
0

Preliminary Draft of SPAA’99 Submission

A System-Level Specification Framework for I/O Ar chitectures1

Mark D Hill, Anne E Condon, Manoj Plakal, Daniel J Sorin
Computer Sciences Department

University of Wisconsin - Madison
{markhill,condon,plakal,sorin}@cs.wisc.edu

Contact Author: Mark D. Hill, markhill@cs.wisc.edu

Abstract

A computersystemis uselessunlessit can interact with theoutsideworld throughinput/output(I/O) devices.I/O
systemsarecomplex, includingaspectssuch asmemory-mappedoperations,interrupts,andbusbridges.OftenI/O
behavioris describedfor isolateddeviceswithout a formal descriptionof how the completeI/O systembehaves.
Thelack of an end-to-endsystemdescriptionmakesthetasksof systemprogrammers andhardware implementors
more difficult to do correctly.

This paper proposesa framework for formally describingI/O architectures called WisconsinI/O (WIO). WIO
extendsworkonmemoryconsistencymodels(that formallyspecifythebehaviorof normalmemory)to handlecon-
siderationssuch as memory-mappedoperations,device operations, interrupts,and operationswith sideeffects.
Specifically, WIOaskseach processoror devicethatcanissuek operationtypesto specifyorderingrequirementsin
a k x k table. A systemobeysWIO if there alwaysexistsa total order of all operationsthat respectsprocessorand
deviceorderingrequirementsandhasthevalueof each “r ead” equalto thevalueof themostrecent“write” to that
address.

This paper then illustratesWIO with a directory-basedsystemwith a single I/O bus. We describethis system’s
orderingrulesandprotocol in detail. Finally, weapplyour previouswork usingLamport’s logical clocksto show
that our example implementation meets its WIO specification.

Keywords: input/output, memory consistency, cache coherence, verification

1. This work is supported in part by the National Science Foundation with grants MIP-9225097, MIPS-9625558, CCR 9257241, and CDA-9623632, a Wis-
consin Romnes Fellowship, and donations from Sun Microsystems and Intel Corporation.

1

1 Intr oduction

Moderncomputerhardwareis complex. Processorsexecuteinstructionsoutof programorder, non-blockingcaches
issuecoherencetransactionsconcurrently, andsysteminterconnectshave moved well beyond simplebusesthat
completedtransactionsoneat a time in a total order. Fortunately, moston this complexity is hiddenfrom software
with an interface called the computer’s “architecture.” A computer architecture includes at least four components:

1) The instructionsetarchitecture givesthe user-level andsystem-level instructionssupportedandhow they are
sequenced (usually serially at each processor).

2) A memoryconsistencymodel(e.g., sequentialconsistency, SPARC Total StoreOrder, or CompaqAlpha) gives
the behavior of memory.

3) Thevirtual memory architecture specifies the structure and operation of page tables and translation buffers.

4) TheInput/Output (I/O) architecture specifies how programs interact with devices and memory.

Thispaperexaminesissuesin theoften-neglectedI/O architecture.TheI/O architectureof modernsystemsis com-
plex, asillustratedby Smotherman’svenerableI/O taxonomy[10]. It includes,at least,thefollowing threeaspects.
First, software,usuallyoperatingsystemdevice drivers,mustbe ableto direct device activity andobtaindevice
dataandstatus.Most systemstodayimplementthis with memory-mappedoperations. A memory-mappedopera-
tion is a normalmemory-referenceinstruction(e.g.,loador store)whoseaddressis translatedby thevirtual mem-
ory systemto anuncacheablephysicaladdressthat is recognizedby a device insteadof regularmemory. A device
respondsto a loadby replyingwith a dataword andpossiblyperforminganinternalside-effect (e.g.,poppingthe
readdatafrom a queue).A device respondsto a storeby absorbingthe written dataandpossiblyperformingan
internalside-effect (e.g.,sendingan externalmessage).Precisedevice behavior is device specific.Second,most
systemssupportinterruptswherebya device sendsa messageto a processor. A processorreceiving an interrupt
mayignoreit or jump to aninterrupthandlerto processit. Interruptsmaytransferno information(beyondthefact
that an interrupthasoccurred),includea “type” field, or less-commonlyincludeoneor moredatafields. Third,
mostsystemssupportdirectmemoryaccess(DMA). With DMA, a device cantransferdatainto or out of a region
of memory (e.g., 4Kbytes) without processor intervention.

An examplethatusesall threetypesof mechanismsis a disk read.A processorbeginsa disk readby usingmem-
ory-mappedstoresto inform adiskcontrollerof thesourceaddressondisk,thedestinationaddressin memory, and
thelength.Theprocessorthengoeson to otherwork, becauseadiskaccesstakesmillions of instructionopportuni-
ties.Thedisk controllerobtainsthedatafrom disk andusesDMA to copy it to memory. WhentheDMA is com-
plete, the disk controller interrupts the processor to inform it that the data is available.

A problemwith currentI/O architecturesis that behavior of disks,network interfaces,framebuffers, I/O buses
(e.g.,PCI), systeminterconnects(e.g.,PentiumProbus andSGI Origin 2000interconnect),andbus bridges(that
connectI/O busesandsysteminterconnects)is usuallyspecifiedin isolation.This tendency to specifythingsin iso-
lation makes it difficult to take a “systems” view to answer system-level questions, such as:

• Whatmustaprogrammerto do (if anything) if heor shewantsto ensurethattwo memory-mappedstoresto the
same device arrive in the same order?

• How doesa disk implementorensurethata DMA is completeso thatan interruptsignallingthat thedatais in
memory does not arrive at a processor before the data is in memory?

• How muchis thesysteminterconnector busbridgedesignerallowedto reordertransactionsto improve perfor-
mance or reduce cost?

This paperproposesa formal framework, calledWisconsinI/O (WIO), that facilitatesthespecificationof systems
aspectsof an I/O architecture.WIO builds on work on memoryconsistency modelsthat formally specifiesthe
behavior of loadsandstoresto normalmemory. Lamport’s sequentialconsistency (SC),for example,requiresthat
“the resultof any executionis thesameasif theoperationsof all theprocessorswereexecutedin somesequential
order, andtheoperationsof eachindividual processorappearin this sequencein theorderspecifiedby its program

2

[5].” WIO, however, mustdealwith several issuesnot includedin mostmemoryconsistency models:(a) processor
canperformmoreoperations(e.g.,memory-mappedstoresandincominginterrupts),(b) devicesperformopera-
tions(e.g.,disksdoingDMA andsendinginterrupts),(c) operationscanhave sideeffects(e.g.,a memory-mapped
loadpoppingdataor an interruptinvoking a handler),and(d) it may not bea goodideato requirethat the order
amongoperationsissuedby the sameprocessor/device (e.g.,memory-mappedstoresto differentdevices)always
be preserved by the system.

To handlethis generality, WIO askseachprocessoror device to provide a tableof orderingrequirements.If a pro-
cessor/devicecanissuek typesof operations,therequiredtableis k x k, wherethe i,j-th entryspecifiestheordering
the systemshouldpreserve from an operationof type i to an operationof type j issuedlater by that processor/
device (e.g.,a disk might never needorder to be preserved amongthe multiple memorytransactionsneededto
implementa DMA). A systemwith p processorsandd devicesobeys WIO if thereexists a total orderof all the
operationsissuedin thesystemthatrespectsthesubsetof theprogramorderof eachprocessoranddevice,asspec-
ified in the p+d tablesgiven asparameters,suchthat the valueof each“read” is equalto the valueof the most
recent “write” to that address1.

This paperis organizedasfollows. In Section2, we discussrelatedwork. Section3 presentsthemodelof thesys-
tem we arestudying.Section4 explainsthe orderingsthat areusedto specifythe I/O architecture,andSection5
definesWisconsinI/O consistency basedon theseorderings.Section6 describesa systemwith I/O thatis complex
enoughto illustratereal issues,but simpleenoughto be presentedin a conferencepaper. In Section7, we prove
that the system described in Section6 obeys Wisconsin I/O. Finally, Section8 summarizes our results.

Weseethispaperashaving threecontributions.First,wepresenta formal framework for describingsystemaspects
of I/O architectures.Second,we illustratethat framework in a completeexample.Third, we useour verification
technique(which usesLamport’s logical clocks,andwhich hasbeenappliedin previouswork[11, 7, 2]) to show
that our example implementation meets its specifications.

2 Related Work

Thepublicly availablework thatwefoundrelatedto formally specifyingthesystembehavior of I/O architecturesis
sparse.As discussedin the introduction,work on memoryconsistency model is related[1]. Prior to our current
understandingof memoryconsistency models,memorybehavior wassometimesspecifiedindividually by hard-
wareelements(e.g.,processor, cache,interconnect,andmemorymodule).Memory consistency modelsreplaced
thisdisjointview with aspecificationof how thesystembehavesonaccessesto mainmemory. Weseekto extenda
similar approach to include accesses across I/O bridges and to devices.

Many populararchitectures,suchasIntel Architecture-32(x86) andSunSPARC, appearnot to formally specify
their I/O behavior (at leastnot in the public literature).An exceptionis CompaqAlpha, whereChapter8 of its
specification[9] discussesorderingof accessesacrossI/O bridges,DMA, interrupts,etc.Specifically, a processor
accessesa device by postinginformationto a “mailbox” at anI/O bridge.Thebridgeperformstheaccesson theI/
O bus.Theprocessorcanthenpoll thebridgeto seewhentheoperationcompletesor to obtainany returnvalue.
DMA is modeledwith “control” accessesthat arecompletelyorderedand“data” accessesthat arenot ordered.
Consistentwith Alpha’s relaxedmemoryconsistency model,memorybarriersareneededin mostcaseswheresoft-
waredesiresordering(e.g.,afterreceiving aninterruptfor a DMA completionandbeforereadingthenewly-writ-
ten memorybuffer). We seekto definea moregeneralI/O framework thanthe specificoneAlpha choseandto
more formally specify how I/O fits into the partial and total orders of a system’s memory consistency model.

3 System Model

We considera systemconsistingof multiple processornodes,devicenodes,andmemorynodesthatshareaninter-
connect.Figure1 showstwo possiblerealizationsof suchamultiprocessorsystem,wheresharedmemoryis imple-
mentedusing either a broadcastbus or a point-to-pointnetwork with directories[3]. The addressablememory

1. The same table can be re-used for homogeneous processors and devices. We precisely define “read” and “write” in later sections.

3

spaceis dividedinto ordinarycacheablememoryspaceanduncacheableI/O space.We now describeeachpartof
the system.

ProcessorNodes:A processornodeconsistsof a processor, cache,network interface,andinterruptregister. Each
processor“issues”a streamof operations,and theseoperationsare listed anddescribedin Table1. We classify
operationsbasedon whetherthey readdata(ReadOP)or write data(WriteOP).If thecachecannotsatisfyanoper-
ation,it initiatesa transaction(thesewill bedescribedin Section6) to eitherobtaintherequesteddatain theneces-
sarystateor interactwith anI/O device1. In addition,theprocessor(logically) checksits interruptregister, which
we considerto bepartof the I/O space,beforeexecutingeachinstructionin its program,andit maybranchto an

interrupt handler depending on the value of the interrupt register.

Device Nodes:We modela device nodeasa device processoranda device memory. Eachdevice processorcan
issueoperationsto its devicememory. In addition,it canalsoissueoperationswhich leadto transactionsacrossthe
I/O bridge(via theI/O bus).Theserequestsallow a device to readandwrite blocksof ordinarycacheablememory
(via DMA) and to write to a processor node’s interrupt register. The list of device operations is shown in Table2.

1. Note that the cache could also “proactively” issue transactions (e.g., it could prefetch blocks into the cache).

FIGURE 1. System Organizations

TABLE 1. Processor Operations

Operation Class Description

LD ReadOP Load - load word from ordinary memory space

ST WriteOP Store - store word to ordinary memory space

LDio ReadOP Load I/O - load word from I/O space

STio WriteOP Store I/O - store word to I/O space

Proc

Intr regCache

Proc

Intr regCache

Device
MemoryProcessor

DeviceDevice
MemoryProcessor

Device

Network interface Network interface

.

I/O Bridge

.

Memory
system

Bus-based

Proc

Intr regCache
. Memory

 +
Directory

Interconnection Network

system
Directory-based

I/O Bridge

.
Device
MemoryProcessor

Device

MEMORY BUS

I/O BUS

I/O BUS

4

A requestfrom a processornodeto a device memorycan“cause”thedevice to “do somethinguseful.” For exam-
ple,a readof adiskcontrollerstatusregistercantriggeradisk readto begin. This is modeledby thedeviceproces-
sorexecutingsomesortof aprogram(thatspecifiesthedevicebehavior) which,for example,makesit sit in a loop,
checkingfor externalrequeststo its device memory, andthendo certainthings(e.g.,manipulatephysicaldevices)
beforepossiblyan operationto its device memoryor to ordinarymemory. The device programwill usuallybe
hard-codedin thedevice controllercircuits,while therequestsfrom processornodeswill bepartof a device driver
that is part of the operating system.

Memorynodes:Memorynodescontainsomeportionof theordinarysharedmemoryspace.In asystemthatusesa
directory protocol, they also contain the portion of the directory associatedwith that memory. Memory nodes
respondto requestsmadeby processornodesanddevicenodes.Theirbehavior is definedby thespecificcoherence
protocol used by the system.

Interconnect:The interconnectconsistsof the network betweenthe processorand memorynodes,and the I/O
bridge.This couldeitherbea broadcastbusor a generalpoint-to-pointinterconnectionnetwork. TheI/O bridgeis
responsible for handling traffic between the processor and memory nodes, and the device nodes.

4 Processor and Device Ordering

In a givenexecutionof thesystem,at eachprocessoror device thereis a total orderingof theoperations(from the
list LD, ST, LDio, STio, INT, LDblk, andSTblk) thatcanbeissuedby thatprocessoror device.Call this program
order and denote it by <p.

Let necessaryorderbeany relaxationof programorderataprocessoror adeviceprocessor. For example,let <n be
thenecessaryorderthatrespectsprogramorderwith respectto operationsto thesameaddressandalsosatisfiesthe
constraints of Tables 3 and 4, where entries in these tables use the following notation:

A: OP1 <n OP2 always

-: no ordering constraint on OP1, OP2 (if not to the same address)

D: OP1 <n OP2 if the addresses of OP1 and OP2 refer to the same device

TABLE 2. Device Operations

Operation Class Description

LDio ReadOP Load I/O - load word from device memory (I/O space)

STio WriteOP Store I/O - store word to device memory (I/O space)

INT - Interrupt - send an interrupt to a processor node

LDblk ReadOP Load Block - load cache block from ordinary memory

STblk WriteOP Store Block - store cache block to ordinary memory

TABLE 3. Necessary Ordering at a Processor

Operation 2

LD ST LDio STio

O
pe

ra
tio

n
1 LD A A A A

ST A A A A

LDio A A D D

STio - - D D

5

Theentriesin thetablereflectthebehavior of currentsystemse.g.,in mostsystems,STios to multiple devicesare
not guaranteedto be orderedin any particularway. It is importantto realizethat a programmerwho wishesto
enforceorderingbetweenoperationsthatarenotguaranteedto beorderedcancreateanorderingthroughtransitiv-
ity. For example,a programmercanordera processor’s LD aftera STio by insertinga LDio to thesamedevice as
theSTio betweenthetwo operations.SinceSTio <n LDio andLDio <n LD, wehaveSTio <n LD (for thisparticular
sequence of three operations).

5 System Ordering: Wisconsin I/O Consistency

Using the definition of necessaryordering,we cannow definea systemorderingwhich we call WisconsinI/O
ordering.Thedefinitionof WisconsinI/O (WIO) orderingtakesasa parameterann-tupleof necessaryorderings,
suchasthe2-tuplespecifiedby Tables3 and. Let <W bea total orderingof all LD, ST, LDio, STio, INT, LDblk,
STblk operationsof anexecutionof thesystem.Then<W satisfiesWisconsinI/O orderingwith respectto a given
necessary ordering if:

 1. <W respects the necessary ordering, and

2. thevaluereadby everyReadOPoperationis thevaluestoredby themostrecentWriteOPoperationto thesame
address in the <W order.1

In the next two sections, we will present a system protocol specification and show that it obeys WIO.

6 A System Protocol Specification

In this section,we describea protocol for a directory-basedsystemconsistingof the componentsdescribedin
Section3. This descriptionbuilds upon the directory protocol describedin Plakal et al. [7]. The descriptionis
divided into descriptions of the processor nodes, interconnect, I/O devices, bridge and memory nodes.

Processornodes:Thecachereceivesa streamof LD/ST/LDio/STio operationsfrom theprocessorand,if it cannot
satisfya request,it issuesa transaction2. The completelist of transactions,including block transfertransactions
(Rblk/Wblk) that canonly be issuedby devicesandwhich will be discussedlater, areshown in Table5. Cache
coherencetransactions(GETX/GETS/UPG/WB)aredirectedto the homeof the memoryblock in question(i.e.,
thememorynodewhich containsthedirectoryinformationfor thatblock). I/O transactions(Rio/Wio) aredirected
to a specificI/O device andalsocontainanaddressof a locationwithin thememoryof thedevice (and,if Wio, the
datato write aswell). Thegranularityof accessfor anI/O transactionis oneword.Wios do not generateany reply

TABLE 4. Necessary Ordering at a Device Processor

Operation 2

LDio STio INT LDblk STblk
O

pe
ra

tio
n

1
LDio D D A A A

STio D D A A A

INT - - D - -

LDblk - - A - -

STblk - - A - -

1. Thisdefinitionis in thespirit of SC,but thereis ananalogousdefinitionfor otherconsistency modelswhereaReadOPdoesnotnecessar-
ily have to get the value of the most recent WriteOP (e.g., SPARC TSO).

2. As noted earlier, caches can also proactively issue transactions without receiving an operation from their processors.

6

messagesfrom the target device, while Rios generatea reply messagefrom which the cacheextractsa register
value and passes it to the processor.

Processornodesmustconformto thelist of behavior requirementsspecifiedin Section2.4of Plakaletal. [7] (e.g.,
a processornodemaintainsat mostoneoutstandingrequestfor eachblock).They mustalsoconformto theorder-
ing restrictionslaid out in Table3. For example,they cannotissueaLD/ST until all LDios precedingit in program
order have been “performed” (i.e., the reply has beenwritten into the register by the cache).

A processornode’s network interfacesendsall transactionsfrom the cacheinto the interconnectionnetwork. In
addition,thenetwork interfacewill passaWio comingfrom thenetwork to theprocessor’s interruptregister. It also
will pass all replies to transactions to the cache.

Interconnect:Thenetwork ensurespoint-to-pointorderbetweenaprocessornodeandadevicenode,andit ensures
reliable and eventual delivery of all messages.

Bridge: The I/O bridgeperformsthe following functions:it receivesRio/Wios from processornodesandbroad-
caststhemon the I/O Bus (this hasto be donein orderof receipton a per-device basis);sendsWio repliesfrom
device memoryto processornodes;sendsWios (to interruptregisters)from device processorsto processornodes;
participatesin Rblk/Wblk transactions(discussedbelow) andbroadcastscompletionacknowledgmentson theI/O
bus.TheI/O bridgemustobey certainrules.It providessufficientbufferingsuchthatit doesnothave to deny (neg-
ative acknowledgmentor NACK) requestssentby processorsor devices. It also handlesthe re-try of its own
NACKed requests (to memory nodes).No order is observed in the issue/overlap of Rblk/Wblk transactions.

Device Nodes:Eachdevice processorcanissueLDio/STios to its device memoryandINTs to processorinterrupt
registers.INT operationsareconvertedto Wio transactionsby theI/O bridge.Thesearedirectedto a specificpro-
cessor’s interruptregisteranddonotgeneratereplymessages.In addition,adevicecanalsoissueLDblk andSTblk
requests,andtheseoperationsareconvertedto Rblk andWblk transactionsby the bridgeandaredirectedto the
homenode.Thedatapayloadfor bothrequestsis a processorcacheline (equalto a block of memoryat a memory
node,which is equalto thecoherenceunit for theentiresystem).Both requestsgenerateacknowledgments(ACKs)
on the I/O bus(from thebridge)and,in thecaseof theRblk, theACK containsthedataaswell. A Wblk request
carries the data with it.

Eachdevice memoryreceives a streamof LDio/STios from its device processor. In addition, it also receives a
streamof Rio/Wios from thebridge(via theI/O bus)which it logically treatsasLDio/STios.Thesetwo streamsare
interleavedarbitrarilyby thedevicememory. For eachincomingRio, thedevicememorysends(via thebusandthe
bridge)thevalueof that locationbackto thenodethatsenttheRio. LDio/STio operateon device memorylike a
processor’s LD/ST operate on its cache.

Thedevice processormustobey theorderingrulesspecifiedin Table. For example,an INT is not issueduntil all
LDblk/STblksprecedingit in “device programorder” have beenperformed(i.e., anACK hasbeenreceivedfrom
the bridge for the corresponding Rblk/Wblk).

TABLE 5. Transactions

Transaction Description

GETX Get Exclusive access

GETS Get Shared access

UPG Upgrade (Shared to Exclusive) access

WB Write Back

Rio Read I/O - read word from I/O space

Wio Write I/O - write word to I/O space

Rblk Read Block - read cache block from ordinary memory

Wblk Write Block - write cache block to ordinary memory

7

MemoryNodes:Memorynodesoperateasdescribedin Plakaletal.[7] (with respectto directorystateandtransac-
tions)with thefollowing modificationsfor handlingRblk/Wblk transactions.Protocolactionsdependon thestate
of the block at the home node for both transactions.

Rblk :

• Idle or Shared: the home sends the block to the bridge, which broadcasts an ACK with the data on the I/O bus.

• Exclusive: thehomechangesstateto Busy-Rblk, removesthecurrentowner’s ID from CACHED,andforwards
therequestto thecurrentowner. Theownersendstheblock to thebridge,invalidatestheblock in its cache,and
sendsanupdatemessage(with theblock) to thehome,which changesthestateto Idle andwrites theblock to
memory. The bridge receives the block and broadcasts an ACK along with the data on the I/O bus.

• Busy-Any: the home NACKs the request.

Wblk:

• Idle: the homestoresthe block to memoryandsendsan ACK to the bridge.The bridgesendsan ACK to the
device (via broadcast on the I/O Bus).

• Shared: thehomestorestheblock to memory, sendsinvalidationsto all sharedcopies,sendsacountof thecop-
iesto thebridgeandchangesthestateto Busy-Wblk. Thebridgewaitsuntil it receivesall ACKsfor theinvalida-
tionsbeforebroadcastingthetransactioncompletionACK on theI/O Bus.Thebridgealsothensendsanackto
the home which enables it to change its state toIdle.

• Exclusive: thehomestorestheblock to memory, sendsaninvalidationto the(previous)owner, sendsanACK to
thebridge,andchangesthestateto Busy-Wblk. The formerowner invalidatesits copy andsendsanack to the
bridge, which then sends an ACK to the device and to the home (which then changes its state toIdle).

• Busy-Any: the home NACKs the request.

Note that we now have two new “busy” homestates,Busy-RblkandBusy-Wblk, which serve similar rolesasthe
busystatesusedin theoriginal directoryprotocol.Thesemodificationsmake someformerly impossiblesituations
possible.In particular, Writeback requestsmayfind thehomebusy. Onesolutionis to modify thetransactioncases:

• Writeback on homeBusy-Rblk or Busy-Wblk: This is the same as when the home isBusy-Shared.

7 Proof that an Implementation Satisfies WIO

In this section,we will demonstratethat the implementationdescribedin theprevioussectionsatisfiesthedefini-
tion of WIO. We will usea verification techniquebasedon Lamport’s logical clocks that we have successfully
appliedto systemswithout I/O [11, 7, 2]. Thetechniquerelieson beingableto assigntimestampsto operationsin
a systemandthenproving that the orderinginducedby the timestampshasthe propertiesrequiredof the imple-
mentation.Section7.1 providesbackgroundto our verificationtechnique,Section7.2 describesthe timestamping
schemefor our implementationandSection7.3 providestheproof of correctnessof the implementation.Both the
timestamping scheme and proof are intended to be modest extensions of those presented in our previous work [7].

7.1 Background to Lamport Clocks1

Our previous work on usingLamportClocksto verify shared-memorymultiprocessorsystems[7,11]proved that
implementations(without I/O) usinga SGI Origin 2000-like [6,3] directoryprotocolanda SunGigaplane-like [8]
split-transactionbusprotocolboth implementSC.Both implementationsusethree-stateinvalidation-basedcoher-
enceprotocols.We have alsoextendedthis researchto useLamportclocksto prove thatsystemsobey two relaxed
memory consistency models, SPARC TSO and Compaq Alpha [2].

1. This summary is similar to the summary we present in Section 2.1 of Condon et al.[2].

8

Our reasoningmethodassociateslogical timestampswith loads,stores,andcoherenceevents.We call our method
LamportClocks, becauseour timestampingmodestlyextendsthe logical timestampsLamportdevelopedfor dis-
tributedsystems[4]. Lamportassociateda counterwith eachhost.Thecounteris incrementedon local eventsand
its valueis usedto timestampoutgoingmessages.Onmessagereceipt,ahostsetsits counterto onegreaterthanthe
maximumof its formertime andthetimestampof theincomingmessage.Timestamptiesarebrokenwith hostID.
In this manner, Lamportcreatesa total orderusingtheselogical timestampswherecausalityflows with increasing
logical time.

Our timestampingschemeextendsLamport’s2-tupletimestampsto three-tuples:<global . local . node-id>, where
global takesprecedenceover local, and local takesprecedenceover node-id (e.g.,3.10.11< 4.2.1).Coherence
messages,or transactions,carryglobaltimestamps.In addition,globaltimestampsorderLD andSToperationsrel-
ative to transactions.Local timestampsareassignedto LD andSToperationsin orderto preserveprogramorderin
Lamporttime amongoperationsthathave thesameglobal timestamp.They enableanunboundednumberof LD/
SToperationsbetweentransactions.Node-ID,thethird componentof aLamporttimestamp,is usedasanarbitrary
tiebreaker betweentwo operationswith the sameglobal andlocal timestamps,thusensuringthat all LD andST
operations are totally ordered.

7.2 Timestamping Scheme for Our Implementation

Before we presentthe timestampingscheme,we would like to definesomeconceptsand make somechanges
which will make the timestamping and the proof simpler to express and understand.

First, we split up Rblk andWblk transactionsinto two steps:RBlk-Start/EndandWBlk-Start/End,respectively.
Thereasoningbehindthis is asfollows: cachecoherencetransactions(e.g.,a GETX) will bring a block into a pro-
cessorcachewhereit canbeaccesseduntil it is removedvia anothertransaction(e.g.,aWB or anincominginvali-
dationgeneratedby anotherGETX). On theotherhand,RBlk/Wblk transactionsaccessa cacheblock but they do
not give the device permissionto do more than one operation(LDblk/STblk). It is as if the LDblk/STblk was
immediatelyfollowed by a transactionthat removed the device’s accessto the block. BreakingRBlk andWBlk
into StartandEndtransactionsunifiescachecoherenceandDMA transactionsinto oneframework andsimplifies
the timestampingandtheproof. This wasnot doneearlier(in Section6) to avoid confusingthe readerwith extra
detail.Thechangesto theprotocolareminimal: every RBlk/WBlk transactionis now regardedasa RBlk/WBlk-
Start transaction.After sucha transactionsucceeds,a device nodeis now capableof performinga LDblk/STblk
operation. The Rblk-End/Wblk-End is considered to occur when the transaction is complete.

Consistentwith our previouswork [7], we introducethenotionof a per-block A-state(address-state)at a nodeto
describethehomenode’s view of thatnode’s accessto thatblock of memory. TheA-statecanbeoneof AI (Idle),
AS (Shared), or AX (Exclusive). TheA-stateof a block at a nodechangesasit participatesin transactionsfor that
node(eitherinitiatedby it or forwardedto it by thehome).TheA-stateis setto AI whenthenodereceivesaninval-
idationor a forwardedGet-Exclusive, or anacknowledgmentfor its own Writeback request.TheA-stateis setto
AS whenthenodereceivesa downgrade,or a responseto its own Get-Shared request.Finally, theA-stateis setto
AX whenthenodereceivesaresponseto its own Upgradeor Get-Exclusiverequest,alongwith all associatedinval-
idation acknowledgments.In addition,we now definethe A-stateof a device nodefor a block B of memoryto
changeto AS or AX whenit performsaRBlk-Startor WBlk-Start,andthatit changeto AI onaRBlk-Endor WBlk-
End.Similarly, afteraRBlk/WBlk-Starttransaction,thehomenode’s A-statewill changeto AI or AS accordingas
the final homestatefor that block is Idle or Shared respectively. After a RBlk/WBlk-End transaction,the home
node’s A-statewill changeto AX if thefinal homestatefor thatblock (after thecorrespondingRBlk/WBlk-Start)
wasIdle.

We assigntimestampsto theoperationsandtransactionsdefinedin Tables1, 2 and (with RBlk andWBlk split up
asdescribedabove).Theruleslistedin Tables6, and8 below indicatetheassignmentof theglobalandlocal com-
ponentsof the timestampfor eachkind of operation/transaction.Note that transactionsdo not needa local times-
tampandcould be assignedsomearbitrary local timestamp(e.g.,zeroso that a transactiongetsorderedbefore
operations with the same global timestamp).

9

Conceptually, eachnode(processor/memory/device) maintainsa globalandlocal clock which getupdatedin real
time for operationsandtransactions.To do this in a well-definedmanner, we definea timestampingorder which is
aper-nodetotal orderwhichdecidestheorderin whichoperationsandtimestampsgetassignedtimestamps.Oper-
ationsenterthetimestampingorderof anodeat thepoint in realtimewhenthey areretired(i.e., they cannotbeun-
donedueto mis-speculationhandling),andoperationsareretiredin a real time orderthat is consistentwith pro-
gramorder. If morethanoneoperationis committedat thesamepoint in real time, they canbeorderedarbitrarily
in the timestampingorder. Transactionsenterthe timestampingorderof a nodeat thepoint in real time whenthe
corresponding A-state changes occur at that node1.

The timestampingrulesgiven below alsodeterminethe maintenanceof the per-processorclocks in that a node
updatesits global and local clocks to equalthe correspondingtimestampof eachoperation/transactionit times-
tampsin timestampingorder. Any increasein theglobalclockvaluecausesthelocalclockto beresetto zerobefore
it is updatedasspecifiedby therule.Therearea few caseswhereatransactionoriginatingatanodeis timestamped
elsewhere(e.g.,theWio at a device correspondingto anINT). Theassignmentof this timestampcausesthe local
node’s global clock to get incremented(if necessary).For purposesof timestamping,we considera bridgeto be
partof eachdevice node,andall transactionsin which a bridgeparticipateson behalfof a device nodewill update
the clocks of that device node.

Processornodes: Let P-UPbea transactionthatcausesanincreasein coherencepermissions(upgrade)at proces-
sornodepi (GETX, GETS,or UPGby pi), andlet P-DOWN bea transactionthatcausesa decreasein coherence
permissions(downgrade)at pi (WB by pi, GETX by pj for a block thatpi hasSharedor Exclusive,UPGby pj for a
block thatpi hasShared,GETSby pj for ablock thatpi hasExclusive,or Rblk/Wblk by adevice for ablock thatpi
has Shared or Exclusive). Then the processor node timestamping rules are as shown in Table6.

Memorynodes:Let M-UP bea transactionthatcausesanincreasein permissionsat memorynodemi (WB by pi),
andlet M-DOWN bea transactionthatcausesadecreasein permissionsatmi (GETS,GETX, or UPGby pi). With
thesedefinitionsof M-UP andM-DOWN, thetimestampingrulesfor memorynodesareasshown in Table7. The

1. There is the exceptional case ofGet-Shared transactions at the home for aShared block. In this case, we consider the timestamp to be
assigned at the point that the home sends the block to the requester, i.e., when the A-state “changes” from AS to AS.

TABLE 6. Processor node timestamping

Operation/
Transaction Global Timestamp Local Timestamp Node ID

LD, ST current global clock 1 + current local clock processor

LDio global timestamp of corresponding Rio
(sent)

1 device

STio global timestamp of corresponding Wio
(sent)

1 device

P-UP 1 + max {global clock, timestamps
assigned to P-UP by all other nodes that
downgrade as a result of P-UP}

0 processor

P-DOWN 1 + global clock 0 processor

Rio (sent) only timestamped at device

Wio (sent) only timestamped at device

Wio (recv) 1 + max {global clock, global timestamp
of device when Wio was sent}

0a

a.Timestampis 0, but theclock is setto 1. ThisensuresthatLDio/STios issuedby aprocessorget
a local timestamp of 1, while those issued by a device get a local timestamp of 2 or greater.

processor

10

memorynodetimestampstransactionsin the real-timeorderin which they areprocessed.In the caseof transac-
tions that involve transientBusystates,the “currentglobal clock” correspondsto theglobal clock at the time the
Busystateis entered,while the timestampof the transactionis assignedwhenthememoryentersa non-transient
state (Idle, Shared, Exclusive).

Device nodes:A device node timestamps operations and transactions as shown in Table8.

7.3 Proof of Correctness of Our Implementation

To proveWIO, it is sufficient to show thatthereis a totalorderof operationssuchthattheorderingsin Tables3 and
4 arerespectedandsuchthateveryRead-OPgetsthevalueof themostrecentWrite-OP. Thetimestampingscheme

TABLE 7. Memory node timestamping

Transaction Global Timestamp

M-UP 1 + max {current global clock, timestamps assigned to M-UP by the nodes that down-
grade as a result of M-UP}

M-DOWN 1 + current global clock

Rblk-Start 1 + max {current global clock, global timestamp of device when Rblk-Start was sent,
globaltimestampassignedto Rblk-Startby Exclusivenodethatdowngradesasaresult
of Rblk-Start (if any)}

RBlk-End 1 + current global clock

Wblk-Start 1 + max{current global clock, global timestamp of device when Wblk-Start was sent,
global timestamp assigned to Wblk-Start by all nodes that downgrade as a result of
Wblk-Start (if any)}

WBlk-End 1 + current global clock

TABLE 8. Device node timestamping

Operation/
Transaction Global Timestamp Local Timestamp Node ID

LDio, STio current global clock 1 + current local clock device

INT global timestamp of corresponding Wio 1 processor

LDblk global timestamp of corresponding Rblk-
Start

1 memory

STblk global timestamp of corresponding Wblk-
Start

1 memory

Rio (recv) 1 + max{global clock, global timestamp
of sender when Rio was sent}

0a

a. See Footnote a under Table6.

device

Wio (recv) 1 + max {global clock, global timestamp
of sender when Wio was sent}.

0a device

Wio (sent) only timestamped at processor

Rblk-Start only timestamped at memory

RBlk-End only timestamped at memory

Wblk-Start only timestamped at memory

WBlk-End only timestamped at memory

11

ensuresthe total orderand,combinedwith the protocolspecification,ensuresthat Tables3 and4 arerespected.
LDios andSTios to device memoryareorderedat thedevice in theorderin which they areperformed,soa LDio
mustget the valueof the mostrecentSTio. Now we will prove that every LD/LDblk getsthe valueof the most
recent ST/STblk.

Theproof thatweprovidehereis verysimilar in structureto theproof thatweprovidedin ourpreviouswork [7]. In
what follows,we first outlinehow definitionsfrom our previouswork canbeextendedto theimplementationpre-
sentedin this paper. We thensummarizetheclaimsandlemmasthatareusedin themaintheorem.Thechangesin
the statements of these results (relative to our previous work in SPAA’98 [7]) are emphasized in underlined bold.

The consistency model is establishedusingthe conceptof coherenceepochs. An epochis an interval of logical
time duringwhich a nodehasread-onlyor read-writeaccessto a block of data.In therestof thepaper, we assume
a block to bea fixed-size,contiguous,alignedsectionof memory(usuallyequalto thecacheline size).Also, LDs
andSTsoperateonwords, whereweassumethataword is containedin ablockandis alignedatawordboundary.
Ourschemecouldbeextendedto handleLDs andSTsonsub-unitsof aword (half-wordsor bytes)whichneednot
bealigned.However, thismakesthespecificationof thememorymodelsvery tediouswithoutany gain in insightor
clarity.

Transactionson a given block areserializedby the block’s directory. Hence,we canspeakabouta sequenceof
transactionson thesameblock wheretheorderingis implied by their serializationat thedirectory. For eachnode
N, a sequenceof t transactionson block B (wherethe orderamongtransactionsis seenat the Home)definesa
uniquesequenceA(1), A(2),...,A(t) of associatedA-statesfor N, givensomeinitial A-statevalueat N. If A(i) is not
equalto A(i-1) for somei ≥ 1, we saythat the ith transactionin the sequence“affects” N andthat the transaction
“implies thatN’s A-statefor block B changefrom A(i-1) to A(i)”. For example,considera singleblock of memory
andthreenodes:N1 (processor),N2 (device) andN3 (memory).SupposethatbothN1 andN2 startout with anini-
tial A-stateof AI andN3 startswith AX. Let thesequenceof transactionsat N3 beN1’s Get-Exclusive, N2’s RBlk-
StartandN2’s RBlk-End. Thenthesequenceof A-statesfor N1, N2 andN3 areAI, AX, AI, AI; AI, AI, AX, AI and
AX, AI, AI, AX respectively. TheGet-ExclusiveaffectsN1 andN3, while theRBlk-Start/Endaffect N2 andN3. In
the specialcasethat a nodeis the directory, we saythat it is alsoaffectedby all transactionsresultingfrom Get-
Shared requests, even though no change in the A-state at the directory may be implied by such a transaction.

Eachtransactionimpliesan “upgrade”of A-state(i.e. changefrom stateAI to AS, from AI to AX, or from AS to
AX) atexactlyonenode.For example,aRDblk-Startcausesanupgradeat thedevice,adowngradeatmemory, and
possiblyadowngradeataprocessor. Also, eachtransactionimpliesa“downgrade”of A-state(i.e.changefrom AX
to AS, from AX to AI, or from AS to AI) at zeroor morenodes.In thespecialcasethatnodeN is thedirectory, we
saythatN’s A-state“downgrades”asa resultof every Get-Shared transaction,eventhoughits A-statemaynot be
changed by the transaction. On each transaction, exactly one node upgrades and zero or more nodes downgrade.

Thedefinitionsof “affects” and“implies” in theprevioustwo paragraphsdependonly on thesequenceof transac-
tionson block B at B’s directory. In Claim 2 below, we show that theprotocolspecificationensuresthat,at every
node,theactualsequenceof changesto theA-statefor block B occursin theorderimplied by theserializationof
thetransactionsat B’s directory, eventhoughmessageson successive transactionsmaybereceivedout of orderby
a node.

Claim 1: For eachtransactionT, amessageis sentto everyprocessoraffectedby T. Also, if processorN upgrades
as a result of T, exactly those nodes that are affected by transaction T (other than N) send a message to N.

Claim 2: Thesequenceof A-statechangesonblockB atanodeoccursin realtime in theorderimpliedby theseri-
alization of transactions on block B at its directory.

Claim 3: For a transaction T on block B,

(a) The timestampsof the downgradesassociatedwith T are lessthanor equalto the timestampof the upgrade
associated with T.

(b) Thetimestampof theupgradeassociatedwith T is lessthanthetimestampof theupgradeassociatedwith any
transactionT’ on block B occurringafterT in theserializationorderat thedirectory, solong asoneof T or T’ is a
Get-Exclusive or Writebackor WBlk-Start .

12

Claim 4: Every LD/ST or LDblk/STblk operationon block B at processorpi is bound1 to the most recent(in
Lamport time at pi) transaction on block B that affects pi.

By construction,the Lamport orderingof LDs and STs within any processoris consistentwith programorder.
Therefore,to prove sequentialconsistency, it is sufficient to show that thevalueof every loadequalsthevalueof
the most recent store.

Recallthata coherenceepochis simply a Lamporttime interval [t1,t2) duringwhich a nodehasaccessto a block.
All operationsthathave global timestampt wheret1 ≤ t < t2 arecontainedin epoch[t1,t2). A sharedor exclusive
epochfor block B at nodeN startsat time t1 if a transactionwith timestampt1 (at N) implies thatN’s A-statefor
blockB changesto AS or AX respectively. Theepochendsat timet2, wheret2 is N’s timestampof thenext transac-
tion on B that implies a change in A-state at N.

Lemma1 shows thattwo processorscannothave “conflicting” permissionto thesameblockat thesame(Lamport)
time. Lemma2 statesthat processorsdo operationswithin appropriateepochs.Finally, Lemma3 shows that the
“correct” block value is passed among processors and the directory between epochs.

Lemma 1: Exclusiveepochsfor blockB donotoverlapwith otherexclusiveor sharedepochsfor blockB in Lam-
port time.

Lemma 2:

(a) Every LD/ST, LDblk/STblk operationon block B at pi is containedin someepochfor block B at pi andis
bound to the transaction that caused that epoch to start.

(b) Furthermore,everySTor STblk operationonblockB atpi is containedin someexclusiveepochfor blockB at
pi and is bound to the transaction that caused that epoch to start.

Lemma 3: If block B is receivedby nodeN at thestartof epoch[t1,t2), theneachword w of block B equalsthe
mostrecentST or STblk to word w prior to t1 or the initial valuein the directory, if thereis no storeto word w
prior to global time t1.

The proof of the Main Theorem shows how WIO follows from the lemmas.

Main Theorem: Thevalueof every LD or LDblk equalsthevalueof themostrecentST or STblk or the initial
value, if there has been no prior store.

8 Conclusions

AlthoughI/O devicesareintegral partsof computersystemsandhaving cleanI/O architectureswould offer bene-
fits, the commercialsystemswe arefamiliar with tendto usead hoc,complex, andundocumentedinterfaces.In
this paper, we have proposeda framework calledWisconsinI/O for formally describingI/O architectures.WIO is
an extensionof researchon memoryconsistency modelsthat incorporatesmemory-mappedI/O, interrupts,and
device operationsthat causeside effects.WIO is definedthroughorderingrequirementsat eachprocessorand
device, anda systemis consideredto obey WIO if thereexists a total orderof all operationsthat satisfiesthese
orderingrequirementssuchthat thevalueof every readis equalto thevalueof themostrecentwrite. We showed
how to use Lamport clocks to prove that an example system that we specified satisfies its WIO specification.

The framework presentedherefor specifyingandanalyzingsystemswith I/O canbegeneralizedin severalways
thatwerenot presentedearlierin orderto simplify thediscussion.First, it canbeextendedto handlesystemswith
morecomponentsthan the systemdescribedin Section6. Systemsmay have multiple I/O devicesandpossibly
evenmultiple I/O bridges,andthe framework we have developedherecanbeextendedto thesesystems.Second,
unlike in Section6, we canmodelI/O bridgesthat do not have enoughbuffering to ensurethat they cansink all
incomingrequests.Third, the definition of WisconsinI/O consistency is parameterizedby a n-tupleof necessary

1. In ourpreviouswork [7], wehaddefinedthenotionof LDs/STsbeingboundto thecoherencetransactionthatbroughtthecorresponding
block into the cache. Similarly, we can think of LDblk/STblk operations being bound to their corresponding RBlk/WBlk-Start transactions.

13

orderingsandis thereforeeasilygeneralizedto handleanarbitrarysetof local orderingrules.In theextremecase,
each processor and each device would have its own table of necessary ordering rules.

References

[1] SaritaV. Adve and Kourosh Gharachorloo. Shared Memory Consistency Models: A Tutorial.IEEE Computer, pages 66–76, December 1996.

[2] AnneE.Condon,Mark D. Hill, ManojPlakal,andDanielJ.Sorin.UsingLamportClocksto ReasonAboutRelaxedMemoryModels.In Proceedings
of High Performance Computer Architecture, January 1999.

[3] David Culler, JaswinderPal Singh, and Anoop Gupta.Parallel Computer Architecture: A Hardware/Software Approach. Morgan Kaufmann, 1998.

[4] Leslie Lamport. Time, Clocks and the Ordering of Events in a Distributed System.Communications of the ACM, 21(7):558–565, July 1978.

[5] Leslie Lamport.How to Make a MultiprocessorComputerthat CorrectlyExecutesMultiprocessPrograms.IEEE Transactionson Computers, C-
28(9):241–248, September 1979.

[6] JamesP.LaudonandDanielLenoski.TheSGI Origin: A ccNUMA Highly ScalableServer.In Proceedingsof the24thInternationalSymposiumon
Computer Architecture, Denver, CO, June 1997.

[7] ManojPlakal,DanielJ.Sorin,AnneE.Condon,andMark D. Hill. LamportClocks:Verifying aDirectoryCache-CoherenceProtocol.In Proceedings
of the 10th Annual ACM Symposium on Parallel Architectures and Algorithms, Puerto Vallarta, Mexico, June 28–July 2 1998.

[8] A. Singhal,D. Broniarczyk,F. Cerauskis,J.Price,L. Yuan,C. Cheng,D. Doblar,S.Fosth,N. Agarwal,K. Harvey,E. Hagersten,andB. Liencres.
Gigaplane: A High Performance Bus for Large SMPs.Hot Interconnects IV, pages 41–52, 1996.

[9] RichardL. Sites, editor.Alpha Architecture Reference Manual. Digital Press, 1992.

[10] Mark Smotherman.A Sequencing-BasedTaxonomyof I/O SystemsandReviewof HistoricalMachines.ComputerArchitectureNews, 17(5):10–15,
September 1989. See also URL http://www.cs.clemson.edu/~mark/io.ps.

[11] DanielJ.Sorin,ManojPlakal,Mark D. Hill, andAnneE.Condon.LamportClocks:ReasoningAboutShared-MemoryCorrectness.TechnicalReport
CS-TR-1367, University of Wisconsin-Madison, March 1998.

