Preliminary Draft of SPAA’99 Submission

A System-Level Specification Frameverk for /O Ar chitectures:

Mark D Hill, Anne E Condon, Manoj Plakal, Daniel J Sorin
Computer Sciences Department
University of Wsconsin - Madison
{markhil I, condon, pl akal , sori n} @s.w sc. edu

Contact AuthorMark D. Hill, markhi | | @s. wi sc. edu

Abstract

A computersystems uselesanlessit caninteract with the outsideworld throughinput/output(l/O) devices.l/O
systemsire comple, includingaspectsud asmemory-mappedpefmations,interrupts,andbusbridges.Oftenl/O
behavioris describedfor isolateddeviceswithouta formal descriptionof how the completel/O systenbehaves.
Thelack of an end-to-endsystendescriptionmalesthe tasksof systenprogrammes and hardware implementos
more dificult to do corectly.

This paper proposesa framevork for formally describingl/O architectues called Wisconsinl/O (WIO). WIO
extendswork on memoryconsistencynodelthat formally specifythe behaviorof normalmemory}o handlecon-
sideations such as memory-mappeadpemtions, device opemtions, interrupts, and opefations with side effects.
SpecificallyWIO asksead processonr devicethat canissuek opemtion typesto specifyorderingrequirementsn
ak x k table A systenobeysWIO if there alwaysexistsa total order of all opemtionsthat respectgprocessomand
deviceorderingrequirrmentsandhasthevalueof eat “r ead” equalto thevalueof themostrecent‘write” to that
address.

This paperthenillustratesWIO with a directory-basedystenmwith a single /O bus. We describethis systens
orderingrulesand protocolin detail. Finally, we apply our previouswork usingLamport’s logical clocksto show
that our &le implementation meets its WIO specification.

Keywords: input/output, memory consistencache coherencegrification

1. This work is supported in part by the National Scienoarfélation with grants MIP-9225097, MIPS-9625558, CCR 9257241, aAdIBR3632, a Ws-
consin Romnes Felleship, and donations from Sun Microsystems and Intel Corporation.

1 Introduction

Moderncomputethardwareis comple. Processorexecuteinstructionsout of programorder, non-blockingcaches
issuecoherencdransactionsoncurrently and systeminterconnecthave moved well beyond simple busesthat
completedransaction®neatatime in atotal order Fortunately moston this compleity is hiddenfrom software
with an interfice called the computer*architecturé.A computer architecture includes at least four components:

1) Theinstructionsetarchitectue givesthe userlevel andsystem-Igel instructionssupportecand how they are
sequenced (usually serially at each processor).

2) A memoryconsistencynodel(e.g., sequentiatonsisteng, SFARC Total StoreOrder or CompagAlpha) gives
the behgior of memory

3) Thevirtual memory achitectuie specifies the structure and operation of page tables and transidters.b
4) Thelnput/Output(l/O) architectue specifies ha programs interact with geees and memory

This paperexaminesssuedn the often-nglectedl/O architectureThel/O architectureof modernsystemss com-
plex, asillustratedby Smothermars venerabld/O taxonomy[10]. It includes atleastthefollowing threeaspects.
First, software, usually operatingsystemdevice drivers, mustbe able to direct device activity andobtaindevice
dataandstatus.Most systemdgodayimplementthis with memory-mappedpeftions A memory-mappeapera-
tion is anormalmemory-referencastruction(e.g.,load or store)whoseaddresss translatedy thevirtual mem-
ory systemto anuncacheablphysicaladdresghatis recognizedy a device insteadof regularmemory A device
respondgo aloadby replyingwith a dataword andpossiblyperforminganinternalside-efect (e.g.,poppingthe
readdatafrom a queue).A device respondgo a storeby absorbingthe written dataand possiblyperformingan
internal side-efect (e.g., sendingan external message)Precisedevice behaior is device specific. Secondmost
systemssupportinterrupts wherebya device sendsa messageo a processarA processoreceving an interrupt
mayignoreit or jump to aninterrupthandlerto processt. Interruptsmaytransfemo information(beyondthefact
thatan interrupthasoccurred),include a “type” field, or less-commonhjinclude one or more datafields. Third,
mostsystemssupportdirectmemoryaccesgDMA). With DMA, a device cantransferdatainto or out of aregion
of memory (e.g., 4Kbytes) without processor inggrion.

An examplethatusesall threetypesof mechanismss a disk read.A processobeginsadisk readby usingmem-
ory-mappedstorego inform adisk controllerof the sourceaddres®n disk, thedestinatioraddressn memory and
thelength.The processothengoeson to otherwork, becausea disk accessakesmillions of instructionopportuni-
ties. The disk controllerobtainsthe datafrom disk andusesDMA to copy it to memory Whenthe DMA is com-
plete, the disk controller interrupts the processor to inform it that the datlabée.

A problemwith currentl/O architecturess that behaior of disks, network interfaces,frame buffers, I/O buses
(e.q.,PCl), systeminterconnectge.g.,PentiumPrdous and SGI Origin 2000interconnect)andbus bridges(that
connect/O busesandsysteminterconnectsis usuallyspecifiedn isolation. Thistendeng to specifythingsin iso-
lation males it dificult to tale a “systems” vie to answer systemalel questions, such as:

* Whatmusta programmeto do (if anything)if he or shewantsto ensurehattwo memory-mappedtoresto the
same deice arrive in the same order?

* How doesadisk implementorensurethata DMA is completesothataninterruptsignallingthatthe datais in
memory does not aue at a processor before the data is in memory?

* How muchis the systeminterconnecbr busbridgedesignerallowedto reordertransactiongo improve perfor-
mance or reduce cost?

This paperproposesa formal framework, calledWsconsinl/O (WI0), thatfacilitatesthe specificationof systems
aspectf an I/O architecture WIO builds on work on memory consisteng modelsthat formally specifiesthe
behaior of loadsandstoresto normalmemory Lamports sequentiatonsisteng (SC), for example,requiresthat
“the resultof ary executionis the sameasif the operationsof all the processorsvereexecutedn somesequential
ordet andthe operationf eachindividual processoappeain this sequencén the orderspecifiedby its program

1

[5].” WIO, however, mustdealwith severalissuesotincludedin mostmemoryconsisteng models:(a) processor
canperformmore operationge.g., memory-mappedtoresandincominginterrupts),(b) devices performopera-
tions(e.g.,disksdoing DMA andsendingnterrupts),(c) operationsanhave sideeffects(e.g.,amemory-mapped
load poppingdataor aninterruptinvoking a handler),and(d) it may not be a goodideato requirethatthe order
amongoperationdssuedby the sameprocessor/déce (e.g.,memory-mappedtoresto differentdevices)always
be presered by the system.

To handlethis generality WIO askseachprocessopr device to provide atableof orderingrequirementslf a pro-
cessor/deice canissuek typesof operationstherequiredtableis k x k, wherethei,j-th entry specifiegsheordering
the systemshouldpresere from an operationof type i to an operationof type j issuedlater by that processor/
device (e.g.,a disk might never needorderto be presered amongthe multiple memorytransactionsieededo
implementa DMA). A systemwith p processorandd devicesobeys WIO if thereexists a total orderof all the
operationgssuedn thesystemhatrespectshe subsebf the programorderof eachprocessoanddevice, asspec-
ified in the p+d tablesgiven as parameterssuchthat the value of each“read” is equalto the value of the most
recent “write” to that address

This paperis organizedasfollows. In Section2, we discusselatedwork. Section3 presentshe modelof the sys-
temwe arestudying.Sectiond4 explainsthe orderingsthat are usedto specifythe I/O architectureand Section5
defineswisconsinl/O consisteng basedn theseorderings Section6 describes systemwith 1/0 thatis comple
enoughto illustratereal issues put simple enoughto be presentedn a conferencepaper In Section7, we prove
that the system described in Secttoabg/s Wisconsin I/O. FinallySection8 summarizes our results.

We seethis paperashaving threecontritutions.First, we presentiformal framework for describingsystemaspects
of 1/0 architecturesSecondwe illustrate that framework in a completeexample.Third, we useour verification
technigue(which usesLamports logical clocks,andwhich hasbeenappliedin previouswork[11, 7, 2]) to shav
that our @ample implementation meets its specifications.

2 Related Work

Thepublicly availablework thatwe foundrelatedto formally specifyingthe systembehaior of I/O architecturess

sparseAs discussedn the introduction,work on memoryconsisteng modelis related[1]. Prior to our current
understandingf memoryconsisteng models,memorybehaior was sometimesspecifiedindividually by hard-
ware elementge.g.,processarcache interconnectand memorymodule).Memory consisteng modelsreplaced
this disjointview with a specificatiorof how the systembehaeson accesseto mainmemory We seekto extenda

similar approach to include accesses across I/O bridges anddesde

Marny populararchitecturessuchasintel Architecture-32(x86) and Sun SFARC, appeamot to formally specify
their I/O behaior (at leastnot in the public literature). An exceptionis CompagAlpha, where Chapter8 of its
specification9] discusse®rderingof accesseacrosd/O bridges,DMA, interrupts,etc. Specifically a processor
accessea device by postinginformationto a “mailbox” atanl/O bridge.Thebridgeperformstheaccesonthel/
O bus. The processocanthenpoll the bridgeto seewhenthe operationcompletesor to obtainary returnvalue.
DMA is modeledwith “control” accesseshat are completelyorderedand “data” accessesghat are not ordered.
Consistentvith Alpha’s relaxed memoryconsisteng model,memorybarriersareneededn mostcasesvheresoft-
waredesiresordering(e.g.,afterreceving aninterruptfor a DMA completionandbeforereadingthe newly-writ-
ten memorybuffer). We seekto definea more generall/O framewvork thanthe specificone Alpha choseandto
more formally specify ho I/O fits into the partial and total orders of a syseemémory consisteganodel.

3 System Model

We considera systemconsistingof multiple processonodesdevice nodesandmemorynodesthatshareaninter-
connectFigurel shavstwo possiblerealizationsof sucha multiprocessosystemwheresharedmemoryis imple-
mentedusing either a broadcasbus or a point-to-pointnetwork with directories[3]. The addressablenemory

1. The same table can be re-used for homogeneous processorgicesl té precisely define “read” and “write” in later sections.

spacds dividedinto ordinarycacheablenemoryspaceanduncacheabl&O spaceWe now describesachpart of
the system.

ProcessoiNodes:A processonodeconsistsof a processqrcache network interface,andinterruptregister Each
processorissues”a streamof operationsandtheseoperationsare listed and describedn Tablel. We classify
operationdasedn whetherthey readdata(ReadOPr write data(WriteOP).If the cachecannotsatisfyanoper-
ation, it initiatesatransactior(thesewill bedescribedn Section6) to eitherobtaintherequestedlatain the neces-
sarystateor interactwith an1/O devicel. In addition,the processoflogically) checksits interruptregistetr which
we considerto be partof the I/O spacebeforeexecutingeachinstructionin its program,andit may branchto an

FIGURE 1. System Oganizations

MEMORY BUS
Bus-based /O Bridge
Memory
system

1/0 BUS

Device Device Device Device
Processor| Memory| Processor| Memory|

I

Network interface

Directory Device Device
Processor| Memory|

+
Memory

/0 BUS
Network interface 1/0 Bridge

Interconnection Network

Directory-based
system

interrupt handler depending on thedue of the interrupt ggster

TABLE 1. Processor Operations

Operation | Class Description

LD ReadOP | Load - load werd from ordinary memory space
ST WriteOP | Store - store wrd to ordinary memory space
LDio ReadOP | Load I/O - load werd from 1/O space

STio WriteOP | Store I/O - store wrd to 1/O space

Device Nodes:We modela device nodeasa device processornda device memory Eachdevice processorcan
issueoperationgo its device memory In addition,it canalsoissueoperationsvhich leadto transactiongcrosshe
I/O bridge(via thel/O bus). Theserequestsllow a device to readandwrite blocksof ordinarycacheablenemory
(via DMA) and to write to a processor nasl@iterrupt rgister The list of dgice operations is sk in Table2.

1. Note that the cache could also “proalii” issue transactions (e.g., it could prefetch blocks into the cache).

A requesfrom a processonodeto a device memorycan“cause”the device to “do somethinguseful! For exam-
ple, areadof adisk controllerstatusregistercantriggeradisk readto begin. Thisis modeledby thedevice proces-
sorexecutingsomesortof a program(thatspecifiegthe device behaior) which, for example,makesit sitin aloop,
checkingfor externalrequestdgo its device memory andthendo certainthings(e.g.,manipulatephysical devices)
before possiblyan operationto its device memoryor to ordinary memory The device programwill usually be
hard-codedn thedevice controllercircuits, while therequestgrom processonodeswill be partof adevice driver
that is part of the operating system.

TABLE 2. Device Operations

Operation | Class Description

LDio ReadOP | Load /O - load werd from deice memory (I/O space)
STio WriteOP | Store I/O - store wrd to deice memory (I/O space)
INT - Interrupt - send an interrupt to a processor node
LDblk ReadOP | Load Block - load cache block from ordinary memory
SThlk WriteOP | Store Block - store cache block to ordinary memory

MemorynodesMemorynodescontainsomeportionof theordinarysharednemoryspaceln asystenthatusesa
directory protocol, they also containthe portion of the directory associatedvith that memory Memory nodes
respondo requestsnadeby processonodesanddevice nodesTheir behaior is definedby the specificcoherence
protocol used by the system.

Interconnect:The interconnectconsistsof the network betweenthe processotand memory nodes,and the I/O
bridge.This could eitherbe a broadcasbus or a generalpoint-to-pointinterconnectiometwork. Thel/O bridgeis
responsible for handling tfad between the processor and memory nodes, and vieedwdes.

4 Processor and Deice Ordering

In a givenexecutionof the systemat eachprocessopr device thereis atotal orderingof the operationgfrom the
list LD, ST, LDio, STio, INT, LDblk, andSTblk) thatcanbeissuedby thatprocessoor device. Call this program
order and denote it by 5

Let necessaryrder beary relaxationof programorderata processopr a device processarfFor example let <, be
thenecessarprderthatrespectprogramorderwith respecto operationdo the sameaddressindalsosatisfieghe
constraints of dbles 3 and 4, where entries in these tables use theifalootation:

A: OP1 <, OP2 alvays
-: no ordering constraint on OP1, OP2 (if not to the same address)
D: OP1 s, OP2 if the addresses of OP1 and OP2 refer to the savice de

TABLE 3. Necessary Ordering at a Pocessor

Operation 2
LD ST LDio STio
— LD A A A A
S ST A A A A
g LDio A A D D
8 STio - - D D

TABLE 4. Necessary Ordering at a Deice Processor

Operation 2
LDio STio INT LDblk STblk
LDio D D A A A
—
g STio D D A A A
I INT - - D - -
()
o - - - -
8 LDblk A
STblk - - A - -

Theentriesin thetablereflectthe behaior of currentsystemse.g.,in mostsystemsSTios to multiple devicesare
not guaranteedo be orderedin ary particularway. It is importantto realizethat a programmemwho wishesto
enforceorderingbetweeroperationghatarenot guaranteedo be orderedcancreatean orderingthroughtransitiv-
ity. For example,a programmeicanordera processos LD aftera STio by insertinga LDio to the samedevice as
the STio betweerthetwo operationsSinceSTio <, LDio andLDio <, LD, we have STio <, LD (for this particular
seqguence of three operations).

5 System Ordering: Wisconsin I/O Consistency

Using the definition of necessaryrdering,we cannow definea systemorderingwhich we call Wisconsinl/O

ordering.The definition of Wisconsinl/O (WIO) orderingtakesasa parametean n-tuple of necessargrderings,
suchasthe 2-tuplespecifiedoy Tables3 and. Let <,y be atotal orderingof all LD, ST, LDio, STio, INT, LDblk,

STblk operationf anexecutionof the system.Then<,y, satisfieswWisconsinl/O orderingwith respecto a given
necessary ordering if:

1. sy respects the necessary ordering, and

2.thevaluereadby every ReadOPoperationis the valuestoredby the mostrecentWriteOPoperationto thesame
address in theyg order*

In the nat two sections, we will present a system protocol specification andtbladit obgs WIO.
6 A System Potocol Specification

In this section,we describea protocolfor a directory-basedystemconsistingof the componentsiescribedin
Section3. This descriptionbuilds upon the directory protocol describedin Plakal et al. [7]. The descriptionis
divided into descriptions of the processor nodes, interconnect, Vi€edebridge and memory nodes.

Processonodes:The cacherecevesa streamof LD/ST/LDio/STio operationdrom the processoand,if it cannot
satisfya requestjt issuesa transactiof. The completelist of transactionsincluding block transfertransactions
(Rblk/WbIK) that canonly be issuedby devicesandwhich will be discussedater, are shovn in Table5. Cache
coherencdransaction§GETX/GETS/UPG/WB)are directedto the homeof the memoryblock in question(i.e.,
thememorynodewhich containghe directoryinformationfor thatblock). I/O transactiongRio/Wio) aredirected
to aspecificl/O device andalsocontainanaddres®f a locationwithin the memoryof the device (and,if Wio, the
datato write aswell). The granularityof accesgor anl/O transactioris oneword. Wios do not generatery reply

1. Thisdefinitionis in thespirit of SC,but thereis ananalogouslefinitionfor otherconsisteng modelswherea ReadORloesnot necessar-
ily have to get the alue of the most recent WriteOP (e.g.ABE TSO).

2. As noted earliecaches can also proagly issue transactions without redag an operation from their processors.

messagefrom the target device, while Rios generatea reply messagdrom which the cacheextractsa register
value and passes it to the processor

TABLE 5. Transactions

Transaction Description

GETX Get Exclusie access

GETS Get Shared access

UPG Upgrade (Shared to Exclus) access

wB Write Back

Rio Read /O - read word from 1/O space

Wio Write 1/O - write word to 1/O space

Rblk Read Block - read cache block from ordinary memory
Whblk Write Block - write cache block to ordinary memory

Processonodesmustconformto thelist of behaior requirementspecifiedn Section2.4 of Plakaletal. [7] (e.g.,
a processonodemaintainsat mostoneoutstandingequestor eachblock). They mustalsoconformto the order-
ing restrictiondaid outin Table3. For example,they cannotissuea LD/ST until all LDios precedingt in program
order hae been “performed” (i.e., the reply has beeiiten into the rgister by the cache).

A processomnodes network interfacesendsall transactiongrom the cacheinto the interconnectiometwork. In
addition,the network interfacewill passaWio comingfrom the network to the processos interruptregister It also
will pass all replies to transactions to the cache.

InterconnectThe network ensurepoint-to-pointorderbetweera processonodeanda device node,andit ensures
reliable and eentual delvery of all messages.

Bridge: The I/O bridge performsthe following functions:it receves Rio/Wios from processonodesand broad-
caststhemon the I/O Bus (this hasto be donein orderof receipton a perdevice basis);sendswio repliesfrom

device memoryto processonodes;sendsWios (to interruptregisters)from device processorso processonodes;
participatesn Rblk/Wblk transactiongdiscussedbelow) andbroadcastsompletionacknaviedgmentson the l/O

bus.Thel/O bridgemustobey certainrules.It providessufiicient buffering suchthatit doesnot have to dery (neg-

ative acknavledgmentor NACK) requestssentby processorr devices. It also handlesthe re-try of its own

NACKed requests (to memory noddsh order is obserd in the issuek@rlap of Rblk/Wblk transactions.

Device Nodes:Eachdevice processocanissuelDio/STios to its device memoryandINTS to processointerrupt
registers.INT operationsarecorvertedto Wio transactiondy thel/O bridge.Thesearedirectedto a specificpro-

cessosinterruptregisteranddo notgenerateeply messagesn addition,adevice canalsoissuelLDblk andSThblk

requestsandtheseoperationsare corvertedto Rblk andWhblk transactiondy the bridgeandaredirectedto the

homenode.The datapayloadfor bothrequestss a processocachedine (equalto a block of memoryat a memory
node whichis equalto the coherenceinit for the entiresystem) Both requestgeneratacknaviedgmentfACKS)

onthel/O bus (from the bridge)and,in the caseof the Rblk, the ACK containsthe dataaswell. A Wblk request
carries the data with it.

Eachdevice memoryreceves a streamof LDio/STios from its device processarln addition, it alsorecevesa
streamof Rio/Wios from thebridge(via thel/O bus)whichit logically treatsasLDio/STios. Thesetwo streamsre
interleavedarbitrarily by the device memory For eachincomingRio, thedevice memorysendqvia thebusandthe
bridge)the value of thatlocationbackto the nodethat sentthe Rio. LDio/STio operateon device memorylike a
processos LD/ST operate on its cache.

The device processomustobey the orderingrulesspecifiedin Table. For example,anINT is notissueduntil all
LDblk/STblks precedingt in “device programorder” have beenperformed(i.e., an ACK hasbeenrecevedfrom
the bridge for the corresponding Rblk/WbIk).

6

Memory Nodes:Memorynodesoperateasdescribedn Plakaletal.[7] (with respecto directorystateandtransac-
tions) with the following modificationsfor handlingRblk/Wblk transactionsProtocolactionsdependon the state
of the block at the home node for both transactions.

Rblk:
* Idle or Shaed the home sends the block to the bridge, which broadcast€kinvith the data on the I/Ous.

* Exclusive the homechangestateto Busy-Rblkremovesthe currentowner’s ID from CACHED, andforwards
therequesto thecurrentowner. The ownersendgheblock to the bridge,invalidatesthe block in its cacheand
sendsan updatemessagdwith the block) to the home,which changeghe stateto Idle andwrites the block to
memory The bridge recees the block and broadcasts a@bkdalong with the data on the I/Quié

* Busy-Anythe home MCKs the request.
Whlk:

* Idle: the homestoresthe block to memoryandsendsan ACK to the bridge. The bridge sendsan ACK to the
device (via broadcast on the 1/0 Bus).

* Shaed thehomestoresheblock to memory sendsnvalidationsto all sharedcopies,sendsa countof thecop-
iesto thebridgeandchangeghe stateto Busy-WhblkThebridgewaitsuntil it recevesall ACKsfor theinvalida-
tionsbeforebroadcastinghe transactiorcompletionACK onthel/O Bus. The bridgealsothensendsanackto
the home which enables it to change its statdl&o

* Exclusivethehomestoregheblockto memory sendsaninvalidationto the (previous)owner, sendsan ACK to
the bridge,andchangeghe stateto Busy-Wblk The former ownerinvalidatesits copy andsendsanackto the
bridge, which then sends arCK to the deice and to the home (which then changes its stdtidp

* Busy-Anythe home MRCKs the request.

Note thatwe nowv have two new “busy” homestates Busy-Rblkand Busy-Wblk which sene similar rolesasthe
busy statesusedin the original directoryprotocol. Thesemodificationsmake someformerly impossiblesituations
possibleln particular Writebadk requestsnayfind thehomebusy Onesolutionis to modify thetransactiorcases:

* Writebadk on homeBusy-Rbllkor Busy-Wblk This is the same as when the homBusy-Shaed

7 Proof that an Implementation Satisfies WIO

In this section,we will demonstrat¢hatthe implementatiordescribedn the previous sectionsatisfiesthe defini-
tion of WIO. We will usea verificationtechniquebasedon Lamports logical clocks that we have successfully
appliedto systemswithout 1/O [11, 7, 2]. Thetechniquerelieson beingableto assigntimestampgo operationsn
a systemandthenproving that the orderinginducedby the timestampsasthe propertiesrequiredof the imple-
mentation.Section7.1 providesbackgroundo our verificationtechnigue Section7.2 describeghe timestamping
scheméor our implementatiorand Section?.3 providesthe proof of correctnessf the implementationBoth the
timestamping scheme and proof are intended to be modeas®ns of those presented in ounvpras work [7].

7.1 Backgound to Lamport Clocks!

Our previous work on usingLamportClocksto verify shared-memorynultiprocessosystems[7,11proved that
implementationgwithout I/0O) usinga SGI Origin 2000-like [6,3] directoryprotocolanda SunGigaplane-lile [8]
split-transactiorbus protocolbothimplementSC. Both implementationsisethree-staténvalidation-baseaoher-
enceprotocols.We have alsoextendedthis researchio useLamportclocksto prove thatsystemsbey two relaxed
memory consisterycmodels, SRRC TSO and Compaq Alpha [2].

1. This summary is similar to the summary we present in Section 2.1 of Conddi2¢t al.

7

Ourreasoningnethodassociatefogical timestampswith loads,stores,andcoherencevents.We call our method
LamportClocks becauseur timestampingnodestlyextendsthe logical timestampd.amportdevelopedfor dis-
tributedsystemd4]. Lamportassociate@ counterwith eachhost. The counteris incrementedn local eventsand
its valueis usedto timestampoutgoingmessage$On messageeceipt,a hostsetsits counterto onegreatetthanthe
maximumof its formertime andthetimestampof theincomingmessageTlimestampiesarebrokenwith hostID.
In this manneyLamportcreatesa total orderusingtheseogical timestampsvherecausalityflows with increasing
logical time.

OurtimestampingchemextendsLamport’s 2-tupletimestampdo three-tuples<global . local . node-id>, where
global takes precedencever local, andlocal takes precedencever node-id (e.g.,3.10.11< 4.2.1). Coherence
messagesr transactionsgarryglobaltimestampsln addition,globaltimestamp®rderLD andST operationgel-
ative to transactionsL.ocal timestampsreassignedo LD andST operationsn orderto presere programorderin
Lamporttime amongoperationghat have the sameglobaltimestamp They enablean unboundechumberof LD/
ST operationdbetweertransactionsNode-ID, thethird componenbf a Lamporttimestampjs usedasanarbitrary
tiebrealer betweentwo operationswith the sameglobal andlocal timestampsthusensuringthatall LD andST
operations are totally ordered.

7.2 Timestamping Schemedr Our Implementation

Before we presentthe timestampingschemewe would like to define someconceptsand make somechanges
which will make the timestamping and the proof simplerxpress and understand.

First, we split up Rblk andWhblk transactiongnto two steps:RBIk-Start/Endand WBIk-Start/End,respectely.
Thereasoningbehindthisis asfollows: cachecoherencéransactionge.g.,a GETX) will bring ablockinto a pro-
cessorcachewhereit canbeaccessedntil it is removedvia anothertransactior{e.g.,a WB or anincominginvali-
dationgeneratedby anotherGETX). On the otherhand,RBIk/WhbIk transactionsccessa cacheblock but they do
not give the device permissionto do more than one operation(LDblk/STbIk). It is asif the LDblk/STblk was
immediatelyfollowed by a transactiorthat removed the device’s accesdo the block. BreakingRBIk and WBIk
into Startand End transactionsinifiescachecoherencendDMA transactionsnto oneframewvork andsimplifies
the timestampingandthe proof. This wasnot doneearlier(in Section6) to avoid confusingthe readerwith extra
detail. The changego the protocolare minimal: every RBIk/WBIk transactioris now regardedasa RBIk/WBIKk-
StarttransactionAfter sucha transactiorsucceedsa device nodeis now capableof performinga LDblk/SThblk
operation. The Rblk-End/Wblk-End is considered to occur when the transaction is complete.

Consistenwith our previous work [7], we introducethe notion of a perblock A-state(address-stategt a nodeto
describethe homenodes view of thatnodes accesso thatblock of memory The A-statecanbe oneof A, (Idle),

As (Shaed), or Ay (Exclusivg. The A-stateof a block at a nodechangesasit participatesn transactiongor that
node(eitherinitiatedby it or forwardedto it by thehome).The A-stateis setto A; whenthenoderecevesaninval-
idation or a forwardedGet-Exclusiveor an acknavledgmentfor its own Writebadk requestThe A-stateis setto
Aswhenthenoderecevesa dowvngrade or aresponséo its own Get-ShaedrequestFinally, the A-stateis setto
Ay whenthenoderecevesaresponsgo its own Upgradeor Get-Exclusiveequestalongwith all associatethval-
idation acknavledgmentsin addition,we now definethe A-stateof a device nodefor a block B of memoryto
changedo Agor Ay whenit performsa RBIk-Startor WBIk-Start,andthatit changeo A, onaRBIk-Endor WBIk-

End.Similarly, aftera RBIk/WBIk-Starttransactionthe homenodes A-statewill changeo A, or Ag accordingas
the final homestatefor that block is Idle or Shaed respectiely. After a RBIK/WBIk-End transactionthe home
nodes A-statewill changeto Ay if the final homestatefor thatblock (afterthe correspondindRBlk/WBIk-Start)
wasldle.

We assigntimestampgo the operationsaandtransactionslefinedin Tablesl, 2 and (with RBIk andWBIk split up
asdescribedhbore). Theruleslistedin Tables6, and8 belav indicatethe assignmentf the globalandlocal com-
ponentsof the timestampfor eachkind of operation/transactiomMote thattransactionglo not needa local times-
tamp and could be assignedsomearbitrary local timestamp(e.g.,zero so that a transactiongetsorderedbefore
operations with the same global timestamp).

Conceptuallyeachnode(processor/memory/giee) maintainsa global andlocal clock which getupdatedn real
time for operationsandtransactionsTo do this in awell-definedmannerwe definea timestampingrder whichis
apernodetotal orderwhich decidegheorderin which operationsaandtimestampgetassignedimestampsOper-
ationsenterthetimestampingdrderof anodeatthepointin realtime whenthey areretired(i.e.,they cannotbeun-
donedueto mis-speculatiorhandling),and operationsareretiredin a realtime orderthatis consistenwith pro-
gramorder If morethanoneoperationis committedat the samepointin realtime, they canbe orderedarbitrarily
in thetimestampingorder Transactiongnterthe timestampingorderof a nodeat the pointin realtime whenthe
corresponding A-state changes occur at thathode

The timestampingrules given belon also determinethe maintenancef the perprocessoiclocksin that a node
updatedts global andlocal clocksto equalthe correspondingimestampof eachoperation/transactioit times-
tampsin timestampingrder Any increasen theglobalclock valuecauseshelocal clock to beresetto zerobefore
it is updatedasspecifiedoy therule. Thereareafew caseshereatransactiororiginatingatanodeis timestamped
elsavhere(e.g.,the Wio at a device correspondingo anINT). The assignmenbf this timestampcauseghe local
nodes global clock to getincrementedif necessary)For purposeof timestampingwe considera bridgeto be
partof eachdevice node,andall transactionsn which a bridge participateson behalfof a device nodewill update
the clocks of that déce node.

Processonodes: Let P-UPbeatransactiorthatcausesnincreasdn coherencgermissiongupgrade)t proces-
sornodep; (GETX, GETS,or UPG by p;), andlet P-DONN be a transactiorthat causesa decreasén coherence
permissiongdowngradejat p; (WB by p;, GETX by p; for ablockthatp; hasSharedbr Exclusive, UPGby p; for a
blockthatp; hasShared GETSby p; for ablockthatp; hasExclusie, or Rblk/Wblk by adevice for ablock thatp;
has Shared or Exclus). Then the processor node timestamping rules are &s smdable6.

TABLE 6. Processor node timestamping

Operation/

Transaction | Global Timestamp Local Timestamp Node ID

LD, ST current global clock 1 + current local clock | processor

LDio global timestamp of corresponding Rio | 1 device
(sent)

STio global timestamp of corresponding®Vv | 1 device
(sent)

P-UP 1 + max {global clock, timestamps 0 processor
assigned to P-UP by all other nodes that
downgrade as a result of P-UP}

P-DOWNN 1 + global clock 0 processor

Rio (sent) only timestamped at diee

Wio (sent) only timestamped at diee

Wio (recv) 1 + max {global clock, global timestamp 0? processor
of device when Vib was sent}

a. Timestamgs 0, but the clock is setto 1. This ensureghatLDio/STios issuedby a processoget
a local timestamp of 1, while those issued by\acgeget a local timestamp of 2 or greater

MemorynodesLet M-UP beatransactiorthatcausesnincreasen permissiongtt memorynodem; (WB by p;),
andlet M-DOWN beatransactiorthatcauses decreasén permissionsatm; (GETS,GETX, or UPGhy p;). With
thesedefinitionsof M-UP andM-DOWN, thetimestampingulesfor memorynodesareasshowvn in Table7. The

1. There is thexeeptional case dbet-Shaedtransactions at the home foShaedblock. In this case, we consider the timestamp to be
assigned at the point that the home sends the block to the reguestehen the A-state “changes” frong fo Ag.

memorynodetimestampgransactionsn the real-timeorderin which they areprocessedin the caseof transac-
tionsthatinvolve transientBusy statesthe “currentglobal clock” correspondso the global clock at the time the
Busy stateis enteredwhile the timestampof the transactions assignedvhenthe memoryentersa non-transient
state [(dle, Shaed Exclusivé.

TABLE 7. Memory node timestamping

Transaction Global Timestamp

M-UP 1 + max {current global clock, timestamps assigned to M-UP by the nodeswrat do
grade as a result of M-UP}

M-DOWN 1 + current global clock

Rblk-Start 1 + max {current global clock, global timestamp ofide when Rblk-Start as sent,
globaltimestampmssignedo Rblk-Startby Exclusve nodethatdowvngradesasaresult
of Rblk-Start (if ay)}

RBIk-End 1 + current global clock

Whlk-Start 1 + max{current global clock, global timestamp o¥ide when Wblk-Start as sent,
global timestamp assigned to Wblk-Start by all nodes thahdmde as a result of
Whlk-Start (if ary)}

WBIk-End 1 + current global clock

Device nodesA device node timestamps operations and transactions asm shdable8.

TABLE 8. Device node timestamping

Operation/

Transaction | Global Timestamp Local Timestamp Node ID

LDio, STio current global clock 1 + current local clock | device

INT global timestamp of corresponding®v | 1 processor

LDblk global timestamp of corresponding Rblk-1 memory
Start

SThlk global timestamp of corresponding Whblk-1 memory
Start

Rio (recv) 1 + max{global clock, global timestamp| 0% device
of sender when Rio &s sent}

Wio (recv) 1 + max {global clock, global timestamp 0? device
of sender when W was sent}.

Wio (sent) only timestamped at pcessor

Rblk-Start only timestamped at memory

RBIk-End only timestamped at memory

Whblk-Start only timestamped at memory

WBIk-End only timestamped at memory

a. See Botnote a underable6.

7.3 Proof of Correctness of Our Implementation

To prove WIOQ, it is sufficientto shav thatthereis atotal orderof operationsuchthatthe orderingsn Tables3 and
4 arerespecte@ndsuchthatevery Read-ORyetsthevalueof the mostrecentWrite-OPR Thetimestampingcheme

10

ensureghe total orderand, combinedwith the protocol specificationensureghat Tables3 and4 arerespected.
LDios andSTios to device memoryareorderedat the device in the orderin which they areperformedsoa LDio
mustget the value of the mostrecentSTio. Now we will prove thatevery LD/LDblk getsthe value of the most
recent ST/STblk.

Theproofthatwe provide hereis very similarin structureto theproofthatwe providedin our previouswork [7]. In
whatfollows, we first outline how definitionsfrom our previouswork canbe extendedto theimplementatiorpre-
sentedn this paper We thensummarizehe claimsandlemmasthatareusedin the maintheorem.The changesn
the statements of these results (re&atd our preious work in SRAA’'98 [7]) are emphasized in underlined bold.

The consisteng modelis establishedisingthe conceptof coheenceepods An epochis anintenal of logical
time duringwhich anodehasread-onlyor read-writeaccesdo ablock of data.In therestof the paperwe assume
a block to be a fixed-size contiguousalignedsectionof memory(usuallyequalto the cacheline size).Also, LDs
andSTsoperateon words wherewe assumehataword is containedn ablock andis alignedat aword boundary
Our schemecouldbe extendedo handleLDs andSTson sub-unitsof aword (half-wordsor bytes)which neednot
bealigned.However, this makesthe specificatiorof thememorymodelsvery tediouswithoutary gainin insightor
clarity.

Transaction®n a given block are serializedby the block’s directory Hence,we canspeakabouta sequencef
transaction®n the sameblock wherethe orderingis implied by their serializationat the directory For eachnode
N, a sequencef t transactionsn block B (wherethe orderamongtransactionss seenat the Home) definesa
uniquesequenceé\(jy, A(z),..., A Of assouated\ statesfor N, givensomeinitial A-statevalueatN. If A is not
equalto A for somei = 1, we saythatthe i transactiorin the sequencéaffects” N andthatthe transaction
“implies that%\l 's A-statefor block B changefrom A1y to A(;)”. For example,considera singleblock of memory
andthreenodes:N; (processor)N, (device) andNg ((memory)).Supposethatboth N, andN, startoutwith anini-
tial A-stateof A; andN3 startswith Ay. Let the sequencef transactionsit N3 be N;'s Get-ExclusiveN,’s RBIk-
StartandN,’'s RBIK-End Thenthe sequencef A-statesfor N;, N, andNg areA|, Ay, A, A, Al A, Ay, A and
Ay, A, Ay, Ay respectiely. The Get-ExclusiveaffectsN; andNs, while the RBIk-Start/Endaffect N, andNs. In
the specialcasethata nodeis the directory we saythatit is alsoaffectedby all transactiongesultingfrom Get-
Shaedrequests,\en though no change in the A-state at the directory may be implied by such a transaction.

Eachtransactionmplies an“upgrade”of A-state(i.e. changefrom stateA, to Ag, from A, to Ay, or from Ag to
Ay) atexactly onenode.For example,a RDblk-Startcausesinupgradeat the device, adowngradeat memory and
possiblyadowvngradeata processarAlso, eachtransactionmpliesa“downgrade”of A-state(i.e. changerom Ay
to Ag, from Ay to A}, or from Agto A|) atzeroor morenodesln the specialcasethatnodeN is thedirectory we
saythatN'’s A-state“downgrades’asaresultof every Get-Shaedtransactiongventhoughits A-statemay not be
changed by the transaction. On each transacti@ctlg one node upgrades and zero or more nodesgtade.

Thedefinitionsof “affects” and“implies” in the previoustwo paragraphslependonly on the sequencef transac-
tionson block B at B’s directory In Claim 2 below, we shav thatthe protocolspecificatiorensureghat, at every
node,the actualsequenc®f changedo the A-statefor block B occursin the orderimplied by the serializationof
thetransactionsit B's directory eventhoughmessagesn successie transactionsnay bereceved out of orderby
a node.

Claim 1: For eachtransactionT, amessagés sentto every processorffectedby T. Also, if processomM upgrades
as a result of ,Texactly those nodes that ardegited by transaction T (other than N) send a message to N.

Claim 2: Thesequencef A-statechange®nblock B atanodeoccursin realtimein theorderimplied by theseri-
alization of transactions on block B at its directory

Claim 3: For a transaction T on block B,

(a) Thetimestampof the downgradesassociatedvith T arelessthanor equalto the timestampof the upgrade
associated with.T

(b) Thetimestampof the upgradeassociatedavith T is lessthanthe timestampof the upgradeassociatedavith any
transactionl” onblock B occurringafter T in the serializationorderatthedirectory solongasoneof Tor T isa
Get-Exclusie or Writebaclor WBIK-Start .

11

Claim 4: Every LD/ST or LDbIk/STblk operationon block B at processomp; is bound to the mostrecent(in
Lamport time at p) transaction on block B thatfatts p.

By constructionthe Lamport orderingof LDs and STswithin any processolis consistentwith programordet
Therefore to prove sequentiatonsisteny, it is sufficient to shav thatthe value of every load equalsthe value of
the most recent store.

Recallthata coherencepochis simply a Lamporttime intenal [t1,t2) duringwhich a nodehasaccesgo a block.

All operationghat have globaltimestampt wheret; < t < t, arecontainedn epoch[t,,t;). A sharedor exclusive

epochfor block B atnodeN startsattime t, if atransactiorwith timestampt; (atN) impliesthatN’s A-statefor

block B changeso Agor Ay respectrely. Theepochendsattimet,, wheret, is N's timestampof the next transac-
tion on B that implies a change in A-state at N.

Lemmal shavsthattwo processorsannothave “conflicting” permissiorto the sameblock atthe same(Lamport)
time. Lemmaz2 statesthat processorslo operationswithin appropriateepochs Finally, Lemma3 shows thatthe
“correct” block \alue is passed among processors and the directory between epochs.

Lemma 1: Exclusive epochdgor block B do not overlapwith otherexclusive or sharedepochdgor block B in Lam-
port time.

Lemma 2:

(a) Every LD/ST, LDbIk/STblk operationon block B at p; is containedin someepochfor block B at p; andis
bound to the transaction that caused that epoch to start.

(b) Furthermoreevery ST or STbIk operationon block B atp; is containedn someexclusive epochfor block B at
p; and is bound to the transaction that caused that epoch to start.

Lemma 3: If block B is receved by nodeN at the startof epoch(t4,t,), theneachword w of block B equalsthe
mostrecentST or STblk to word w prior to t; or theinitial valuein the directory if thereis no storeto word w
prior to global time {

The proof of the Main Theorem skis hav WIO follows from the lemmas.

Main Theorem: Thevalueof every LD or LDblk equalsthe valueof the mostrecentST or STblk or theinitial
value, if there has been no prior store.

8 Conclusions

Although /O devicesareintegral partsof computersystemsandhaving cleanl/O architecturesvould offer bene-
fits, the commercialsystemswe are familiar with tendto usead hoc, comple, andundocumentedhterfaces.In
this paper we have proposeda framavork calledWisconsinl/O for formally describingl/O architectureswlO is
an extensionof researchon memory consisteng modelsthat incorporatesnemory-mapped/O, interrupts,and
device operationsthat causeside effects. WIO is definedthroughorderingrequirementsat eachprocessomland
device, anda systemis consideredo obey WIO if thereexists a total orderof all operationghat satisfiesthese
orderingrequirementsuchthatthe valueof every readis equalto the valueof the mostrecentwrite. We shaved
how to use Lamport clocks to pre that an xample system that we specified satisfies its WIO specification.

The framework presentederefor specifyingandanalyzingsystemswith 1/O canbe generalizedn seseralways
thatwerenot presenteaarlierin orderto simplify the discussionFirst, it canbe extendedto handlesystemswith
more componentghanthe systemdescribedn Section6. Systemsmay have multiple I/O devices and possibly
evenmultiple /0 bridges,andthe framevork we have developedherecanbe extendedto thesesystemsSecond,
unlike in Section6, we canmodell/O bridgesthat do not have enoughbuffering to ensurethatthey cansink all
incomingrequestsThird, the definition of Wisconsinl/O consisteng is parameterizetby a n-tuple of necessary

1. In our previouswork [7], we haddefinedthe notionof LDs/STsbeingboundto the coherencéransactiorthatbroughtthe corresponding
block into the cache. Similarlye can think of LDblk/STblk operations being bound to their corresponding RBIk/WBIk-Start transactions.

12

orderingsandis thereforeeasilygeneralizedo handleanarbitrarysetof local orderingrules.In the extremecase,
each processor and eaclvide would have its avn table of necessary ordering rules.

References

(1
[2]

(3]
(4]
(5]

(6]

(71

(8]

9]
[10]

[11]

SaritaV. Adve and Kourosh Gharachorloo. Shared Memory Consistency Models: A TuteER Computerpages 66—76, December 1996.

AnneE. CondonMark D. Hill, ManojPlakal,andDanielJ. Sorin.UsingLamportClocksto ReasorAbout RelaxedVlemoryModels.In Proceedings
of High Performance Computer Architectudanuary 1999.

David Culler, JaswinddPal Singh, and Anoop Guptarallel Computer Architecture: A Hardware/Software Appraddbrgan Kaufmann, 1998.
Leslie Lamport. Time, Clocks and the Ordering of Events in a Distributed SyGtemmunications of the ACN1(7):558-565, July 1978.

Leslie Lamport.How to Make a MultiprocessorComputerthat Correctly ExecutesMultiprocessProgramsIEEE Transactionson ComputersC-
28(9):241-248, September 1979.

James. LaudonandDanielLenoski.The SGI Origin: A ccNUMA Highly ScalableServer.In Proceeding®f the 24th International Symposiunon
Computer ArchitectureDenver, CO, June 1997.

ManojPlakal,Daniel J. Sorin,Anne E. CondonandMark D. Hill. LamportClocks:Verifying aDirectoryCache-Coherenderotocol.In Proceedings
of the 10th Annual ACM Symposium on Parallel Architectures and Algoritfunesto Vallarta, Mexico, June 28-July 2 1998.

A. Singhal,D. Broniarczyk,F. Cerauskis,. Price,L. Yuan,C. Cheng,D. Doblar, S. Fosth,N. Agarwal, K. Harvey, E. HagerstenandB. Liencres.
Gigaplane: A High Performance Bus for Large SMfst Interconnects |Vpages 41-52, 1996.

RichardL. Sites, editorAlpha Architecture Reference ManuBligital Press, 1992.

Mark SmothermanA Sequencing-Basefiaxonomyof I/O SystemsandReviewof HistoricalMachines ComputerArchitectureNews 17(5):10-15,
September 1989. See also URL http://www.cs.clemson.edu/~mark/io.ps.

DanielJ.Sorin,ManojPlakal,Mark D. Hill, andAnne E. CondonLamportClocks:Reasoning\bout Shared-MemorgZorrectnessTechnicalReport
CS-TR-1367, University of Wisconsin-Madison, March 1998.

13

