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Making Pointer-Based Data Structures Cache Conscious

1 Introduction
Processor and memory technology trends portend a continual increase in the relative cost of

accessing main memory, so that today a memory access can be hundreds of times more costly than an
arithmetic operation. Memory caches are the ubiquitous hardware solution to this problem. These are
small, fast memories that store recently accessed data items and attempt to intercept and satisfy data
requests without accessing main memory. In the beginning, a single level of cache sufficed, but the increas-
ing performance gap (now two orders of magnitude) requires two levels of caches today and three in the
near future.

In addition to caches, a variety of hardware and software techniques—such as prefetching, multi-
threading, non-blocking caches, dynamic instruction scheduling, and speculative execution—have been
developed and implemented to reduce or tolerate memory latency. Despite these techniques, which require
complex hardware or software, many programs’ execution time is dominated by the latency of memory
references. Moreover, high and variable memory access costs undercut the fundamental random-access
memory (RAM) model (all memory accesses have unit cost) that most programmers use to understand and
design data structures and algorithms. This can cause unexpected behavior; for example, algorithms with a
larger number of operations (but fewer memory references) may outperform alternative algorithms with
fewer operations.

From a software perspective, programming languages used to write programs have also evolved.
Early languages such as Fortran and Algol, used mainly for scientific applications, did not support point-
ers. Applications written in these languages store their data in array structures. Subsequent languages such
as Simula, Pascal, C, and C++ supported pointers. Many applications written in these languages, such as
databases and operating systems, make extensive use of pointer structures to store data. Due to their
dynamic nature and reliance on heap-allocated storage, pointer structures tend to have less regular access
patterns than array structures.

We call applications that make extensive use of pointer structures pointer-manipulating programs.
Not surprisingly, techniques for reducing and tolerating latency that were developed primarily for applica-
tions that manipulate data stored in array structures are not as effective for pointer-manipulating programs
[11]. In addition, many techniques are fundamentally limited by their focus on the manifestation of the
problem (memory latency), rather than its cause (poor reference locality).

In general, reference locality can be improved either by changing a program’s data access pattern
or its data organization and layout. The first approach has been successfully applied to improve the cache
locality of scientific programs that manipulate dense matrices [13, 2, 8]. Figure 1 illustrates this with an
example. If it is possible to interchange the loops as shown in the code snippet on the right, the resultant
data reference pattern will step through all array elements in a cache block before accessing the next block,
reducing the number of potential cache misses by a factor of four. Two properties of array structures—uni-
form, random access to elements, and a number-theoretic basis for statically analyzing data dependen-
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cies—allow compilers to analyze array accesses and perform transformations that reorder accesses without
affecting a program’s result

Unfortunately, pointer structures share neither property. Consider, for example, a tree structure. A
key search on this tree structure has to start at the root of the tree and follow tree node pointers to the
appropriate leaf. Reordering these accesses is, in general, impossible. In addition, although much progress
has been made in pointer-analysis techniques, they are still not strong enough to guarantee that reordering
pointer accesses will not affect a program’s result. Pointer structures are however composed of separated,
independently allocated pieces and possess an extremely powerful property of location transparency: ele-
ments in a compound data structure can be placed at different memory (and cache) locations without
changing a program’s semantics. The thesis of this work is that careful placement of structure elements
provides the essential mechanism to improve the cache locality of pointer-manipulating programs, and
consequently, their performance.

This paper seeks to make two contributions in bringing our recent research results [3,4,5,6] to a
broad professional audience. First, we explain how programmers can manually improve cache perfor-
mance with techniques, such as clustering, compression, and coloring (Section 2). Second, we explore how
to lessen a programmer’s burden via semi-automatic and automatic tools that improve cache performance
by reordering fields when structures are defined, carefully placing nodes in memory at allocation time, and
dynamically reorganizing extant data structures (Section 3).

2 Designing Cache-Conscious Data Structures
A cache is a small, fast memory that stores data likely to be accessed in the near future. Data is

typically transferred in 32-128-byte blocks to amortize the high cost of accessing memory. Typically a
given block can be placed in one of only 1, 2, or 4 cache locations (the associativity) to limit the blocks
searched on a cache access. An access to a present block hits, while access to a not-present block misses.
Misses can be categorized with the 3C’s [9]: compulsory misses for a block’s first reference, capacity
misses due to a cache’s finite size, and conflict misses due to limited associativity.

for i = 0 to n do
for j = 0 to m do

...

... = A(j, i)

...
done

done

for j = 0 to m do
for i= 0 to n do

...

... = A(j, i)

...
done

done

A[0,0] A[0,3]

A[2,0]

Figure 1. Improving software locality through program transformation. In the worst case, the
code snippet on the left will suffer a cache miss on every access, whereas that on the right will incur a
cache miss only on every fourth access.
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Figure 2 illustrates different approaches to improving cache performance. The shaded units indi-
cate contemporaneously accessed data items. Figure 2a illustrates the implicit prefetching achieved by
packing cache blocks with contemporaneously accessed data. More globally, Figure 2b illustrates why this
packing reduces both compulsory and capacity misses. Finally, Figure 2c illustrates why mapping concur-
rently accessed structure elements (which do not fit in a single cache block) to non-conflicting cache
blocks reduces conflict misses.

This section discusses three general data placement design principles that can be combined in a
wide variety of ways to produce cache-conscious data structures. Clustering attempts to pack data structure
elements likely to be accessed contemporaneously into a cache block. This increases cache block utiliza-
tion and reduces the cache block working set (see Figure 2). Coloring segregates heavily and infrequently
accessed elements in non-conflicting cache regions. This reduces cache conflicts. Compression reduces
structure size or separates the active portion of structure elements. This increases the benefits that arise
from applying clustering or coloring.

2.1 Clustering
Clustering attempts to pack in a cache block, data structure elements likely to be accessed contem-

poraneously. Clustering improves spatial and temporal locality and provides implicit prefetching.
To illustrate the concept let us consider a tree structure. An effective way to cluster a tree is to pack

subtrees1 into a cache block. (Figure 6 shows a subtree-clustered binary tree.) An intuitive justification for
binary subtree clustering is as follows. For a series of random tree searches, the probability of accessing
either child of a node is 1/2. With k nodes in a subtree clustered in a cache block, the expected number of
accesses to the block is the height of the subtree, log2(k+1), which is greater than 2 for k > 3. Consider the

1. The term subtree is used to refer to subtree regions rather than complete subtrees.

Figure 2. Improving cache performance (block size = 3 words, capacity = 5 blocks, associativity =
1). (a) Cache block utilization can be improved by packing cache blocks with contemporaneously
accessed data. (b) Cache block working set can be reduced by a similar technique applied across multiple
cache blocks. (c) Cache conflicts can be reduced by having contemporaneously accessed data map to dif-
ferent cache locations.
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Cache block
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alternative of a depth-first clustering scheme, in which the k nodes in a block form a single parent-child-
grandchild-... chain. Here the expected number of accesses to the block per tree search is bounded by 2.

Of course, this analysis assumes a random access pattern. For specific access patterns, such as
depth-first search, other clustering schemes may be better. In addition, tree modifications can destroy local-
ity. However, our experiments indicate that for trees that change infrequently, subtree clustering is far more
efficient than allocation-order clustering, which places contemporaneously allocated tree nodes in the same
cache block.

2.2 Coloring
Caches have finite associativity, which means that only a limited number of concurrently accessed

data elements can map to the same cache block without incurring conflict misses. Coloring maps contem-
poraneously accessed elements to non-conflicting regions of the cache. Figure 3 illustrates a 2-color
scheme for a 2-way set-associative cache (easily extended to multiple colors). A cache with C cache sets
(each set contains a = associativity blocks) is partitioned into two regions, one containing p sets, and the
other C – p sets. Frequently accessed structure elements are uniquely mapped to the first cache region (i.e.,
such that they don’t conflict with each other), and the remaining elements are mapped to the other region.
The mapping ensures that heavily accessed data structure elements do not conflict among themselves and
are not replaced by infrequently accessed elements. In addition, if the gaps in the virtual address space that
implement coloring correspond to multiples of the virtual memory page size, this scheme does not waste
any physical memory.

2.3 Compression
Compressing data structure elements enables more elements to be clustered in a cache block. This

both increases cache block utilization and shrinks a structure’s memory footprint, which can reduce capac-
ity and conflict misses. Compression typically requires additional processor operations to decode com-
pressed information. However, with high memory access costs, computation may be cheaper than
additional memory references. Structure compression techniques include data encoding techniques, such
as key compression [7], and structure encoding techniques, such as pointer elimination and hot/cold struc-
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Figure 3. Coloring data structure elements to reduce cache conflicts. Frequently accessed elements
are uniquely mapped to a portion of the cache so that they are not displaced by infrequently accessed ele-
ments. This is accomplished by inserting gaps in the virtual address space that are kept empty.
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ture splitting.
Pointer elimination replaces pointers by computed offsets. The classic example of pointer elimina-

tion is the implicit heap data structure, in which children of a node are stored at known offsets in an array.
Another example is eliminating the internal subtree pointers from the clusters in the tree shown in Figure 6.

Hot/cold structure splitting is based on the observation that most searches examine only a portion
of individual elements until a match is found. Structure splitting separates heavily accessed (hot) portions
of data structure elements from rarely accessed (cold) portions (see Figure 5b). This slightly increases the
total size of the data structure, but can significantly reduce the size of the hot “working set.”

3 Strategies for Cache-Conscious Data Placement
While cache-conscious pointer structure design offers significant performance benefits, there are

several reasons why this approach is difficult for the average programmer to apply to real programs. First,
application of these design principles is dependent on the data structure and its associated access pattern,
and consequently requires complete understanding of an application’s code and data structures. Moreover,
they require knowledge of the underlying cache architecture—something many programmers are unfamil-
iar with. Finally, they require significant rewriting of an application’s code.

To address these problems, we have designed and evaluated several mostly-automatic and com-
pletely-automatic strategies for producing cache-conscious pointer structures. All these strategies have the
common goal of making the benefits of cache-conscious data structures available to an average program-
mer, just as compilers provided programmers, unwilling or unable to code in assembly language, the abil-
ity to write high-performance programs. The different strategies apply the design principles described in
the previous section to transform existing pointer structures into cache-conscious versions.

We choose to organize the various cache-conscious strategies according to the time—definition,
allocation, or access time—when they are applied to data structures. Cache-conscious pointer structures

Cache-conscious Definition

Cache-conscious Allocation

Cache-conscious Reorganization

Cache-conscious Data Structure

Figure 4. Using cache-conscious strategies to produce a cache-conscious data structure. The dif-
ferent cache-conscious strategies can be combined in a wide variety of ways to produce a cache-con-
scious data structure.

no action structure splitting field reordering

no action ccmalloc

no action Topology-based reorganization (ccmorph) Profile-based reorganization (GC)
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can be constructed by changing the structure definition, by modifying the allocation policy for structure
elements, or by reorganizing the structure layout. Changing a structure’s definition by reordering fields
permits clustering fields that are accessed contemporaneously in the same cache block. Splitting structures
into a hot and cold portion based on program accesses permits packing more hot instances, that are
accessed together, in the same cache block. Both of these techniques increase cache block utilization.
Cache-conscious allocation attempts to co-locate contemporaneously accessed data elements in the same
physical cache block at allocation time. This improves cache performance by increasing cache block utili-
zation. Finally, cache-conscious reorganization attempts to transform the memory layout of pointer struc-
tures by linearizing them with respect to the expected data access pattern, and by mapping structure
elements to reduce cache conflicts. The expected access pattern can be obtained from program profiles. For
certain pointer structures such as trees, access information can be gleaned from data structure topology.

Figure 4 presents a flowgraph that illustrates how the various cache-conscious strategies described
later in this section can be combined to produce a cache-conscious data structure.

3.1 Cache-Conscious Structure Definition
This section focuses on the internal organization of structure elements and explores two cache-

conscious definition techniques—structure splitting and field reordering—that can improve the cache
behavior of programs. Figure 5 illustrates the relationship of cache-conscious definition technique to the
size of structure instances. As the figure indicates, there are three possibilities, depending on the size of
structure instances relative to the cache block size. The remainder of this section describes these tech-
niques in more detail.

3.1.1 Structure Splitting
Many Java objects are comparable to the size of a cache block (case 2) [5]. In addition, since Java

is a type-safe language, class (structure) splitting can be automated. The first step in this process is to iden-

Figure 5. Cache-conscious structure definition. In case 1, the structure has a single field and is much
smaller than the cache block size so no action is necessary at definition time. In case 2, where the
structure size is comparable to the cache block size, splitting may permit multiple hot structure
instances to be packed in the same cache block. Finally in case 3, where the structure size is much
larger than the cache block size, field reordering may improve cache block utilization.

Case 1: Structure size << cache block size

Case 2: Structure size ≅ cache block size

Case 3: Structure size >> cache block size

S1

S2

S3

f1

f1 f2 f3 f4

f1 f2 f3 f4 f5 f6 f7 f8 f9

f3 f9 f5 f1 f6 f8 f7 f4 f2S3’

S2’ f3 f1 f2 f4
Structure
splitting

Field reorganization

S1 f1

hot cold

cache block size

No action



                                                                                       7

tify class member fields as hot (frequently accessed) or cold (rarely accessed). While it may be possible to
classify some member fields via static analysis, we profile a program to determine member access fre-
quency since this appears to be a simpler and more general approach. A compiler extracts cold fields from
the class and places them in a new object, which is referenced indirectly from the original object. Accesses
to cold fields require an extra indirection to the new class, while accesses to hot fields remain unchanged.
The overhead of splitting includes the space cost of an additional reference from the hot portion to the cold
portion, code bloat, more objects in memory, and an extra indirection for accesses to cold fields. The split-
ting algorithm takes these factors into account and is carefully designed to reduce these costs (see [5] for
details). In addition, we use our garbage collection scheme for cache-conscious object co-location (see
Section 3.3.2) to aggressively exploit the advantage offered by smaller (hot) class instances by packing
more hot instances in the same cache block.

For five medium-sized Java benchmarks, class splitting combined with our garbage collection
scheme for cache-conscious object co-location reduced L2 cache miss rates by 29–43%, with class split-
ting accounting for 26–62% of this reduction, and improved performance by 18–28%, with class splitting
contributing 22–66% of this improvement [5]. For languages such as C and C++, which do not permit
automatic structure splitting, the algorithm’s splitting recommendations can be used for programmer feed-
back.

3.1.2 Field Reordering
Legacy applications were designed when machines lacked multiple levels of cache and memory-

access times were more uniform. In particular, commercial C applications often manipulate large struc-
tures. In this case, structure splitting is likely to produce hot instances that are larger than a cache block,
making it ineffective. Reordering structure fields to place those with high temporal affinity in the same
cache block can improve cache block utilization. Typically, fields in large structures are grouped conceptu-
ally, which may not correspond to their temporal access pattern. Unfortunately, the logical order for a pro-
grammer may cause structure references to interact poorly with a program’s data access-pattern and result
in unnecessary cache misses. Compilers for many languages are constrained to follow the programmer-
supplied field order and so cannot correct this problem.

To investigate the benefits of field reordering, we implemented an algorithm for recommending
reordering of structure fields in C programs. This field reordering algorithm correlates static information
about the source location of structure field accesses with dynamic information about the temporal ordering
of accesses and their execution frequency. This data is used to construct a field affinity graph for each
structure. These graphs are then processed to produce field order recommendations. Measurements indi-
cate that reordering fields in 5 active structures improves the performance of Microsoft SQL Server 7.0, a
large, highly tuned commercial application, by 2–3% on the TPC C benchmark [5].

3.2 Cache-Conscious Structure Allocation
The elements of a data structure are typically allocated with little concern for a memory hierarchy.

The resulting layout may interact poorly with the program’s data-access patterns, thereby causing unneces-
sary cache misses and reducing performance. Cache-conscious allocation addresses this problem by
attempting to co-locate contemporaneously accessed data elements in the same cache block. Since a heap
allocator is invoked many times, it must use techniques that incur low overhead. Further, a heap allocator
has an inherently local view of a structure. For these reasons, our cache-conscious heap allocator (ccmal-
loc) only performs local clustering. ccmalloc is also safe, in that incorrect usage only affects program
performance, but not correctness.

ccmalloc is a memory allocator similar to malloc, but ccmalloc takes an additional param-
eter that points to an existing data structure element likely to be accessed contemporaneously with the ele-
ment to be allocated (e.g., the parent of a tree node). ccmalloc attempts to locate the new data item in the
same cache block as the existing item. The following code from the Olden benchmark health illustrates the
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approach:

Our experience with ccmalloc indicates that even a programmer unfamiliar with an application can
often select a suitable parameter by local examination of code surrounding the allocation statement and
obtain good results.

In a memory hierarchy, different cache block sizes means that data can be co-located in different
ways. ccmalloc focuses only on L2 cache blocks. In the Sun UltraSPARC 1 used in this study, L1 cache
blocks are only 16 bytes (L2 blocks are 64 bytes), which severely limits the number of objects that fit in a
block. Moreover, the bookkeeping overhead in the allocator is inversely proportional to the size of a cache
block, so larger blocks are both more likely to be successful and to incur less overhead. On a system with a
larger L1 cache block it would probably be advantageous to adopt a hierarchical approach with co-location
first attempted in the same L1 cache block. If that fails the subsequent co-location attempt could be in the
same L2 cache block.

Cache-conscious heap allocation (ccmalloc) resulted in a speedup of 27% for VIS, a 160,000
line system that formally verifies finite state systems using Binary Decision Diagrams (BDDs) [4]. Signifi-
cantly, very few changes to the program (less than 300 lines of code) produced these large performance
improvements.

3.3 Cache-Conscious Structure Reorganization
A complementary approach to cache-conscious allocation is to reorganize a structure’s memory

layout to correspond to its access pattern. Unlike cache-conscious allocation, which can be done just once
when a data element is created, cache-conscious reorganization can be done as often as required. General
graph-like structures require a detailed profile of a program’s data access patterns for successful memory
layout reorganization [1, 6]. However, a very important class of structures (trees) possess topological prop-
erties that permit cache-conscious data reorganization without profiling. Section 3.3.1 presents a transpar-
ent (semantics-preserving) cache-conscious tree reorganizer (ccmorph) that applies the clustering and
coloring techniques described in Section 2. ccmorph is appropriate for “read-mostly” data structures—
one that are built early in a computation and subsequently heavily referenced. With this approach, neither
the construction nor the consumption code need change, as the structure can be reorganized between the
two phases. Moreover, if the structure changes slowly, ccmorph can be periodically invoked.

Languages that support garbage collection offer a more attractive alternative. Copying garbage
collectors, which support automatic memory management, determine when dynamically allocated storage
has become unreachable and automatically recycle that memory by traversing the heap and copying live
data to a separate region of memory. All memory in the traversed space is then freed up for reuse. Thus, the
copying phase of garbage collection offers an invaluable opportunity to reorganize a program’s data layout
to improve cache performance. However, such a scheme relies on the ability to transparently relocate heap
data. In addition, it requires that pointers be distinguished from non-pointer data. Hence, it cannot be
implemented as described for low-level languages, such as C or C++, that support arbitrary pointer-manip-

void addList (struct List *list, struct Patient *patient)
{

struct List *b;
while (list != NULL){

b = list;
list = list->forward;

}
list = (struct List *)

ccmalloc(sizeof(struct List), b);
list->patient = patient;
list->back = b;
list->forward = NULL;
b->forward = list;

}
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ulation operations and preclude transparent data movement, though new hardware mechanisms proposed
by Luk and Mowry may remove this obstacle [10]. On the other hand, object-oriented languages, such as
Java and Cecil, and functional languages, such as ML and Lisp, permit copying garbage collection. For
these languages, a copying garbage collector can be used to reorganize data and produce a cache-conscious
structure layout.

3.3.1 Topology-based Structure Reorganization
In a language such as C, which supports unrestricted pointers, analytical techniques cannot pre-

cisely identify all pointers to a structure element. Without this knowledge, a system cannot move or reorder
data structures without an application’s cooperation (as it can in a language designed for garbage collection
[6]). However, if a programmer guarantees the safety of the transformation, ccmorph transparently reor-
ganizes a tree data structure to improve its locality by applying the clustering and coloring techniques from
Section 2.

ccmorph operates on tree-like structures that have homogeneous elements and do not have exter-
nal pointers into the middle of the structure (or on any data structure that can be decomposed into compo-
nents satisfying this property). However, it has a liberal definition of a tree in which elements may contain
a parent or predecessor pointer. A programmer supplies ccmorph with a pointer to the root of a data
structure, a function to traverse the structure (next_node), and cache parameters. For example, the follow-
ing code is used to reorganize the quadtree data structure in the Olden benchmark perimeter. The program-
mer supplies the next_node function:

ccmorph copies a structure into a contiguous block of memory (or a number of contiguous
blocks for large structures). In the process, it partitions a tree-like structure into subtrees that are laid out
linearly (see Figure 6).The structure is also colored to map the first p elements traversed to a unique portion
of the cache (determined by the Color_const parameter) that will not conflict with other structure elements.

main()
{

...
root = maketree(4096, ..., ...);
ccmorph(root, next_node, Num_nodes,
Max_kids, Cache_sets, Cache_blk_size,

Cache_associativity, Color_const);
...

}

Quadtree next_node(Quadtree node, int i)
{

/* Valid values for i are -1,
1 ... Max_kids */

switch(i){
case -1:

return(node->parent);
case 1:

return(node->nw);
case 2:

return(node->ne);
case 3:

return(node->sw);
case 4:

return(node->se);
}

}
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ccmorph determines the values of p and the size of subtrees from the cache parameters and the structure
element size. In addition, it takes care to ensure that the gaps in the virtual address space that implement
coloring correspond to multiples of the virtual-memory page size.

ccmorph was used to optimize the performance of RADIANCE, a 60,000 line program for mod-
eling the distribution of visible radiation in an illuminated space. RADIANCE’s primary data structure is
an octree that represents the scene to be modeled. Cache-conscious clustering and coloring of the octree
produced a speedup of 42% (this includes the overhead of restructuring the octree) [4].

3.3.2 Profile-based Structure Reorganization Using Garbage Collection
A cache-conscious data layout places objects with high temporal affinity near each other, so that

they are likely to reside in the same cache block. In this approach, a program is instrumented to profile its
data access patterns. The profiling data gathered during an execution is used to optimize that execution,
rather than a subsequent one. We rely on a property of object-oriented programs—most objects are small—
to perform low overhead real-time data profiling [5, 6]. The garbage collector uses this profile to construct
an object affinity graph, in which weighted edges encode the temporal affinity between objects (nodes). A
new copying garbage collection algorithm makes a depth-first traversal of the affinity graph to produce
cache-conscious data layouts while copying objects. The technique is completely automatic and requires
no programmer intervention.

Experimental results for several object-oriented programs show that this cache-conscious data
placement technique reduces cache miss rates by 16–42% and improves program performance by 10–37%
(including the real-time data profiling overhead) [5, 6]. Further, we compared our cache-conscious copying

Cache

Memory
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3

4
5

Empty

1

2 3 4 5

Figure 6. Cache-conscious tree reorganization. Subtree-clustering is applied to the entire tree. The
top-levels (frequently accessed elements) of the tree are allocated such that they map to a portion of the
cache where they cannot be displaced by lower-level tree nodes (infrequently accessed elements).

p elements
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scheme against an earlier algorithm that attempted to improve a program’s virtual memory (page) locality
by changing the traversal algorithm used by a copying garbage collector (the Wilson-Lam-Moher algo-
rithm [12]). The results show that our cache-conscious object layout technique reduces cache miss rates by
14-41%, and improves program performance by 8–31% over their technique, which indicates that page-
level improvements are not necessarily effective at the cache level [6].

4 Conclusions
Traditionally, pointer-based data structures were designed and programmed as if memory access

costs were uniform. Increasingly expensive memory hierarchies have falsified this simplifying assumption
and opened an opportunity for significant performance improvements with redesigned data structures that
use caches more effectively. This paper discusses three data placement design principles—clustering, com-
pression, and coloring—that programmers can use to improve the spatial and temporal locality of pointer-
based data structures.

However, the design of cache-conscious data structures requires a deep understanding of a pro-
gram’s structures and operation, and familiarity with a machine’s memory architecture. These prerequisites
may limit the use of cache-conscious data structures to performance critical portions of code written by
expert programmers, much as assembly programming is used today. To make the performance benefits of
cache-conscious structures available to the average programmer, this paper presents several effective strat-
egies that reorder the internal layout of a structure’s fields and arrange structure instances in memory.
While some of these techniques require modest programmer assistance for low-level languages such as C
and C++, others are completely automatic. Measurements show that these techniques reduce cache miss
rates and achieve significant performance improvements (up to 40%) on real programs.

Based on past trends and future technology, the processor-memory performance gap will continue
to increase and software will continue to grow larger and more complex. Although the algorithmic and
data structure design phase of software development is the first, and perhaps best, place to address this
growing gap, the complexity of software design, and an increasing tendency to build large software sys-
tems by gluing together smaller components, does not favor a focused, integrated approach. These realities
make techniques for producing cache-conscious data layouts, such as those presented in this paper, an
essential aspect of the process of achieving the highest performance on current and future machines. In
addition, given the restrictions low-level languages place on generating cache-conscious data layouts, these
techniques may help narrow, or even reverse, the performance gap between high-level programming lan-
guages, such as Lisp, ML, or Java, and low-level languages, such as C and C++.
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