Systems,’’ IEEE Computer, vol. 6, no. 3,
March 1973, pp. 30-36.

[KELL90] E. KELLY, Personal Communications, 1990.

[KESH90] R. E. KESSLER and M. D. HILL, ‘‘Miss Reduction in Large, Real-Indexed Caches,’’ Computer
Sciences Technical Report #940, University of Wisconsin-Madison, June 1990.

[KESS91] R. E. KESSLER, ‘‘Analysis of Multi-Megabyte Secondary CPU Cache Memories,’’ Ph.D. Thesis,
Computer Sciences Technical Report #1032, University of Wisconsin, Madison, WI, July 1991.

[LARW91] M. S. LAM, E. E. ROTHBERG and M. E. WOLF, ‘‘The Cache Performance and Optimizations of
Blocked Algorithms,’’ Proceedings of the Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, April 1991, pp. 63-74.

[MCFA89] S. MCFARLING, ‘‘Program Optimization for Instruction Caches,’’ Proceedings of the Third
International Conference on Architectural Support for Programming Languages and Operating
Systems, April 1989, pp. 183-191.

[NIEL86] M. J. K. NIELSEN, ‘‘Titan System Manual,’’ Research Report 86/1, Western Research Laboratory,
Digital Equipment Corporation, Palo Alto, CA, September 1986.

[PRHH89] S. PRZYBYLSKI, M. HOROWITZ and J. HENNESSY, ‘‘Characteristics of Performance-Optimal Multi-
Level Cache Hierarchies,’’ Proceedings of the 16th Annual International Symposium on Computer
Architecture, 1989, pp. 114-121.

[SITA88] R. L. SITES and A. AGARWAL, ‘‘Multiprocessor Cache Analysis Using ATUM,’’ Proceedings of the
15th Annual International Symposium on Computer Architecture, 1988, pp. 186-195.

[SMIT82] A. J. SMITH, ‘‘Cache Memories,’’ Computing Surveys, vol. 14, no. 3, September 1982, pp. 473-530.

[STAM84] J. W. STAMOS, ‘‘Static Grouping of Small Objects to Enhance Performance of a Paged Virtual
Memory,’’ ACM Transactions on Computer Systems, vol. 2, no. 2, May 1984, pp. 155-180.

[TADF90] G. TAYLOR, P. DAVIES and M. FARMWALD, ‘‘The TLB Slice -- A Low-Cost High-Speed Address
Translation Mechanism,’’ Proceedings of the 17th Annual International Symposium on Computer
Architecture, 1990, pp. 355-363.

[THIS87] D. THIEBAUT and H. S. STONE, ‘‘Footprints in the Cache,’’ ACM Transactions on Computer Systems,
vol. 5, no. 4, November 1987, pp. 305-329.

[WABL89] W. WANG, J. BAER and H. M. LEVY, ‘‘Organization and Performance of a Two-Level Virtual-Real
Cache Hierarchy,’’ Proceedings of the 16th Annual International Symposium on Computer
Architecture, 1989, pp. 140-148.

- 23 -

-- --


