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Abstract

Modern shaed memory implementations use many coxmplgeacting optimizations, faing
industrial product goups to spend mhanoe efort in verification than in design. Cuent formal
verification tebiniques a¢ somerhat non-intuitive to system desigeexnd verifies, and these
formal methods do not scale well taptical systems.

This paper seeks to give verifeand designer a reasoning teanique that is prcise (unlike
informal reasoning) and intuitive (unkksome formal models)o prove that a system ope the
desied consistency model, we woulcelktool that allows us to eate a total aler of e’ents. W
modestly gtend Lampors logical clok work flom distributed systems and apply it to sbar
memory systems.aMise these so-called Lamport &dedo timestampvents and theby ceate a
total order. This total oder can then bexamined to see if it satisfies the dedirconsistency
model. Lamport cldes ae puely a reasoning tool, and tyeare never instantiated in haware.

We demonstte the value of Lamport clke by showing that sequential consistency (SC) is
obeyed by a variety of snoopingi$-based cohence potocols, anging fom a simple cdee-less
system to a split-émsaction out-of-ater lus. V@ present timestamping lsemes for all of the
above systems and, in the case of the smitd¢action bs, we use the timestamps to formally
prove that the system satisfies SC.
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1 Introduction
Many papers in the literature propose optimizations to imgpm@omputer system performance.

These papers often ignore thefidiilt problem of erifying whether n&@, more-comple imple-
mentations are completely correct. Vidgheless, industrial product groups spend much more

effort in verification than in design.

One area where theenfication problem is acute is shared memory systems. Designers must
implement a memory consistgnmodel, such as sequential consisye{®C), correctly and with
high performance.dbe correct, an implementation of SC must insure that:

the result of any execution is the sane as if the operations of all the
processors were executed in some sequential order, and the operations of each
i ndi vi dual processor appear in this sequence in the order specified by its
program [ 12]
To achiee high performance, memory system implementove @ploit a rich pallet of optimi-
zations, including snoopingub protocols, directory protocols, out-of-ordesés, multiple bses,
arbitrary interconnects, writeulfers, irvalidation queuing, superscalaxeeution, out-of-order
execution, and speculag execution. Correctness is often demonstrated by iméugguments on

individual optimizations andxéensve simulations of the complete system.

Let's consider onexample of an aggresa optimization. Vith a standard walidation-based
directory protocol (lilke that of the Stanford ASH [14]), a store request to the directory that finds
mary read-only copies outstanding causes aalidation message to be sent to eachycamd

then acknwledged. Scheurich obs@w that processors can queualidations, send acknd-
edgments, and then perfornvatidations, as long as the processors are “isolated” from the rest of
the system [20]. Thus, it is possible for processor P1 to perform its storeysi@aptime pfiore

before processor P2 does a load atspial time ptaq (i-€., Phiore < Pload. P2 gets a “stale”



value, and yetwerything is “ok”. While one can belre that Scheurick’ optimization wrks in
isolation, hav can one be sure that ibvks when combined with some of the other optimizations

listed aboe?

This paper seeks to mak modest stepwards preiding designers andevifiers with a more for-
mal grounding for insuring that shared memory systems are correct. Lasrgeditiition of SC
says an implementation must conform to an order “thiats. We seek to think about an imple-
mentation as dynamically constructing an ordexirag} which we canerify correctness. Our pro-

cess wrks in three steps:

» The designerfrifier reasons about the system as concurrently performamjseat some el
of detail (e.g., loads, stores, getcLusi VE coherence permissions, and reeeinvalidation

messages).

* We gve the designereérifier rules to assign logical timestamps to edirés that ensure that all
causal interactions floto lager logical time. W call our methodlamport Clo&s because it
modestly &tends Lampors work from distriluted systems [11]. Our method conceptually
adds Lamport clocks to entities (e.g., processors, caches, directorieasaspdnd conceptu-
ally adds Lamport timestamps to messadesno case a Lamport cloks or timestamps

added to actual haware.

* The designerfrifier can then use the timestamps tovprthat an implementation meets the
requirements of a memory consistgmneodel. Wth SC, for @&ample, does a loadvedys return
the \alue of the last store (in Lamport time) to the same address? The proofsrgdrom

informal to reasonably formal to machine automated.

Recall that Scheurick’'optimization alleved a store at pisical time p;,.oto occur before a load

at plysical time pt,,q even though the load returns the ollue and is thus logically before the



store. Wth Lamport clocks, the load can get a logical timestamgg,lfrom before the logical
time of the iwvalidation (it has not been causallyeztted by the walidation), while the storg’
logical timestamp Y, Will be larger than that of the walidation, because it occurs causally after
it. Thus, l{paq < ltstore €v€N though Rigre < Plioag IN l0gical time, the load correctly returns the
old value because it occurs logically before the store. Ttasple is illustrated indblel and
Table2, where the arm in Tablel shavs the causal relationship between thaliate and the

processing of this ralidate.

TABLE 1. Scheurich’s example in plysical time

P1 P2
invalidate

physical store
time load

process iwalidation

TABLE 2. Scheurich’s example in logical time

P1 P2
load
logical invalidate
time process iwalidation
store

The rest of the paper isganized as follas. Sectior2 proposes the notion of coherence epochs
in a coherence protocol. 8\Will use epochs as a tool for analyzing protocols, since protocol are
responsible for maintaining certairvariants with respect to epochs. SecBoeplains the con-
cept of Lamport clocks and wowe can use Lamport clocks to delineate coherence epochs.
Sectiond examines a simpleus system with a write-#alidate protocol. Sectioh analyzes a

system with a complicatedib and a write-walidate protocol. Sectiod analyzes a system with



multiple interleaed huses. Sectioi shavs hav we can use Lamport clocks to ghthat a proto-
col is incorrect. Sectiof discusses o our technique compares with othegrification tech-
niques. Sectio discusses follw-on work, including hav our technique can bextended to
directory protocols and moour technique can be applied toyrg the correctness of protocols

that obg consisteng models other than SC. Fingl§ectionlO summarizes our conttibons.

2 Coheence Epochs
Memory coherence protocols in shared-memory multiprocessors ensure a global total order of

memory operations on wisingle block of memoryn a typical write-inalidate protocol, the total

order of operations on a block of memory is constructed as processors initiate transactions so as to
obtain the proper coherence permissions for performing memory operations. If a processor will be
reading a block, it mas a request for Read-Only access andvesé¢he block in theHaRED state

in its cache, after which it can proceedxeaute loads on this block. If a processor needs to write

to a block, it ma&s a request for Read-Write access and subsequentlyeetae block in the

EXCLUSI VE state in its cache (possiblyalidating othesHARED copies or anothaxcLusl VE copy),

after which it can xecute loads and stores on this block. Let us defieeory opeationsto be

the loads and stores that are performed by a processblet us defineoheence tansactiongo

be events that cause processors to change their access permissions to blocks of data.

Most protocols insist that a processaitwntil it actually has the data before it is aléml to ee-
cute a memory operation. This requirement led ugpoee what it means taxecute a memory
operation, and we found it cegnient to split thexecution into what we refer to as “binding” and
“performing”. A memory operation can l®undto a transaction if that transactioaigs us the

appropriate coherence permission. Binding an operation isadepii to reserving resources to



actually read data from or write data to the cache (i.e., perform the instruction). An operation can

then beperformedonce the data for the operation is present in the cache.

This leads to a natural separation of memory operations from the coherence transactions that pro-
vide them with the block to operate on. Memory operations need to be bound and performed in a
manner consistent with their program order and the memory congisterzl| supported by the
system. Hwever, coherence transactions can be performed ynader whatsoeer without
affecting correctness. 8Wiev coherence transactions as definiogeence epdeson blocks. A
coherence epoch for a block is a period of “time” during which a processor has certain coherence
permissions for that block and hence can bind memory operations on that bloetarple, if a
processorecutes a coherence transaction to get a block in the Read-Write state, gkeruan

s VE epoch for that block starts on that processor from the time when it can start binding memory

operations on that block. The epoch will end with the last operation it binds for that block.

A coherence protocol canwde vieved as a mechanism for demarcating sedalizingthese

epochs, thus ensuring thatalig copy of the block circulates among the processors and maintain-

ing a global order of all the memory operations performedusorf the block. Put anotheaw a
coherence protocol ensures a clean separation among epochs and that data gets correctly “handed
over”, like the baton in a relay race, from one epoch to tke @& course, not all epochs need to

be separated in thisay sincesHARED epochs canwerlap.

The preceding discussion has glosseer @oncepts lik “time”, “next” epoch, and so on. Coher-
ence epochs will be a well-defined notion only after we resthle issue of ordering operations
that occur on dferent processors of a multiprocessor system. Such a problem has already been

tackled in distribted systems by Lamport. In thexhsection, we xplain hav we adapt Lam-



port’s logical clocks to construct a scalelogical time over which we can define coherence

epochs.

3 Lamport Clocks
The most intuitre approach to orderingzents is to order them by theydical times at which

they occur However, physical time is generally not a useful tool for ordering, since it is often dif-

ficult or impossible to determine whickents happened before oth@epts on diferent proces-

sors. ler exkample, imagine te processors witBHARED data performing loads on the sanyele.

Moreover, ordering gents in plsical time is generally more restngatithan ordering thenogi-

cally. Using plysical time, for gample, would preclude Scheurichoptimization. Logical order-

ing only restricts the order betweeveats that areausally elated Two causally relatedvents

would be the sending of a message by one processor and the reception of that message at another

processar

While determining an order in phical time is often diicult, an order in logical time can be
extracted if we knar which esents logically cause othevents. If @entA causes\entB, then the

logical time of @ent A should precede that ofentB. To construct a total order ofients in a
multiprocessor system, we shall use an adaptation of the logical ordering scheme proposed by
Lamport [11]. Lamport logical clocks are purely conceptuaiads for reasoning aboutent
ordering. References to logical clocks refer to the concept of a logical clockvate aled not to

ary physical hardvare.

The rules for assigning logical timestampsvdle us with goartial order of the eents in the sys-
tem, since causally unrelatedeats may be assigned the same logical timestampfetedhf pro-
cessors. @ obtain aotal order all ties are broén using an ID unique to each process$bus, the

logical timestamps and processor IDs produce a total ordering of alleéhts én the system.



We have adapted Lamposg’clocking scheme in afleways so that we could apply it to our frame-

work for reasoning about protocols.eWieed to assign timestamps to memory operations and
coherence transactions. A coherence transaction is timestamped using a 2-tuple <global time, pro-
cessor ID> where the global time is used to order coherence transactions and epoéfenn dif
processors. A memory operation is timestamped using a 3-tuple <global time, local time, proces-
sor ID>. The local time component is used to order the memory operations within an epoch while
respecting program ordedur notation for Lamport time is similar to softxe release notation.

For example, time 3.6.2 wuld refer to a global time of 3 and a local time of 6 at processor 2.

Since global time has precedeneerocal time, time 3.6.2 occurs after time 2.20.1.

We can imagine that each processor has a global clock that is incrementedarpdragsaction

that changes the state ofydrock in its cache. Bus transactions are timestamped with this global
time and a local time of zero. A memory operation is assigned a global time equal to either the
global time of the transaction to which iagvbound or the global timestamp of the immediately
preceding memory operation in the program order (fj,anhichever is greaterThe local times-

tamp of a memory operation is one greater than the local timestamp of the operation immediately
before it in the program order or it is equal to one, if it is the first operation bound/emargins-

action.

Lamport timestamps can be used to construct a partial order of the coherence transactions that
occur in a multiprocessor system, and we cam nge this order to determine the intdsvof time

over which coherence epochs are defined for memory blocks. Consideathple of a generic
bus-based coherence protocol running on a split-transact®(sbavn in Figurel and Figure?).

Notice that only the loads and storeségnhamport timestamps that include processor ID, because

we only hae to create a total order for these operations. Also obskeat the binds of the load



and the store are within the epochs that are started when the global time is incremented to reflect

the request for e access permission.

Physical time P1 P2
1 RequesSHARED
permission and bind
load
2 Receve block from
owner
3 RequesEXCLU-

S| VE permission
and bind store

4 Queue inalidation Receve block from
owner

Perform store

Perform load, imali-
date block

7 Send block to P3

FIGURE 1. An example of Coherence Epochs (in Physical time)

Lamport time P1 P2
1.0 Request SHARED
permission and
receve block from
owner
111 Bind load
2.0 Invalidate block RequesEXCLU-

Sl VE permission
and receie block

from owvner
2.1.1 Bind store
3.0 Send block to P3

FIGURE 2. An example of Coherence Epochs (in Lamport time)

We see that the lifetime of each block (in Lamport time) can Wdetl into non-werlapping
coheence epdas A coherence epoch starts when a processor starts binding memory operations,
and an epoch ends when it cannot bing more operations. During each of its epochs, a block is
present in either the4ARED Or EXCLUSI VE State in a cache and this state does not change during the
entire epoch. A processor may bind only loads on this block dursagrap epoch, and it may

bind both loads and stores duringexaLusi VE epoch. There might be periods of Lamport time



when a block does not belong toyapoch: between the time when one epoch ends and another
epoch bgins, during which it is resident only in memofyso note hw operations are performed
seemingly out-of-order in pisical time while the logical we shavs the load happening before

the store.

In summary Lamport timestamping alles us to orderents occurring at dérent processors

and delineate the coherence epochs for a block of memory in a shared-memory multiprocessor
The role of a cache coherence protocol can be defined in terms of maintaianmniis ivolving

epochs. The Lamport framverk allovs protocols to be specified andrified in an easier and

more intuitve mannerand we will shey that it also gposes optimizations in protocol implemen-

tations that may not ka been @dent earlier

The net sections of this paper areanples of hw to reason about protocol correctness by using
coherence epochs that are bounded in Lamport tireevilstart with a simple sharedi® proto-

col in Sectiond, and then we will lild up to more realisticus protocols in Sections 5 and 6.

4 Simple Bus Potocol

Consider a simpleus, where each processor has a cache, all data is cacheable, arisine- b
ports a write-imalidate coherence protocol with the foliog transactions: GeixcLusi ve (GX),

Get sHARED (GS), Upgrade fronsHARED to excLusl VE (UPG), Writeback data to memory (WB),
and PutsHareD (PUTS, an wction of sHARED data). A processor can change its cache access per-
mission to a block by issuing the appropriate transaction oruth@rbSectiord, the PUTS trans-
action will not go on theus, lut we will keep this protocol simple).able3 shavs the behaor

of the five transactions. Note that the teomnerrefers to a processor that l&sLusi VE access.
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TABLE 3. Protocol Transactions

Provider | Final
Access Initial State | of data state of
Precondition | of other to other Final state
Transaction | for requester | cache(s) requester | cache(s) | of requester
GX | NVALI D | NVALI D memory I NVALI D EXCLUSI VE
SHARED memory I NVALI D EXCLUSI VE
EXCLUSI VE old owner | | NVALI D EXCLUSI VE
GS | NVALI D | NVALI D memory I NVALI D SHARED
SHARED memory SHARED SHARED
EXCLUSI VE old owner | SHARED SHARED
UPG SHARED | NVALI D I NVALI D | EXCLUSI VE
SHARED I NVALI D EXCLUSI VE
WB EXCLUSI VE | NVALI D | NVALI D I NVALI D
PUTS SHARED | NVALI D I NVALI D | NVALI D
SHARED SHARED I NVALI D

To keep our bs simple for na, assume that all data transfers and access permission changes
related to a transaction occur before the accepts the retransaction. Assume that thestand

each cache lva a Lamport clock, as siwa in Figure3.

How does a processor bind a memory operation in this system? First, it looks in its cache to deter-
mine if a transaction is required. If the data is already present in the cache with the correct permis-
sions, then the processor can immediately bind the operation. If a transaction is required, the
processor issues it on thash The processor wore-tries the memory operation and succeeds in

binding it, because the data issim the cache and has the correct permissions. Subsequent mem-

ory operations that hit in the cache can continue to be bound.

11



proc proc proc

OF O O

local cache local cache local
Lamport Lamport Lamport
clock clock ‘ clock

cache

‘ bus

global
memory Lamport

clock

FIGURE 3. Simple Bus with Caches

SC is maintained throughs&al protocol policies, and it is instruetito use Lamport clocks to
examine these policies. Each processor binds loads and stores in prograr ceddre with an

EXCLUSI VE block can assign timestamps to loads and stores (without consultingshhsibce the
coherence protocol guarantees that no other processor can access the block at this Lamport time.
A processor wishing to access the bloauld hare to use theds and, therefore, could only start

an epoch that lgan later in Lamport time. A cache withs@reD block can hand out timestamps

to loads. If other cachesYyethe same blockHareD, they can hand out nearly identical times-

tamps without coordinating, because the loads do fexttagach other

Using Lamport clocks to orderents reeals hav epochs are delineated in this system. When a
cache places a GX on thes) it b@ins an epoch in Lamport time in which it can freely timestamp
memory operations to the block. The epoch is terminated at the Lamportiandathe transac-
tion that causes the cache to change its permissionskarasi ve (external GX or GS). Simi-
larly, an GS bgins asHaReD epoch, and the epoch ends, in Lamport time, at the timestaep gi

to a local PUTS or arxeernal UPG or GX.

Snooping bis protocols with cachesveal some of the utility of Lamport clocks. Consider the
pseudocode indble4, where all processors initially Ve block B in thesHareD state and A is

equal to 7. It is not ollous when reasoning with psical time that we can implement Scheusch’

12



optimization, which alls processors toufffer the irvalidation of B caused by the upgrade per-
formed by P1. Using Lamport time, \mever, it is fairly straightforvard to pree that we can
make this optimization. &t this ekample, let us assume that we are only interested wiatioP3

to huffer upgrades. In this case, weuwld like to allav P3 to load B at pfsical time 4, een

though the upgrade has already been placed orutheybP1 at pysical time 2.

Table5 shavs the Lamport orderx&racted by allwing buffering. Note that LD = Load and ST =
Store. The order maintains sequential consigteardd it permits P3 to perform a load aygbal
time 4 that we might not ke thought permissible before reasoning with Lamport time. Thus,

Lamport time is less restrigé than plsical time.

TABLE 4. Can invalidates be huffered?

physical | P1 P2 P3

time

1 LDr1=B /*gets7* | LD rl=B /[*gets 7 */

2 UPG B

3 ST B=9

4 LD r1=B /* can we do this and get 7? */
5 WB B

TABLE 5. Buffering In validates

Lamport | P1 P2 P3

time

2.3.2 LD r1=B

251 LD ri=B

2.9.3 LD r1=B /* gets 7 */
3.0 UPGB

3.1.1 ST B=9

4.0 WB B

We hare shevn that wecan buffer the irvalidate, it howv long can we it before heing to pro-

cess it? Once ain, Lamport clocks help us to reason about this problem. A processanfteam b

13



invalidates indefinitely while it is performing local operations. It only needs to processdle in
dates before it performsyacgoherence transaction (i.e., global operation), because a global oper-
ation forces the processor to synchronize with the rest of the system. xample, P3 cannot
globally timestamp anoperation until it has processed theaiindation, fut it could bind as man

local operations (i.e., loads) as desired before handling\vhkdate.

5 Complicated Bus Potocol
We will now discuss a protocol that is similar tavegal current bs protocols. The utility of Lam-

port clocks will be best sk in the analysis of this more complicate@mple.

5.1 Informal Description
To improve the performance of sharedsbSMPs, designers incorporate more complicated b

protocols. A common feature of more complicatedds is that a transaction does neeha be
completed before the rEtransaction can lgan. In simple, circuit-switchedus protocols, coher-
ence transactions aserialized(i.e., if processor P1 has requested a block iretheussi Ve state
and memory has not responded yet, then P1 will not releaseushenbl it receres the block
from memory). Until PX transaction has completed, a circuit-switchesldisallevs other trans-
actions from this processor as well as transactions from other processors. Split-trangaetpn b
on the other hand, allosystems to pipeline requests and responseselég split-transaction
buses are more di€ult to prove correct, because transactions are wehyd atomic. May split-
transaction bses, such as Sun Microsystersigaplané] [23], also permit data to be returned

out of order with respect to the requests for it.

In a split-transaction protocol, a transaction is composed of an action and zero or more reactions,
where the action is a request and the reaction consists of the responses of all processors and mem-

ory modules to the actionoFexample, if a processor needs a block ingke usi Ve state, it arbi-

14



trates for the bbs, malks a request on theify and then it releases thesblf memory or another
processor has to respond, it wMeatually send a reply on thedy thus completing the transac-

tion. Bus utilization is impreed by alleving multiple transactions to proceed in parall@bl€6

defines the actions and reactions for the protocol that we shall use in this section. All actions
except PUTS use thaub. Notice that the actions in this protocol correspond to the transactions in
the simple protocol, because the simple proto@otes for the reactions to complete before initi-

ating the net transaction.

The split-transaction nature of the protocol may require transfer of coherence permissions from
processor to processovem before the data has ae&d in response to an original coherence
request. Br example, suppose processor P1 gk request for block B in tlecLusl VE state.

Before memory has a chance to respond, processor P2 carameakuest for the same block B in

the excLusi Ve state. Nav how do we handle this? One alternatmwould be to disalle it [13].

This prevents P2 from making a request for B until memory has responded gordefliest.
Another possible alternai would be to let memory (or possible a dedicatesl dontroller) kep

track of outstanding transactions. This agent could then send blocks to requesting processors. A
third alternatre would be for avnership to transfer immediately upon requests [23]. In this case,
processor P1 becomes thener of the block immediately after it mekits request. It then sees

P2’s request and records thect so that it can send the block to P2 when it veseihe block

from memory The protocol wuld need to impose certain constraintsvmid livelock and ensure

forward progress. Wpursue this last approach in our proposed protocol.

15



TABLE 6. Protocol actions and eactions

Actions Reactions
Code Description Code Description
GX GetEXCLUSI VE INV Invalidate
GS GetSHARED DWG Downgrade
(EXCLUSI VE
to SHARED)
wWB Writeback SEND Send data
PUTS PutSHARED
UPG Upgrade
(SHARED to
EXCLUSI VE)

Our protocol will transfer permissions immediately upon requests, though the data may not

get transferred for some amount of time after the transferoéiship. This suggests the concept

of maintaining tvo separate states for each block -- one state (the address state) is maintained at
the hus interace while the other state (the data state) is maintained at the praceasbg. The
address state (A-state) changes immediately on coherence actions while the data state (D-state)

may lag behind while aiting for the reaction(s).

The address tags at each processor maintain one of three states for each bloekclAis)XE),
A_S (sHaRED), or A_1 (I NvALI D). In addition, the memory node has an A-state for each block. F
the memory to be A_X means that all other node® liae block A_I, and if the memory is A_|

then one node has the block in A_X.

Similarly, the data tags indicate D_X, D_S, or D_I. Furthermore, the data tags record information
regarding pending transactions for a block (e.g., aalidation may hee been receed for a

block before the block has actually aed at the cache from thet). The D-state of the memory

node is not defined. The D-states, although sometimes useful as a reasoning tool, can be ignored

in the proof of the protocol. In Sectiénl, we will specify the protocol by pvaling tables indi-

16



cating hov the address states are changed by a processtions and by reactions reaa from
the tus. A queue is used taitfer messages from theid (including a processsrovn messages)

before thg are processed by the cache controllée system is depicted in Figute

We contend that loads and stores can be bound as soon as we obtain the appropriate permission
for the A-state. The permission requirements argvshalable7. Once permission for a block B

has been obtained, thalues associated with theowds of B are deterministic. This does not

imply that these alues hae already been stored to B eea calculated yet - it simply means that,

from that moment until P gets the data, theug of Bwhen it arrives at Rcan only tak on one

value. Once P has permission for B, it can bind a load or store (whose performanceertay ha

wait for the data to awe) to a vord of B and continue issuing subsequent instructions.

FIGURE 4. Cache coheence system

@

$

data tags
message

queue

address
.|
tags
BUS

TABLE 7. Conditions for binding loads and stoes

Access What to do if precondition is
Action Precondition | false
LD A SorA_X GS
ST A_X GX

17



Transactions other than PUTS onegi block are serialized by thas This sequence is referred

to as thdransaction serialization der. For each node N, a sequence otis bransactions (i.e.,
excluding PUTS) on block B defines a unique sequengeds, ..., A of associated A-states for

N, given some initial A-statealue at N. If Ais not equal to £ for some & 1, we say that thd
transaction in the sequence “potentialljeafs” node N. The folling claim relates the order

that potential A-state changes are “considered” by a processor to the order in which transactions
appear on theus. A processor “considers” a potential A-state change in response to the corre-
sponding transaction by checking its A-state and possibly changing it. Considerations are atomic

in the sense that a processor completely considers an A-state change before considexrng the ne

Claim 1: The sequence of potential A-state changes on block B at a node are considered in the

order implied by the serialization of the corresponding transactions onghe b

In addition to considering A-state changes dueus tbansactions, a processor also changes A-
state in response to a PUTS. The changes in A-state eeralgock due to PUTS transactions
and the potential changes in A-state dueutbansactions are totally ordered at a proce€swr
responding to a sequence ‘ofrinsactions (including PUTS) on a block at a procefisere is a
unique sequence'f A'», ..., Ay of A-states of that block at the procesgwen some initial A-
state alue. If A; is not equal to A4, then the " transaction “dects” N, and the transaction

“implies that N5 A-state for block B change froni;A to A'}”.

For example, suppose that smnodes N and N, are operating on block B. Let;Nnale a GS
request on theus before (in real time) Nmales a GX request on theid If N; does not do a
PUTS before N does the GX, then the sequence of A-states for Bjas W_S, A_I. The GX

both potentially dects as well as #dcts N, and the GX implies that {6 A-state changes from
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A_Sto A_I. Havever, if N, does a PUTS before the GX, then the sequenceis A_S, A_I, A_I|. The

GX potentially afects N, but it does not déct it.

Each transactionxeept PUTS implies an “upgrade” of A-state (i.e., change from state A | to
A_S, from A_1to A_X, or from A_S to A_X) atxactly one node, where a node is either a pro-
cessor node or the memory node. Also, each transaction impliesvadidmle” of A-state (i.e.,

change from A_Xto A_S, from A_Xto A I, or from A_S to A_I) at zero or more nodes.

5.2 Lamport timestamping scheme
Imagine that each processor and the memorg global clocks that are updated in real tifitee

clock is updated upon every action that affects some blocksitgche. The clocks are used to

associate global timestamps with LD/ST operations and with transactions (thus defining epochs).

Suppose that thd'ttransaction T décts node N. If T is not a PUTS, at the moment that the A-

state changes, N adjusts its global clock to equal t, and it assigns a timestanp Bf

Let OP be theR LD/ST operation in the program order of processoFipst we consider the glo-

bal component of OR’timestamp. Suppose that OP is bound to thizansaction on theus.

Then, the global timestamp for OP is defined to be equal to the maximum of {t, global timestamp
of the (k-1)st LD/ST in ps program order (if an}. The local timestamp of OP is defined to be 1

if OP is the first LD/ST operation of j program order with global timestamp t. Otherwise, it is
equal to 1 + local timestamp of the (k-1)st LD/ST operation.aftpe local time of PUTS transac-
tions is assigned identically to LD/ST operations. The global time of a PUTS transaction is the
same as the global time of the last (in real time) consider®ttdnsaction. Thus, a processor cre-
ates a total order of localents (LD, ST PUTS), and we think of a PUTS as occurring in this

order like LD/ST operations.

If G is the set of transactions and L is the set of LD/ST operations by all processors, then the
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timestamping scheme defines a total ordering ol (G that is consistent with the local program

order of each processor and also with the times at which transactions go out on the bus.

5.3 Outline of Poof of Protocol

Appendix A contains a proof of the protocol described in this sectiongihde&vith a formal
specification of the protocol, and it then states facts about processor beia requirements.

Two timestamping claims are also introduced, ang thake precise theakct that global times-
tamps order memory operations relatito transactions “as intended by the designer”. These
claims allav us establish sequential consistemnt a sequence of lemmas using the concept of
coherence epochs. The life of a block in logical time consists of a set of such epochs. One lemma
shawvs that, in Lamport time, operations lie within appropriate epochs. That is, each LD lies
within either a read-only or a read-write epoch, and each ST operation lies within a read-write
epoch. Another lemma shs that the “correct” alue of a block is passed from one node to
another between epochs. The proofs of these lemuilasif a modular &shion upon the times-
tamping claims, thereby localizinggarments based on specification details. In othak 18],

we hare proved the correctness of a directory protocol using the same proof structure; the proofs
of the lemmas for the directory protocol axaetly as for the directory protocol of this papsand

only the proofs of the timestamping claimdetif

5.4 Reasoning with Lamport Clocks

Consider a processor wishing tceeute tvo successe stores to diérent blocks, where the first
one is not in its cachaubthe second one is and it is alreaggLusi V. Can this protocol all@ the
processor to bind the second store and subsequent instructions befaiagehei data for the
block of the first store? This optimizationowld improre performance bywerlapping miss

latengy with useful vork, if we can shw with Lamport clocks and coherence epochs that it does
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not violate SC. Once the processor issues the GX for the first block onghthé coherence
epoch ends for gnother processors that\eathe block. Egn though the data for the block will

not arrve until later theexcLusi Ve epoch has lggin for the processorherefore, the processor

can still bind the first store since no other processor wik lagcess to the block until the writing
processor gets the data, writes the block, and relinquishes it to another pradessdore, the
second store can also be bound since the second block is aveaalyl@ inexcLus! ve state and

the store is not aiting for ary previous instructions to be bound. This optimization which appears
so olvious when reasoning in Lamport time is not ingtwhen analyzing the system inygical

time. In addition to reasoning about specific optimizations, Lamport clocks can be used to formu-
late a formal proof that an entire complicated memory system protocgs && as shen in

Appendix A.

6 Multiple Interleaved Bus Piotocol
System designers Y& implemented coherence protocols on systems with multiygesb The

Sun Ultrda] Enterprisél 10000 [1], for &ample, uses fouruses. Figur® illustrates a system
with two split-transaction out-of-ordeubes. In a system with kubes, bs access is interleed
by address such that tiiafinvolving address A uses thaswith number A modulo k. A multiple
bus system could pvide an increase inus bandwidth, bt it is not intuitvely obvious what

restrictions must be applied to such a protocol to ensure thatyd 8la2

Lamport

clock global

Q Lamport
clock 0
global

Lamport
clock 1
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FIGURE 5. Multiple Interleaved Buses

How do we assign Lamport timestamps in a multipls ystem? Since thedes are independent

and synchronous, we can simply add a term to the global part of the timestamps. The timestamp-
ing is similar to the scheme used for the complicateddvotocol, bt it uses theuds ID to arbi-

trarily order simultaneousvents on diferent luses. Br example, tvo events at global time 3 on

buses 0 and 1 euld be arbitrarily ordered to Y global times 3.0 and 3.1, respeely. But hav

do we timestamp localents that do not depend on using a particulss; Buch as cache hits?
Since we knw what lus we would have to use if we missed in the cache, one option is to use the
global time of the last operation we did on thas.bThe dkct of this poliy is the same as if each

processor had a separate cache for easlabd a separate Lamport clock at each cache.

With this timestamping scheme in place, we can just analyze a muliplgrttocol in the same

way that we analyzed the singlesbprotocol. Coherence epochs are still defineat the global

part of the timestamps (unlessyhend on a PUTS),ut global time na consists of 2 terms.of
example, a coherence epoch could be bounded by the global times 3.4 and 4.4. In Lamport time,
we can think of this system as doing k sequential operationsupetldéick. Since transactions
involving the same block must use the sams, bhere is no reason whve cannot arbitrarily

order (in Lamport time) the pkically concurrent\ents on diferent luses. Tansactions on the

same ls are still ordered in the same manner as in the singlprotocol. The proofs of optimi-

zations and the complete protocol arevmearly identical to those of the singlastprotocol.

7 Proof of Incorrectness of a Rstocol

Let us nev shav howv we can use Lamport clocks to demonstrate that a protocol does got obe
SC. Consider a shared$protocol with first-in-first-out (FIFO) writeulffers at each processor

and assume that the processors geewging the code shm in Table8. A is initially equal to 7.
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What \alue of A should P2 get from its load8rRhe system to o§eSC, it must return thealue
of the most recent store in Lamport time, and tladier is 9. The write-back on P1 is logically

before the GS on P2 and, therefore, logically before the load on P2.

But what \alue will P2 actually get? If the store from P1 is still in its writéfdr when P2 per-
forms its load, then P2 will get ale of 7. This protocol has a race condition, since déhes\of
the load by P2 depends on whether the store from P1 has passed through itsfferitBdfer-

ring back to SectioA.1, we can see that the protocol in this section violaaes F

If we continue to reason with Lamport clocks, one solution to the incongigtestllem becomes
obvious. We see that the store must logically precede the writeback. Therefore, the sgsiem w
obey SC if processors flushed their writeffers before issuing writebacks.e/dssume that the
processor must kra excLusi VE access to a block to which it is writing before it sends the write

into the write-lffer.

TABLE 8. Write Buffer Example

physical P1 P2

time

1 LD r1=A /* gets 7 */

2 UPG A

3 ST A=9

4 WB A

5 GS A

6 LD r1=A /* gets ? */

8 Related Work?!
Most of the related ark in coherence protocokvfication is based on formal methods [19] that

use state-space search of finite-state machines, and theorengpechniques. These are rigor-

1. Note to editors and referees: This section ixanteoly of the Related \Wk section in our companion paper submitted to the
10th Annual Symposium oraRallel Algorithms and Architectures (see footnote on first page).
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ous methods that can capture subtle errot$hay are currently limited to small systems because
of the state spacexglosion for lage, complicated systemsofexample, the SGI Origin 2000
coherence protocol isevified for a 4-cluster system with one cache block in [7], the correctness
of the Stanford FLASH coherence protocol esifted for small test programs and small configu-
rations in [17], and the SIRC Relaxed Memory Order (RMO) memory consistgrnoodel is
verified for small test programs in [16)ofifnal \erification softvare, such as M@[5], is a useful

tool in the \erification process, and techniques for handling the state spplosien [19] may
enable erification softvare to tackle layer systems. In contrast, though, our approach can pre-
cisely \erify the operation of a protocol in a system consisting piramber of nodes and mem-

ory blocks.

A formal approach desed by Shen and Arvind uses termiéing to specify and pnee the cor-
rectness of coherence protocols [22]. Their technigu@hvies shwing that a system with caches

and a system without caches can simulate each athierapproach lends itself to highly succinct
formal proofs, yet it may be an intellectual challenge for system designers. Lamport clocks may
be easier to grasp, while not lackingpeessve paver. It is not clear whether or faothe two tech-

niques complement each oth&erm revriting relies on an ordering of weite rules (each of
which corresponds to anent) and, as such, may benefit from the Lamport clock technique which

can order eents in logical time.

There is another body ofask that deles into memory consistepmodels that are more aggres-
sive than sequential consistgrie, 3, 4, 6, 8, 9, 10, 21]. Handling more aggnessnodels leads
to formalisms that are more werful but more compbe than we require (e.g., thenust handle

non-atomic stores). Furthermore, much of thmrkvseeks to characterize when programs will
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appear sequentially consistener when running on the more aggressiardvare, an issue that

is moot for us.

Informal intuitive reasoning is more tractable and easier to understand than formal analysis, b
becomes less cuimcing as it becomes more informal. Moveg the flavs in memory system
designs are generally the subtle types eidlthat vould be missed by highyel intuitive reason-

ing. Informal reasoning is often combined witktemsve simulation in an &brt to explore the
state space forugs in the protocol, Wi simulation is gpensve and cannot be guaranteed to
uncover every obscure g in a protocol. Reasoning with Lamport clocks is ativadbecause it
provides a “semi-formal” methodology that incorporates much of the thoroughness of formal
analysis and much of the intwi appeal of informal reasoning. Lamport clocks alderdhe
opportunity to analyze specific parts of the protocol tosgrine \alidity of an optimization,
whereas otheraerification techniques often require complete analysis of the system bejore an
optimization can bealidated. Lamport clocks kia also been used in other research, including a
paper by Neiger andolieg [15] that uses the clocks to determine whatkadge is gailable to

each processor in a parallel algorithm.

9 Follow-on Work

We naw briefly discuss seeral issues that, due to space limitations, cannot not be kylgred

in this paper

Lamport clocks are well-suitedwards directory protocols, because tkplieit messages that are
sent between processors correspond to the messages in Lampgital scheme. In otherork
[18], we designed a directory protocol that is represemrtati s&eral current protocols and, just

like with the los protocols discussed in this papee deeloped a timestamping scheme for the
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protocol. Once we had a timestamping scheme and we could create a total order of the loads and

stores, the analysis and formal proof of the system were similar to those o$ thetocols.

We can also alle the memory consistepaenodel to restrict the orders of 1/O references that are
allowed - a protocol that strictly ope SC should require that I/O operations fllI8C in the

same vay that memory references do. Let us assume that our system has memory-mapped I/O
where 1/0O operations are treated as uncached memory operations. In order to create a Lamport
order for all references (memory and 1/0O), we must be able to timestamp I/O operations. Cur-
rently, though, the interaction of I/O with the memory consistenodel in modern multiproces-

sors is not well defined.

As hardvare optimizations he led to better performance, yhieare also caused memory system
designers to delop other memory consistgnmodels that enable the programmer to understand
the behwaior of such systems. Lamport clocks can be applied to other congistedels, bt ver-

ifying systems that obsezwther consisteganodels requires that wewse nev rules for what
value a load can return.@Metermine a Lamport timestamping scheme to produce a total order of
memory operations and shidhat the order satisfies the requirements of the memory congistenc

model.

Another major issue in protocol design is ensuring tleédance of deadlock and/élock. These
situations are generally caused by either request-reply circular dependencies ouffieritegb
resources. Lamport clocks can be used to detect the possibility of deadlaehkoakli If no pro-
cessor cannot timestamp its oldest load or store, the system is deddlae&lock is a bit subtler
to detect, since it requires that no processor can timestamp its oldest load or store for an indefinite

amount of time.
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10 Conclusions

As memory systems f1i@ become increasingly comglet is becoming more and morefestilt to

verify that thg implement the desired memory consistenwdels. V¢ hare developed a ne@
technique that uses the notion of Lamport clocks to reason about the correctness of shared mem-
ory systems. Our technique assigns timestampseot® of interest in a shared memory system

and uses the timestamps to arrange thesat® in a total ordefThis total order can then be
exploited to pre@e the correctness of the implementation. Lamport ordering also enables us to
clearly delineate the bounds of@heence epdefor a block of memory in a shared memory sys-

tem. Coherence epochs allaus to define the role of coherence protocols, ang dive a con-

crete foundation for guing about the correctness d@rious optimizations. ¥ have used the
Lamport clock technique toevify the implementation of sequential consistenca number of

shared memory systems.
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Appendix A: Proof of Split-Transaction Protocol

A.1 Formal Protocol Specification

Table9 illustrates the operation of the protocol with respect to changes in the A-state. The table is
to be read from left to right as a sequencevehts in chronological orderhese eents are trig-

gered by a coherence request made by the “local” processowvenabipck B. The first three col-

umns indicate the local processoinitial state, the action it wishes to perform and thve loeal

state immediately after the request is made onudbeRlock B can be in state A_I, A_S, or A_X,

and this state is updated immediately upon a processmuest for a meaccess state.

The net 3 columns describe the response of all other remote processors to the request made by
the local processomhe responses of the remote processors depend on their current address state.
Any actions that require aiting (such as anwalidate for a block whose data has not yewadi

from memory) are placed into the message queue. Notice that a PUTS action does not generate

ary responses since it is not issued on e b

The last 2 columns ofable9 indicate the response of memory to this action. Remote processors
have priority over memory in responding to a coherence request.rémote processor that is in

the excLusi VE (A_X) state will assert a commonvwoed” line on the bs to indicate thisaict to
memory Memory reacts to the request after all remote processeeshiad a chance to react to it.
Memory will provide data for a block only if no remote processor asserted theet® line.
Memory has a queue taitler messages from theiq Table11 describes vo memory processes

this queue andventually sends data.

What we hae not defined yet are the reactions performed by processors aftejutge mes-
sages. The reactions of processors are defineabile 10, and these reactions illustrate the beha

ior of the processors with respect to the D-states. Obskat Bble10 defines the betimr of a
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processor with respect to the D-stideone actionfor that block. In other wrds, there could be

more than one simultaneous D-state foneemgiblock. er example, P1 could get A_X access to

block B, get ivalidated by a remote GX (dm to A_1), and then gets A_S access to B all before

the data comes back for either request. In this case, therecaiestates for B. Another impor-

tant point to mention about this table is the case where P1 has a request for data outstanding (say
from a GX) and an walidate vaiting in its queue. The table si® an initial and final state of

D_I, but P1 really has D_X permission until it decides to process Waéidate, and this could be

an indefinite amount of time. This situation is not reflected in the table due to the limited benefit

of doubling its size to aer these cases.

TABLE 9. Action Table

Init New New Did Any
Local | Local Local Remote Remote || Proc
Proc | Proc Proc Proc Remote Poc | Proc Assert Memory
State | Action State State Action State Owned? | Action
Al GXand | A X Al Y queue GX
queue
own GX
A X N queue GX
A X A S queue INV Al Y queue GX
A X N queue GX
A X A X queue INVY Al Y queue GX
assert wned
GSand | A S Al Y queue GS
queue
own GS
A S N queue GS
A_S A_S Y queue GS
A_S N queue GS
A S A X queue WG, A S Y queue GS
assert wned
A S | UPG A X Al N
and
queue
own
UPG
A X AS gqueue INV Al N
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TABLE 9. Action Table

Init New New Did Any
Local | Local Local Remote Remote || Proc
Proc | Proc Proc Proc Remote Pioc | Proc Assert Memory
State | Action State State Action State Owned? | Action
PUTS Al ary
A X |WBand | Al Al N queue
queue WB
own WB
TABLE 10. Reaction Table
INITIAL ST ATE ACTION FINAL STATE
Head of
Protocol Processor
Initial Pending Message Final New Rending
State Transactions | Queue Response | State Transactions
D_I nothing own GX D_I data reply
nothing own GS D_I data reply
data reply empty D_| data reply
data reply INV D_I data reply
INV
data reply EXCLUSI VE SEND D_I
INV data reply
data reply SHARED data D_|
INV reply
data reply DWG D_| data reply
DWG
data reply EXCLUSI VE SEND D_S
DWG data reply
data reply SHARED data | loadinto | D_S
reply cache
data reply EXCLUSI VE load into | D_X
data reply cache,
D_S nothing empty D_S
INV D_|
own UPG D_X
D X nothing empty D X
INV SEND D_|
DWG SEND D S
own WB SEND D_|

31




TABLE 11. Memory Actions/Reactions

INITIAL ST ATE FINAL STATE
Outstanding Outstanding Head of Outstanding Outstanding
WB GXIGS Queue Action WB GXIGS
N GX SEND N
N GS SEND N
N WB Y
Y GX Y GX
Y GS Y GS
Y GX data reply || SEND, N
commit
data

Y GS data reply || SEND, N
commit
data

Y data reply || commit N
data

In the case that ACTION is a GS at a processor other thaaysing a downgrade gt we say
that when a processoy gowngrades, it sends the value of block B to itself and memory, as well
as to the other processor who issued the GS request. Also, when a processor does an UPG, we

consider that it receives a value from itself. Thus, corresponding to every upgrade action (GX, GS,

UPG) of , a value is received by (possibly from itself).

The following two facts state processor responsibilitiesctFl says that a processor must ensure
that a load returns theale of a store it just did (if &hor the \alue it obtained for the block oth-
erwise. lact 2 says that, when a processor sends a bleay & must send thealues of recent

processor stores to that block (ifyauor the \alues it recefed.

Fact 1: Let LD-OP be a LD from wrd w of block B at pthat is bound to transaction Oet ST

OP be the last ST tooxd w of block B by p(if any) prior to LD-OP in gs program order
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(a) If SFOP is also bound to transactiontfien the alue loaded by LD-OP equals the result of

ST-OP

(b) Otherwise, thealue loaded by LD-OP equals thalwe of word w of block B receed by p

in response to transaction T

Fact 2: Suppose that as a result of transactigrpgisends @way block B. Let T be the most recent
transaction at;pprior to T, (in real time) that caused o receve block B. Then, thealue of
word w of block B sent by;pn response toJis the last ST to wrd w of block B in gs program
order that is bound to, T any. If no ST to vord w of block B is bound to, Then the alue of word

w of block B sent by jas the \alue receied by pin response to transaction T

Note As long as psends the correcalue for each wrd w of block B, then it is not required to

perform all bound LD operations on block B befoneaiidating that block.

A.2 Timestamping Claims

We nawv make assertions about the timestamping in theioiig claims.
Claim 2: For a transaction T on block B,

() If T is not a PUTS, the timestamps of thevdgrades associated with T are equal to the times-

tamp of the upgrade associated with T

(b) If T is not a PUTS, the timestamp of the upgrade associated with T is less than the timestamp
of the upgrade associated withydransaction on block B occurring after T in the transaction seri-

alization order

(c) If Tis a PUTS, then letgibe the last transaction at that node, prior to T in the transaction seri-

alization orderthat caused the blosk/A-state to change to A_S. Let e aiy transaction for
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block B that occurs later thary i the transaction serialization ord&€hen, the timestamp of T is

less than the timestamp of T

Note The proof of Claim 2(b) relies on Claim 1 and thetfthat the Lamport order of transac-

tions is the same as their order in real time.

Claim 3: Every LD/ST operation on block B at processpisgound to the most recent (in Lam-

port time at p transaction on block B thatfatts p.

The proof of Claim 3 uses thadt that binding of operations is done in program order in real time.
This real-time property of the protocol can be rethsome/hat while maintaining the correct-

ness of this claim. This issue is discussed and the claimvsgio Appendix B.

A.3 Proof of Sequential Consistency
By construction, the Lamport ordering of LDs and STs withip jgrocessor is consistent with

program orderTherefore, to pne sequential consistenat is suficient to shav that the alue of

every load equals thealue of the most recent store.

We frame the proof of sequential consistemcterms of coherence epochs. An epoch is simply a
time intenal [t1,t2) during which a node has access to a blocsaaReD or ExcLusi VE epoch for
block B at node N starts at timgita transaction with timestamp @at N) implies that s A-state
for block B changes to A_S or A_X respeety. The epoch ends at timg where $ is N’s times-
tamp of the net transaction on block B that implies a change in A-state atéNaMd up to the

proof of sequential consistgnasing the tw timestamping claims of Sectidn2.

The proof is constructed from three lemmas whose proofs can be found in Appendix B. Lemma 1
shawvs that tvo processors cannot earead-write permission to the same block at the same

(Lamport) time, nor can grprocessors hva read-only permission if grprocessor has read-write
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permission. Lemma 2 states that processors do LDs and STs within appropriate epochs. Finally
Lemma 3 shas that the “correct” block alue is passed among processors and the memory

between epochs.

Lemma 1: excLusl VE epochs for block B do nowerlap with eitheEexcLusi VE or sHARED epochs

for block B in Lamport time.
Lemma 2:

(a) Ewery LD/ST operation on block B at [ contained in some epoch for block B papd is

bound to the transaction that caused that epoch to start.

(b) Furthermore,\ery ST operation on block B at |g contained in somexelusive epoch for

block B at pand is bound to the transaction that caused that epoch to start.

Lemma 3: If block B is recered by node N at the start of epochtf), then each wrd w of block
B equals the most recent store tord/w prior to § or the initial \alue in memoryif there is no

store to vord w prior to global time;t
The proof of the Main Theorem shis haw sequential consistepdollows from the lemmas.

Main Theorem: The \alue of @ery load equals thealue of the most recent store or the initial

value, if there has been no prior store.

Proof: Consider a LD at processqr pet the LD be bound to transactiopvihich has timestamp

t; at processor;pThere are tw cases.

The first case is that the most recent ST has global timestamp aj.léashis case, from Lem-
mas 1 and 2, this ST is also at processanul is bound to transaction.TTherefore, by &ct 1

(a), the alue of the LD equals thelue of the most recent ST
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The second case is that the most recent ST has global timestamp less linahig case, by
Lemma 2, no ST prior to this LD is bound to transactignTherefore, by &ct 1 (b), the &lue of
the LD equals thealue receied by p in response to transaction. By Lemma 3, this alue

equals the alue of the most recent ST or the initialue if there has been no prior store.

Appendix B: Proofs of Claim 3 and the Lemmas
Claim 3: Every LD/ST operation on block B at processpisgound to the most recent (in Lam-

port time at p transaction on block B thatfatts p.

Proof:Let OB, be a LD or ST operation on block B with global timestagn®ince OR's times-
tamp is $, OPR, cannot be bound to a transaction with timestamp greater thhettT; be the
transaction on block B with the st timestamp, say, tat g such thatt <t,. We need to shw

that OR is not bound to a transaction occurring earlier tharh&nce O must be bound to,T

Let OP, be the earliest LD/ST operation (not necessarily to block By snppogram order with

the global timestamp.tNote that Ol may equal Of Also, since OPRis the first OP with global
timestamp 4, OP, must be bound to the transaction with timestagngt 3. The order in which
changes in A-state at a processor are written in real time is the same as the Lamport ordering of
the corresponding transactions at that procesiance, the alue of the A-state for block B at the

real time that OPis bound must be thealue implied by a transaction on block B occurring no
earlier than 1. Since ORis bound in real time no later than OB bound, it cannot be bound to

a transaction occurring earlier thag &s required.

Comment the proof of Claim 3 uses twacts about the protocol relating real time to Lamport
time: (a) the order in which changes in A-state at a processor are written in real time is the same as
the Lamport ordering of the corresponding transactions at that procasddb) binding occurs

sequentially in real time. Reever, the protocol can be releg while maintaining the correctness
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of Claim 3. For example, suppose that the A-states are updated periodically (using queues to order
pending updates) and that during an update of transactions with timestamps in the, jange [t

the binding process is suspended. The order in which the A-states are updated need not agree with
the order of the corresponding actions, as long as at the end of the update period, thealstate v

of each block equals that implied by the most recent transaction prior to that with timestamp t
Once the A-states are up to date, binding of LD/STs can be resumed. Binds at tentiguous

group of LD/ST operations on blocks for which the A-state is set appropriately can be performed
out of order thus relaxing the real time ordering assumption for binds, as long as potential

changes in A-state are being queued until the binding processnssagpended.

Lemma 1: excLusl VE epochs for block B do nowerlap with eitheEexcLusi VE or sHARED epochs

for block B in Lamport time.

Proof: Let [ty,t) be arexcLusi ve epoch for block B at node N. Let transactignc@use the epoch

to bagin. We claim that no node has an epoch for block B thetlaps with [{,t,).

We first ague that no epoch for block B that starts prior to tijmavérlaps with [§,t,). By Claim

2 (b), the start of such an epoch Bul have to result from a transaction occurring befogent
the serialization ordeilherefore, the end of epoch Buwd have to result from some transaction
T on block B occurring no later than Tpossibly § = T,). If Tgis not a PUTS, then Claim 2 (a)
ensures that the end of epoch E must be less than or equal to the timestgipeadifique node,
say N, that upgrades its A-state as a result@fAllso, by Claim 2 (b), the timestamp of By N,
must be less than the timestamp @by N. If Ty is a PUTS, then by Claim 2 (c), the timestamp of
the PUTS (which is the end of the epoch) is less than the timestamptbéiice, in ay case, E

ends in Lamport time before, [t)) starts.
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Clearly, the only epoch starting at timgi$ at node N, since N is the only processor whose A-state
is not A_| after transaction T To complete the proof, we note that thetrteansaction, say,l on
block B after T, must be assigned timestamy N. If node N upgrades its A-state as a result of
T,, Claim 2 (a) ensures thatN timestamp of I must be greater thag fTherefore, by Claim 2
(b), if an epoch E starts as a result of transactjoor Bome transaction later thag, E must start

at a time greater thap, tas required.

Lemma 2: (a) Every LD/ST operation on block B af is contained in some epoch for block B at
p; and is bound to the transaction that caused that epoch to start. (b) Furthevergr8Teopera-
tion on block B at pis contained in somexcLusl VE epoch for block B atjpmand is bound to the

transaction that caused that epoch to start.

Proof: Let OP be a LD/ST on block B with global timestampBy Claim 3, OP is bound to the
most recent transaction gtr later thany say T, that afects block B of p Let t; be 's times-
tamp of T,. Part (a) of Lemma 2 then folles for the follaving reasons: Since OP is bound to T

T, must imply that ps A-state for block B changes to A_S or A_X and so an epoch for block B at
p; starts at time;t Moreover, since T is the most recent transaction no later thathat afects
block B of p, the epoch starting at must end at some time later thanTherefore, OP is con-
tained in some epoch for block B atamd is bound to the transaction that caused that epoch to
start. Rrt (b) followvs from the further obseation that if OP is a ST then Tust cause aExcLu-

s Ve epoch to start at.p

Lemma 3: If block B is recered by node N at the start of epochtf), then each wrd w of block
B equals the most recent store tord/w prior to § or the initial \alue in the memoryf there is no

store to vord w prior to global time;t
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Proof: We prove the claim for all nodes by induction on epoch starting timéhe basis case is
the first action that causes block B to be sent. In this case the block is sent from the memory and

equals the initial alue of the block in the memory

Suppose that the claim is true for all epochs with starting time less; tfzantl tsuppose that block
B is sent from node \to node N in response to transaction, which has timestamp &t N;.
First, suppose thatNs not equal to l Let transaction J'be the most recent action on block B
prior to Ty in serialization orderSince N sends block B in response tg, T, must be cause an
EXCLUSI VE epoch to start at )Nand therefore &cts N,. Let Tp have timestampgat N,. From
Claim 2, Ny'sexcLusl VE epoch for block B starting at timgrnust end prior to time tMoreover,
since Ty and T, are consecute transactions on block B in serialization ordleere is no epoch at

ary processor between the time thatdNepoch ends and;I$ epoch bgins at time {.

We consider tw cases. The first case is that the last STaxw of block B prior to timejtis
actually prior to §. Therefore, no STs toawrd w of block B are bound to; TBy Fact 2, the &lue
W, of word w of block B sent by jis the alue receied by N, in response to By the induc-
tion hypothesis, W equals the alue of the most recent store tond w of block B prior to timegt
or the initial \alue of word w in the memoryif no prior store. Therefore, theale sent by B

equals the alue of the most recent store or the initialue in the memoryf no prior store.

The second case is that the last ST ¢odaw of block B prior to timejtoccurs after timeyt By
Claim 3 and Lemma 2 (b), such STs must be done by ngd@yNract 2, in this case thele of
word w of block B sent by jin response to {lis the last ST to ard w of block B in gs program
order that is bound togI Moreover, the last ST bound togThas global timestamp less than t

Therefore, the alue sent by Blequals the alue of the most recent store tond w of block B.
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This completes the proof of Lemma 3 in the case that, in responggliodk B is sent by a node

other than p

The situation in which jl= N4, (i.e., in response to;Ithe \alue of block B is sent from; po

itself) is similar but only the first case ale can arise.
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