
A N I N - C A C H E A D D R E S S T R A N S L A T I O N M E C H A N I S M

David A. Wood, Susan J. Eggers, Garth Gibson, Mark D. Hill, Joan M. Pendleton,
Scott A. Ritchie, George S. Taylor, Randy H. Katz, and David A. Patterson

Computer Science Division
Electrical Engineering and Computer Science Department

University of California, Berkeley
Berkeley, CA 94720

ABSTRACT: In the design of SPUR, a high-performance multiproces-
sot workstation, the use of large caches and hardware-supported
cache consistency suggests a new approach to virtual address transla-
tion. By performing translation in each processor's virtually-tagged
cache, the need for separate translation lookaside buffers (TLBs) is
eliminated. Eliminating the TLB substantially reduces the hardware
cost and complexity of the translation mechanism and eliminates the
translation consistency problem. Trace-driven simulations show that
normal cache behavior is only minimally affected by caching page
table entries, and that in many cases, using a separate device would
actually reduce system performance.

Key Words and Phrases: Virtual Memory Management, Multiproces-
sot Architectures, Trace-Driven Simulation

1. I n t r o d u c t i o n

Paged virtual memory is used in most computer systems to
extend the address space available to the programmer [Denn70]. Pro-
grams execute using virtual addresses, which are translated by the
system into physical addresses at run-time. Virtual memory allows
program size to be independent of the amount of available physical
memory, and eliminates the problems of contiguous physical memory
allocation.

The mapping from virtual addresses to physical addresses is
maintained in a structure called a page table. A virtual address is
used to index into the table and locate the corresponding page table
entry (PTE); the entry is used to construct the physical address.
This translation process is usually accelerated by special hardware

called a translation lookaside buffer (TLB) 1. A TLB is a small
cache, typically 64 to 512 entries,' of recently-referenced page table
entries. Like all caches, the TLB reduces the average access time to
a PTE, thus reducing the overhead of virtual address translation
[Saty81].

In this paper we describe a new translation mechanism, called
in-cache address translation, that uses the virtually-tagged data
cache instead of a TLB to hold page table entries [Ritc85]. In-cache
translation requires less hardware, since it eliminates the TLB, and
has comparable performance to TLB-based mechanisms when com-
bined with a large cache. Performance depends critically on the
cache memory having low miss rates; fortunately, the increased den-
sity of RAM chips makes large caches (>64K bytes) feasible.

In-cache address translation is being implemented as part of the
SPUR workstation project at U.C. Berkeley. The SPUR workstation
[Hill85] is a high performance personal computer that has evolved
from the previous RISC [Putt85] and SOAR lUngs84] research pro-
jects. SPUR is a single bus, shared-memory multiprocessor, contain-
ing 6 to 12 processors with private caches. The prototype of this
machine will serve as a test-bed for parallel processing research.

1 Also known as a directory lookaslde table (DLAT) or translation buf'fer (TB).

Shared-memory multiprocessors with cache memories suffer
from the well known problem of cache coherency [Tang76,Cens78].
Solutions to this problem guarantee that all processors see a con-
sistent view of memory. For shared bus multiprocessors, this is often
accomplished using extra hardware that monitors transactions on the
bus, as is done in SPUR [Katz85]. Since a TLB is nothing more than

a special purpose cache, if each processor has its own TLB 2, then a
multiprocessor also suffers from a TLB coherency problem. Thus
changes to a page table entry (e.g., making a page inaccessible so it
can be flushed to the paging store) must be reflected in the TLBs of
all processors. The data cache solution also works for TLBs, but
requires significant additional hardware. Since in-cache translation
does not use a TLB, it eliminates the TLB coherency problem.

Section 2 describes the basic mechanisms and algorithms needed
for a uniproeessor system. Section 3 extends the scheme to shared-
bus multiprocessors employing a hardware cache consistency algo-
rithm. In section 4, we describe a performance evaluation using
trace-driven simulation, and present the results. Finally, we discuss
the implementation status of in-cache translation in SPUR and sum-
marize our results.

2. U n l p r o c e s s o r I n - C a c h e A d d r e s s T r a n s l a t i o n

This section describes the basic mechanisms and algorithms of
in-cache translation. First, the motivation for the virtually-tagged
cache is explained, followed by a discussion of its problems and their
solutions. Then the page table organization and conceptual transla-
tion process is described. Next, the actual in-cache address transla-
tion process is described. Finally, the details of memory management
are discussed for completeness.

2.1. O v e r v i e w of T r a n s l a t i o n S c h e m e

The in-cache translation mechanism assumes that the cache is
addressed using virtual addresses, i.e., the cache index and tag are
derived from virtual, rather than physical, addresses. The advantage
of this virtually-tagged cache is that address translation is required
only on a cache miss, when the data must be fetched from main
memory. In contrast, if physical addresses are used for cache access,
the translation must occur on every cache reference. Many systems
with physical address caches perform address translation in parallel
with the cache access, deriving the index from the virtual address and
the tag from the physical address. In general, this requires the cache
index bits to be the same in both virtual and physical addresses.
However, as cache sizes increase for a fixed page size, the complexity
(e.g., associativity) must also increase for parallel translation to be

possible s. For example, a 16K byte cache with 4K byte pages must

Most current generation multiprocessors utilize a TLB per processor. Some re-
cent research systerm, e.g., MIPS-X [Stan86] and Dragon [lVlcCr84], are investigating
centralized and hybrid translation buffers.

s Other ways to satisfy the restriction are to increase the page size, or to restrict
the mapping of virtual pages to physical pageframes such that some low order hits of
the virtual page number and pageframe number are the same.

358
0884-7495/86/0000/0358S01.00 © 1986 IEEE

Active Segment Registers
Process Virtual Address

lo n ~ ['lvirtualiu~e #1 t I offset
{El 18 12

' -~-8

I seg #1virtual page #1 offset I
Global Virtual Address

Figure 1 : Formation of a Global Virtual Address

The virtual memory allows for multiple large address spaces by pro-
viding one large global virtual address space. Each process's virtual
address space is divided into four segments, typically stack, heap,
code, and system. The global virtual address is formed in the cache
controller by prepending the global segment number, from one of
the four active segment registers, to the process virtual address.

be 4-way set-associative. For much larger caches, the associativity
becomes unmanageable, and translation is usually done sequentially.
In this case, translation must be fast to achieve reasonable effective
memory access times. On the other hand, cache misses only occur on
a small percentage of the total references, and therefore the transla-
tion mechanism used with a virtually-tagged cache need not be as
fast to yield comparable performance.

Virtually-tagged caches suffer from the address ~ynonym prob-
lem [Smit82]. If two virtual addresses are allowed to map to the
same physical address, the same data could be in two separate cache
entries; if modifications to one entry are not reflected by the other,
inconsistent results can occur. We avoid this problem by providing a
single global virtual address space, shared by all processes. When two
processes share data, they must use the same global virtual address
to access it.

as
In SPUR, the global virtual address space is 256 gigabytes (2) ,

divided into 256 1-gigabyte segments. Each process sees a 4-gigabyte
process virtual address space, composed of 4 1-gigabyte segments.
Each process segment is independently mapped to one of the 256 glo-
bal segments. As Figure 1 shows, the top two bits of the process vir-
tual address select one of four active segment registers, which define

the current mapping. Processes share data by mapping to the same
global segment. If any portion of a segment is shared, then the whole
segment is shared. The segment register can be accessed in parallel
with the cache, since the segment number is not needed until the tag
comparison. A similar scheme has been implemented in the CDC
Cyber 180 [CDC84] and variations are discussed by Knapp in her
dissertation IKnap85 I.

Each segment is divided into 256K 4K byte pages. Over 64
million is page 26 table entries
12 segments X2 pages/segment=2 PTEs) are needed to map the
entire global address space, for a total page table size of 256 mega-
bytes. To avoid excessive memory requirements, the page tables are
placed in virtual space, and therefore may be paged out to disk.
Rather than residing in a separate system virtual 8pace, as is done in
the VAX-11 architecture [Digi81], the page tables may reside any-
where in the global virtual space. Since the page tables map the
entire global virtual space, some portions of the page tables map
themselves. These portions are referred to as second-level or root
page tables, to denote their special significance. The root page tables
must be kept resident at known addresses within physical memory,
requiring a minimum of 256K bytes of physical memory to map the
entire global virtual address space.

2 .2 . I n - c a c h e T r a n s l a t i o n P r o c e s s

Conventional systems with virtual caches have used a separate
TLB to cache page table entries [Smit82]. In our approach, page
table entries can reside in the same cache as instructions and data,
and are referenced with virtual addresses. Translation is accom-
plished by fetching PTEs from the cache instead of a TLB. Since
translation is necessary only on cache misses, the impact of the addi-
tional delay on performance is minor.

To translate a virtual address, we need to fetch its PTE to
determine the physical address. To do this, the in-cache mechanism
must compute the PTE's global virtual address. By requiring all
page tables to be contiguous in virtual space, the PTE can be found
by using the (data} virtual page number as an index into the page
table. By further requiring the page tables to be aligned on a 256M
byte boundary, the address computation can be performed by a sim-
ple shift and concatenate, as illustrated in Figure 3.

In this paper, we assume that the processor issues a memory
request and remains stalled until the request is completed. A
separate cache controller performs all the address computation and

G l oba l V i r t u a l A d d r e s s
37 0

.... A c t i v e s e g m e n t l s e g ~ 1 v i r t ua l page # I offset I
Reg i s t e r :: | | |

........... iroot page tab le base i ~ j ~ ~j~,0 i ~ , 2

i~= = !

(1024 PTEs per page)

F i r s t -Leve l
R o o t

P a g e T a b l e P a g e T a b l e

o
o
o

Pages

Des i red D a t a By te

Figure 2 : Two-Level Page Tables for an Active Segment

Associated with the global segment number of an active segment is the base address of the root page table for that seg-
ment. The high-order eight bits of the virtual page number index into the root page table to find the physical address
of the "first-level" page table page. The low-order ten bits of the virtual page number select the page table entry for
the desired data page. The offset field then specifies the byte within the page.

359

D a t a 37 1211 0
Global

A d d r e s s

Pag , e B a s e T able]i I

P T E
G l o b a l
V i r t u a l
A d d r e s s

t i 26

Figure 3 : Formation of Page Table Entry Global Virtual Address

The virtual address of the PTE is formed by using the virtual page
number portion of the (data} global virtual address as an index into
the page table. Because the page tables must be aligned on a 256M
byte boundry, the address may be formed using concatenation rath-
er than addition. Since PTEs are 4 bytes, the bottom two bits of
the byte address must be 0.

logic required to service a miss, including address translation.

Figure 4 shows the four eases that can occur on a memory
reference. In the most frequent case (ease A), the cache hits and data
is delivered in one cycle (assuming a single-cycle cache). In prepara-
tion for a miss, a shift-and-concatenate circuit in the cache controller
forms the global virtual address of the page table entry during the
reference. If translation is required, the cache controller uses this
address and attempts to read the page table entry in the following
cycle. Case B corresponds to a cache miss on the data and a hit on
the PTE. This requires one additional cache reference, for the PTE,
and one memory transfer to fetch the desired data block.

If the PTE is not in the cache (case C), a third cache reference
is required for the root PTE, from which the physical address of the
PTE may be formed. After the PTE is fetched from memory, it is
loaded into the cache for use in future translations. In the worst case
(ease D), all three cache references fail, and the root PTE must also

be fetched from memory and cached. The physical addresses of the
root page table for each of the four active segments are kept in regis-
ters in the cache controller.

More than three memory operations may occur if a write-back
of a dirty cache block is necessary. Because the cache is virtually-
tagged, a recursive translation must be performed to obtain the phy-
sical address needed for the write-back. If the PTE for the replaced
block must be fetched from memory, it should be placed in a
separate register to prevent deadlock: deadlock could occur if a PTE
tries to displace the block being written back to memory. In SPUR,
this complexity is eliminated by keeping the physical address tag for
each block in cache tag memory (as is also done in the Dragon
[McCr84]). We trade off control complexity for the additional bits of
cache tag memory.

On examining any page table entry, the desired page may be
shown to be invalid, indicating that the page is not in memory but
resides on disk. In this event, a trap to the page fault handler is
taken, and the page fault is resolved in software.

2.3. Reference and Dirty Bits

In most systems, reference and dirty bits for each page are kept
in the PTE to optimize the replacement and write-back of pages in
memory. Traditionally, copies of these bits are kept in the TLB,
checked on each cache reference, and are set when necessary. For
in-cache translation, maintaining a true reference bit requires that
the corresponding page table entry be examined for every reference to
the cache. This overhead would be prohibitive; instead, we use an
approximation to reference bits, which we refer to as misa bits. The
PTE miss bit is set only when a reference to a cache block misses. In
this event, the PTE must be brought into the cache anyway to carry
out the address translation. After a miss bit is cleared by the paging
daemon, it is not set again until the next cache miss for that page.
Thus it is possible, although unlikely, for a page to be thrown out of
memory despite being referenced. Since even true reference bits only
allow the operating system to approximate a "Least Recently Used"
policy, we feel that this additional approximation is not a serious
shortcoming 4.

Dirty bits could be maintained in the same way, by setting the

4 At least one very successful architecture, the VAX-I1 [DigiS1], does not provide
reference bits at all.

Virtual Address

i i .

i i . . Air i /hlt [hi~

[i [! I i I I + Memo Rer 4 I I
i i i i ~_.___~.~ Memory ReL LPhysic~l Address of - r~_., . ehysical Address of [Memory ReL i.

r , i ,>a<a r ,>,<a ' -%t'D o,e r

...................... I . D ,
Data

Figure 4 : Steps in the Translation Procedure

Four eases are possible depending on whether the cache contains the data, page table entry, and root PTE. A: The
cache hits, and no translation is required. R: The first cache reference misses, but the cache contains the page table en-
try (a "TLB hit"). O: The second cache reference misses, but the cache contains the root PTE. D: The cache misses
on all three attempts, and the root page table entry must be fetched from memory.

360

dirty bit whenever a writable block is brought into the cache. This
has the disadvantage that the dirty bit may be set even though the
page has not been modified, and therefore unmodified pages may be
written to disk unnecessarily. Another solution is to examine the
PTE on every processor write; however, this results in a significant
degradation in performance. Instead, every cache entry contains a
PageDirty bit. The PTE dirty bit is copied into the PageDirty bit
when a block is brought into the cache. When the processor writes
to a block whose PageDirty bit is set, i.e., the page is known to be
dirty, then the write proceeds normally. If this bit is not set, then
the PTE dirty bit ma y not have been set yet. The cache controller
must first reference the PTE (potentially causing a cache miss), check
the dirty bit, and set it if not already set. Then the referenced cache
block's PageDirty bit is set (since the page is now known to be dirty),
and the write is allowed to proceed.

The PageDirty bits of other blocks that were read from the
page before it was written are not updated when the PTE dirty bit
was set. Thus, when one of these blocks is modified, the PageDirty
bit is still zero, and the cache controller must check the PTE dirty
bit.

In the SPUR prototype, when the processor writes to a block
whose PageDirty bit is not set, it handles the reference like a cache
miss. When the PTE is referenced, the PTE dirty bit is checked. If
it is set (a dirty bit miss), then the miss handling completes and the
write is allowed to proceed. If the dirty bit is not set, a trap is gen-
erated (a dirty bit trap) and the PTE is modified under software con-
trol. By handling the PageDirty bit in this manner, the control logic
is greatly simplified, and, as we will show later, these dirty bit misses
occur infrequently.

When the page is recycled (see below) or written back to disk,
the page's dirty bit is cleared. Care must be taken to first flush all
that page's blocks from the cache; this guarantees that subsequent
writes to that page won't find a block remaining in the cache with
the PageDirty bit incorrectly set. Since this must be done infre-
quently, the performance impact of the flushes is slight.

2.4. Segment and Pageframe Recycling

The SPUR workstation supports 256 global segments. This
should be sufficient for the number of concurrent processes on a per-
sonal workstation. Processes have finite lifetimes, however, so seg-
ments will need to be reassigned from terminated processes to newly
active ones (recycled). Because of the virtually*tagged cache, the sys-
tem must guarantee that no blocks from the deactivated segment's
pages are resident in the cache before it is reassigned. Otherwise, a
process accessing the reassigned segment might reference old data.

A similar problem arises when we want to reuse a physical
pageframe. As before, we want to change the virtual to physical
mapping, but this change is not immediately reflected in the cache
since it is accessed by virtual addresses. If we simply remap the
pageframe to a different virtual page, then there may be blocks from
the original virtual page remaining in the cache. Since, in SPUR, the
physical address tag is cached with each entry, blocks mapped to the
old virtual address will still be written-back to the pageframe 6.
When the old block is written-back, it could over-write new data. To
prevent this loss of data, it is necessary to guarantee that a page's
dirty blocks are removed from the cache before re-using the page's
page frame.

Both of these problems can be solved by flushing the cache. If
a number of pages and segments are recycled together, then the over-
head is not significant. Other algorithms exist which may have less
overhead in some cases.

Note this problem does not exist if we do not cache the physical tags. Howev-
er, we would incur the performance loss and complexity of translating on write-back.

3. Extensions for Multiproeessor In-Cache Translation

Traditional multiprocessors use TLBs to perform address trans-
lation. As mentioned previously, multiple TLBs experience a transla-
tion coherency problem analogous to the cache coherency problem.
Existing systems have solved this problem using a combination of
hardware and software. At one extreme, a special instruction can be
provided to invalidate remote TLBs. At the other, the software must
verify that the TLB entry is valid before using it. Some new mul-
tiprocessors with virtually-tagged caches have a single TLB shared by
all processors IStan85,McCr84]. This solution eliminates the
coherency problem, but may result in a performance bottleneck at
the TLB.

In-cache translation is easily extended to multiprocessors that
use hardware to enforce cache coherency [Katz85]. Page tables are
only cached in the processor's data cache, and not in a separate
translation buffer. Therefore, updates to cached PTEs are done in a
consistent manner, as guaranteed by the regular cache coherency
mechanism.

The basic translation process is unchanged for mnltiprocessors,
but recycling pages and segments is slightly more complicated.
When recycling a page (or segment), there must be no blocks from
that page (or segment) in any processor's cache. Each processor can
be instructed to flush its cache by sending it a message or interrupt.
The completion of the operation can be synchronized using a counter
in shared memory; each processor atomically incrementing it upon
completion of its flush.

4. Evaluation

The previous sections have described the operation of the in-
cache translation mechanism. While this translation scheme elim-
inates the TLB and the TLB coherency problem, it must also have
acceptable performance to be useful. One reasonable definition of
"acceptable", examined below, is that it should perform at least as
well as existing translation mechanisms.

4.1. Methodology

We used the DinerolI cache simulator [Hill831 to evaluate the
performance of the in-cache translation mechanism and other transla-
tion buffers. This simulator uses address traces as input and reports
miss rates and bus traffic for specified cache parameters. We
modified the simulator to simulate the caching of page table entries.
All simulations were for a uniprocessor and do not take into account
additional misses that might result from maintaining cache
coherency. However, since pagetables are updated relatively infre-
quently, we do not expect cache coherency to have a major impact
on performance.

Table 1 lists the five address traces that were used to drive the
simulations, and the amount of virtual memory referenced by each
trace. The first four were gathered on a VAX running UNIX with an
address and instruction tracer [Henr84]. LISZT is the Franz LISP
compiler compiling a portion of itself. VAXIMA is an algebraic
manipulation system, written in LISP, performing a series of integra-
tions, matrix operations, and solving differential equations. CS20K
and CS100K are traces composed of two separate sections of the
VAXIMA trace, and are designed to simulate context switching.
They are identical except for the switching interval, which is 20,000
and 100,000 references, respectively. Since, in SPUR, indepeudent
(non-sharing) processes run in different segments, the two traces were
given different segment numbers to simulate this behavior. The final
trace, MVS, is a series of calls to the MVS operating system and was
traced on an Amdahl 470 [Smit851. The traces gathered on the VAX
include only those references made while in user mode. The MVS
trace, on the other hand, includes only system references.

The available computer resources forced us to limit the simula-
tions to one million addresses per trace, even though this length
represents under one second of execution. As a sensitivity analysis,
traces of five million references were run for selected cases, and miss

361

A d d r e s s T r a c e s U s e d

Trace

LISZT

VAXIMA

CS20K

CS100K

MVS

Description

Franz LISP self-compilation

Algebraic expert system
(a derivative of MACSYMA)

Two VAXIMA streams inter-
leaved every 20K references
(Multi-user context switch rate)

Two VAXIMA streams inter-
leaved every 100K references
(single-user context switch rate)

Multiple calls to the MVS
operating system

Memory Referenced
(Mbytes) [(pages)

0.6Mb 145

1.7Mb 413

2.5Mb 609

2.5Mb 609

3.7Mb 284

Table 1 : Address Traces Used

These five traces were used in the analysis of the in-cache transla-
tion scheme. The first four were generated on a VAX running
UNIX. The last trace was recorded on an Amdahl 470 running the
MVS operating system. The amount of virtual memory refer-
enced is shown by the number of 41(byte pages that were
touched (4K bytes is the page size used in SPUR).

rates did not differ substantially. All digits of the results are
significant for the particular traces that were simulated. However, as
workload behavior varies wildly [Smit85], care should be taken in
interpreting these results.

The in-cache translation scheme was simulated assuming a
128K byte, direct-mapped (associativity=l) cache, with :32 byte
blocks. The memory page size was 4K bytes. These parameters are
being used in the prototype of the SPUR multiprocessor workstation.

While trace-driven simulation has been shown to provide
optimistic results [Clar85], it is nonetheless useful for making relative
comparisons.

4.2. P e r f o r m a n c e of I n - C a c h e T r a n s l a t i o n

There are two opposing views of the SPUR cache: a cache being
corrupted by page table entries, and a translation buffer being pol-
luted by instructions and data. Table 2 shows the increase in the
cache miss rate because both functions are being performed in the
cache. This total additional miss rate is computed by dividing the
misses added when PTEs are cached by the total number of refer-
ences made to the cache by the processor.

There is an important distinction to be made: proce88or refer-
ences to the cache are for instructions and data, while the cache con-

troller references the cache for page table entries during the transla-
tion process. The 5th and 6th columns of Table 2 separate the total
additional miss rate according to this distinction. In the column
labeled "Collisions", the processor is experiencing additional misses
on instructions and data because normal cache contents are being dis-
placed by PTEs. The "PTE Misses" column, on the other hand,
reflects the additional misses incurred when the cache is being refer-
enced during the translation process. The combination of "Colli-
sions" and "PTE misses" is the measure of the translation mechan-
ism performance: the "TLB" miss rate for SPUR. This figure of
merit includes the misses on both page table and root page table
references. As we shall see, there are few root page table references.

Effective, or average, memory access time is another important
performance metric. As was shown in Figure 4, a memory reference
can cause 4 different cases to occur. The average access time is com-
puted by summing the products of the frequency of each case times
the cycles required by that case. We assume that cache accesses
complete in 1 cycle, and memory accesses complete in 13 (5 cycles
latency and 8 cycles transfer time); these parameters are based on
the implementation of the SPUR prototype.

Table 3 displays the percent of memory references handled by
each of the four cases. Between 97% and 99% of the time, the refer-
ence hits in the cache and is handled in one cycle (A). The cache con-
troller takes over on a miss, and in the next cycle references the
cache with the virtual address of the page table entry. From 91% to
97% of these references, or from 0.5% to 2.5% of all references (B),
are cache hits. The desired instruction or data can then be fetched
from memory in one bus transaction.

For all the traces except MVS, only 2 to 4 references out of
10,000 result in a PTE miss and force a memory access for the page
table entry (C). Only about 2 in 100,000 references cause a "double-
miss," and require a memory fetch of the root page table entry as
well (D}. These second level looknps represent only 3.3% of PTE
misses on average. These results agree with those of Clark and Emer
[Clar85], that between 3.1 to 4.8% of PTE misses are for second level
PTEs, and support the use of a two-level page table scheme.

4.3. C o m p a r i s o n to a Separate T L B

To properly evaluate in-cache translation, we must compare its
performance to some standard. One reasonable standard is the per-
formance of existing translation mechanisms. The most common
translation mechanism is a TLB combined with a physically-
addressed cache. Table 4 shows how in-cache translation compares
to the translation buffers of several commercial computers.

The in-cache method displays lower miss rates for almost all
cases. Of the TLBs shown, only the large set-associative buffers
achieve better performance. By allowing a large, variable number of
cache entries to hold PTEs, the in-cache scheme is able to adapt to
the dynamics of program behavior. As seen in the last column of

Increase in C a c h e MIss R a t e Average
Number

,, of PTEs

Trace in SPUR

LISZT
VAXIMA
CS100K
CS20K
~VS

Miss Rate (%)
Pure Cache

0.584
1.844
2.214
2.445
1.677

Miss Rate (%)
w/Translation

0.610
1.875
2.260
2.495
1.981

Additional Cache Miss Rate (%)
Total(% increase) Collisions PTE Misses

0.026(4.4%) 0.009 0.016
0.030(1.6%) 0.004 0.026
0.046(2.1%) 0.005 0.041
0.050(2.0%) 0.007 0.042
0.304(18.1%) 0.142 0.162

Cache

211
598
928
933
329

Table 2 : Additional Cache Misses Due To In-Cache Translation

This table shows the increase in cache misses when translation is performed in-cache. For example, the miss rate for
VAXIMA is 1.844% when PTEs are not cached and 1.875% when PTEs are cached, a relative increase of 1.6%. The
additional 0.03% is composed of two elements: extra misses when the processor references instruction and data blocks
that have collided with PTEs (0.004%), and the misses when the cache controller references a page table entry
(0.026%). The last column shows the average number of PTEs resident in the cache; less than 3% of the cache entries
are used to store PTEs.

362

Types of Memory Accesses

Percentage of Total References

Trace

LISZT
VAXIMA
CS100K
CS20K
MVS

Cache Hits
A(I$)

99.4065
98.1517
97.7806
97.5478
98.1804

PTE Hits
B (2$,1M)

0.5775
1.8236
2.1805
2.4115
1.6600

RPTE Hits
C (35,2M)

0.0158
0.0231
0.0373
0.0390
0.1576

RPTE Misses
D (35,3M)

0.0002
0.0016
0.0016
0.0017
0.0020

Table 3 : Breakdown of Memory References

Averas=
Access

Time (cycles)

1.0854
1.2624
1.3164
1.3492
1.2773

This table shows the percentage of total references to memory that fall into the four categories of Figure 4. The aver-
age number of cycles per reference is given for each trace. A "$" represents a cache reference requiring 1 cycle, and an
"M" indicates a memory transaction requiring 13 cycles. Note that the cache hit ratios presented for case A include
the effect of PTEs colliding with instructions and data. Thus they correspond to the "pure" cache miss rates plus the
collision miss rates of Table 2.

Table 2, the average number of PTEs in the cache increases for more
poorly behaved traces. Clearly, the performance of in-cache transla-
tion is at least comparable to popular high-performance machines.
Therefore, we conclude that in-cache translation has acceptable per-
formance.

Much of in-cache's performance obviously results from the large
virtually-tagged cache, since translation is only required on cache
misses. As an alternative standard of comparison, we can examine
the performance of a TLB placed after the SPUR cache (i.e., using a
TLB for address translation rather than in-cache translation). This
comparison factors out the effects of the virtually-tagged cache.

The results for this comparison were generated by simulating
the performance of the 128K byte, direct-mapped cache for each
trace, and recording only those addresses that missed. These
addresses were then used as the input to each of the simulated trans-
lation buffers.

Table 5 shows the commercial translation buffers examined in
Table 4, but this time translating only on cache misses. Only VAX-
IMA and MVS are shown for brevity, but the results are comparable
for the other traces. The "Cache Miss" columns have identical
entries because the SPUR 128K byte cache was simulated in each
case. The TLB miss rate is still normalized to processor references,
rather than TLB references, to facilitate comparisons. The cycles
required for the average reference are calculated as in Table 3; a TLB
miss is assumed to take as much time as a cache miss (13 cycles).
This assumption is somewhat pessimistic, as TLB misses often take

much longer than cache misses. The relative performance, effective
cycle times of TLBs over in-cache translation, is displayed in the last
column of each section.

In-cache translation has lower TLB miss rates than many of the
buffers; however, in one of the cases the effective cache access time is
worse. This occurs because a TLB may be accessed in parallel with
the cache access, reducing the cost of a miss by one cycle. Nonethe-
less, the average access time of in-cache is within 5% of any transla-
tion buffer.

When computing effective cycle times for TLBs, we have
assumed that a full-block transfer from memory is required to satisfy
a TLB miss. This is not strictly necessary: a single word transfer
would be sufficient. Thus, our results are somewhat optimistic when
compared to systems that make this optimization. On the other
hand, this is partially balanced by the assumption that TLB misses
are handled as quickly as cache misses. Despite these limitations, we
believe the results are accurate enough to make valid comparisons.

To further increase performance, some machines [Gust82]
employ a TLB in addition to caching page tables. While this reduces
the average time to service a TLB miss, the caching of PTEs
increases the cache miss rate, due to collisions between PTEs and
data. However, in-cache translation achieves an effective access time
within 5 ~ of the ideal for all traces (ideal assumes no cost for trans-
lation). It is hard to justify the significant additional cost of a TLB
to achieve at most 5~.

Summary of Commercial TLB Performance

TLB Set Page Miss Rate (Percent)
Size Size Size

(entr ies) , (entr ies) , (bytes), , LISZT VAXIMA I CS100K I CS20K I MVS I
128 1 512 3.588 4.070 4.332 4.444 3.948
128 2 512 1.782 I 2.306 2.344 2.460 2.664
512 1 512 0.639 1.249 1.545 1.710 1.240
512 2 512 0.324 0.619 0.676 0.856 0.548
128 2 4096 0.097 0.305 0.450 0.550 0.145
256 2 4096 0.023 0.112 0.174 0.223 0.063
512 2 4096 0.014 0.047 0.086 0.1Ol 0.030 !

I I II ~ I I I

n/a n /a 4K 0 . 0 2 6 0.030 0.046 0.050 0.304

Machine

VAX-11/730
VAX-11/780
VAX 8600
VAX-11/750
IBM 370 8033
Amdahl 470V/6
Amdahl 470V/8

SPUR In-Cache

Table 4 : Commercial TLB Performance

Simulations of the VAX TLBs are for one half only (only half the buffer is available to user programs while the other
half is reserved for system-space translations). The IBM and Amdahl performance were simulated using a hashed index
based on an Exclusive OR of the address bits. By allowing a large, variable number of cache entries to hold PTEs, the
in-cache method achieves lower miss rates than almost all these buffers (exceptions in bold font). The figures for in-
cache translation are from Table 2.

363

C o m m e r c i a l T L B P e r f o r m a n c e w i t h S P U R V i r t u a l C a c h e

Separate TLB

VAX- 11/730
VAX-11/780
VAX 8600
VAXoI1/750
IBM 370 3033

Amdahl 470V/6
Amdahl 470V/8

SPUR In-Cache

Cache
Miss

1.844
1.844
1.844
1.844
1.844
1.844
1.844

1.844

VAXIMA
TLB Avg.
Miss I Time

] (%)](cycles)

I 0.687 ' 1.329
0.588 1.316
0.559 1.312
0.415 1.294
0.157 1.200
0 080 1.250

L0.047 , 1.246

i 0.030 1.262

Relative
Perf.

I (/SPUR)
' 1.051

1.041
1.038
1.023
0.997
0.989
0.980

1.000

Cache
Miss
(%)

1.677
1.677
1.677
1.677
1.677
1.677
1.677

1.677

MVS
TLB Avg.
Miss I Time

I (%) I(cycles)

' 0.680 I 1.306
0.531 1.287
0.619 1.299
0.341 i 1.202
0.092 1.230
0.048 1.224
0 .030 i 1.222

I

0.304 1.277

Relative
Perf.

I (/SPUR)

I 1.023
1.008
1.017
0.988
0.903
0.958
0.957

1.000

Table 5 : Performance of Commercial TLBs After Cache Miss

These are the same commercial translation buffers as in Table 4. Here, however, they are placed after the SPUR
virtually-tagged cache to show performance when translating only on cache misses. As before, only half the entries for
the VAX buffers were simulated, the IBM and Amdahl TLBs use a hashed index, and the page size is 512 bytes for
VAX buffers and 4K bytes for the others. The TLB miss rate and average access time provide different information be-
cause the cost of a miss differs between a TLB and in-cache translation. A TLB may be accessed in parallel with the
cache reference, while the PTE lookup for in-cache is strictly sequential.

4.4. Addi t iona l A n a l y s e s

To simplify the hardware, the SPUR workstation traps to
software to execute infrequent operations, such as setting miss (refer-
ence) bits and dirty bits. A miss bit trap occurs at most once each
time the miss bit is cleared. With large main memories (each SPUR
workstation will have 20-40 megabytes), paging should occur infre-
quently. Since the miss bits need only be reset during memory star-
vation (to determine likely pages to swap out), the overhead of these
traps should be small.

Dirty bit traps occur each time a page is written for the first
time; all translation schemes incur similar overhead, since they must
update the PTE dirty bit when the page is modified. Dirty bit
misses, which occur on accesses to blocks that are brought into the
cache before the page is first modified, are unique to in-cache transla-
tion and present a potential performance loss. The simulator was
extended to estimate the frequency of dirty bit misses; the results of
this study are presented in Table 6. Despite the cold-start effect,
only 48 extra misses occurred in one million references, in the worst
case. That is less than one dirty bit miss per 20000 references. For a
longer trace the frequency decreases, since the extra misses due to
cold-start are amortized over more references. These results indicate
that pages are modified quickly; thus, dirty bit misses are not a per-
formance problem.

One reason to have a physical address cache and TLB is to
reduce the size of the cache tag memory. This reduction occurs
because virtual addresses are typically larger than physical addresses,
e.g., in SPUR, the virtual address is 38 bits and the physical address
is 32 bits. In addition, SPUR caches both virtual and physical tags,
which greatly increases the necessary bits. If we were to use the
additional bits to build a TLB, it would have over 1600 entries (4K
blocks * 21 bit virtual tag ~ 86010 bits, TLB entry ~ virtual tag +
PTE = 21 + 32 = 53 bits, 86016 / 53 = 1622 TLB entries). If only
the virtual tag were cached, then the possible TLB size drops to
under 500 entries. This is still a large TLB. However, the absolute
number of bits is not necessarily a meaningful metric: the number of
IC packages is often much more important. For example, in the
SPUR prototype the virtual tags occupy only six 4K x 4 bit static
RAM chips, and require only 3 more glue chips than physical tags. It
would be difficult, if not impossible, to build a TLB with so few chips
without using custom logic. Thus, in-cache translation is not neces-
sarily less space efficient than TLBs.

5. S t a t u s and C o n c l u s i o n s

As cache sizes increase, virtuMly-tagged caches provide high
performance with less hardware complexity than physical caches.
Since translation is performed only on cache misses, it can be slower
than for physical caches without significant impact on performance.
In this paper we describe a new translation mechanism that elim-
inates the traditional TLB, using the virtually-tagged cache to hold
PTEs.

The simulation results show that a large cache is very effective
in caching page table entries. The effective cache access time is com-
parable to large set-associative buffers, and is, in fact, within 5°7oo of
optimal. With this result, we have shown that a high performance
memory system can be designed without a TLB. Eliminating the
TLB reduces the hardware cost and complexity of a uniprocessor
design. More importantly, the in-cache mechanism provides transla-
tion coherency in shared memory multiprocessors, without additional
hardware complexity or software restrictions.

D i r t y Bi t P e r f o r m a n c e for In -Ca ch e

Trace Dirty Bit Dirt:
Traps

II I

LISZT

VAXIMA

48

132

CS 100K 164

MVS 147

~y Bit
Misses

2

33

25

48

Table 6 : In-Cache Dirty Bit Performance

This table shows the number of dirty bit traps and dirty bit misses
generated by the traces used in the previous simulations. All trans-
lation schemes must take the necessary traps, i.e., the PTE dirty bit
must be set when the page is first modified.

364

The in-cache translation algorithm is being implemented as part
of the SPUR multiprocessor workstation. The cache controller,
which executes much of the algorithm, is implemented as a custom
CMOS chip, in a 2#m n-well process. The chip is targeted for fabri-
cation in the summer of 1986. The cache data and tags are stored in
vendor supplied static RAMs: the data portion uses 45ns 16K x 4 bit
parts, and the tag portion uses 25ns 4K x 4 bit parts.

6, Acknowledgements

We wish to acknowledge John Ousterhout for his many sugges-
tions that helped lead to this final design. Jean-Loup Baer, Russ
Brown, David Culler, Jane Doughty, Hugh Lauer, Corinna Lee, Lish-
ing Liu, Richard Sites, and Alan Smith read earlier drafts of this
paper and provided excellent comments. Major funding for this
research was from DARPA under contract order 482427-25840 by
NAVALEX. Additional support was provided by Texas Instruments
and the California MICRO program.

7. Re ferences

[CDC841 CDC,. Hardware Reference Manual No. 60462090, CDC
Cyber 180 Computer System Model 990, Virtual State. Con-
trol Data Corporation, St. Paul, Minnesota, 1984.

[Cens78] Censier, L. M. and P. Feautrier. "A New Solution to Coher-
ence Problems in Multicache Systems." IEEE Transactions on
Computer8 27, 12 (December 1978), 1112-1118.

[Clar85] Clark, D. W. and J. S. Emer. "Performance of the VAX-
11/780 Translation Buffer: Simulation and Measurement."
ACM Transactions on Computer Systems 3, 1 (February,
1985).

[Denn70] Denning, P. J. "Virtual Memory." Computing Surveys 2, 3
(September, 1970).

lDigi81] Digital Equipment Corporation,. VAX Architecture Hand-
book. Maynard, Massachusetts 01754, 1981.

[Gust82] Gustafson, R. N and F. J. Shapiro. "IBM 3081 Processor
Unit: Design Considerations and Design Process." IBM J. of
Research and Development 26, 1 (January, 1982), 12-21.

[Henr84] Henry, R. R. Address and Instruction Tracing for the VAX
Architecture. Unpublished Report, U.C. Berkeley, November,
1984.

[Hill83] Hill, M. D. Evaluation of On-Chlp Cache Memories.
Master's Report, Computer Science Division, EECS Dept., U.C.
Berkeley, December 1983.

IHil185] Hill, M. D. et al. SPUR: A VLSI Multiprocessor Worksta-
tion. Submitted for publication in Computer, November 1985.

[Katz85] Katz, R. H., S. J. Eggers, D. A. Wood, C. L. Perkins, and R.
G. Sheldon. "Implementing a Cache Consistency Protocol."
Proc. lgth International Symposium on Computer Architec-
ture, Boston, Mass., June 1985, pages 276-283.

[Knap85] Knapp, V. Virtually Addressed Caches for Multiprogram-
ruing and Multiprocessing Environments. U. of Washington,
Dept. of Computer Science, Technical Report No. 85-06-02,
June, 1985.

[MeCr84] MeCreight, E. M. "The Dragon Computer System: An
Early Overview." NATO Advanced Study Institute on Mir-
coarchitecture of VLSI Computers, Urbino, Italy, July, 1984.

[Patt85] Patterson, D. A. "Reduced Instruction Set Computers."

Communications of the ACM 28, 1 (January, 1985), 8-21.
[Rite85] Ritchie, S. A. TLB For Free: In-Cache Address Translation

For A Multiprocessor Workstation. UC Berkeley, Computer
Science Division, Technical Report No. UCB/CSD 85/233,
May 1985.

[Saty81] Satyanarayanan, M. and D. Bhandarkar. "Design Trade-offs
in VAX-11 Translation Buffer Organization." IEEE Computer
14, 12 (Dec.1981), 103-11.

[Smit82] Smith, A. J. "Cache Memories." Computing Surveys 14, 3
(Sept. 1982), 473-530.

[Smit851 Smith, A. J. "Cache Evaluation and the Impact of Work-
load Choice." Proc. l~th International Symposium on Com-
puter Architecture, Boston, Mass., June 1985, pages 64°73.

[Stan85] Stanford University,. "MIPS-X: A High Performance Com-
puter." Computer Systems Laboratory Technical Progress
Report, March, 1985, pages %12.

[Tang76] Tang, C.K. "Cache System Design in the Tightly Coupled
Mutliprocessor System." Proceedings of NCC, 1976, pages
749-753.

[Unga84] Ungar, D., R. Blau, P. Foley, D. Samples, and D. Patterson.
"Architecture of SOAR: Smalltalk on a RISC." Proc. Eleventh

International Symposium on Computer Architecture, June
1984, pages 188-197.

365

