

locality, in which contemporaneous
references to a memory word come
from a single processor, rather than
many different ones [l]. Many
multiprocessors which devote sub-
stantial resources to providing a large
cache for each processor to hide this
feature, allowing programmers to
write correct programs without
reasoning about these caches. Al-
though programmers find it not only
possible, but easy to write multi-
processor programs in which each
process has substantial locality, in-
teractions among processes reduce
performance and diminish the bene-
fit of moving from a uniprocessor to
a multiprocessor. This article de-
scribes the behavior of these hidden
caches and presents some guidelines
for programmers wh.o wish to use
them more effectively.

We are most interested in cache-
coherent, shared-memory multi-
processors (mu&) [5]. Many commer-
cial multiprocessors, such as the
Sequent Symmetry, Encore Multi-
max, and Alliant FX/8 are multis.
Figure 1 shows the typical structure
of these machines. Each processor
contains a local cache that reduces the
expected long delay of referencing
main memory through an intercon-
nection network (e.g., shared bus).
As long as a processor accesses data
that is not shared with any other pro-
cessor, the cache works like a uni-
@ 1990 ACM 0001.0782/90/0800-0097 $1.50

The material presented here is based on re-
search supported in part by the National Science
Foundation’s Presidential Young Investigator and
Computer and Computation Research Programs
under grants MIPS-8957278 and CCR-8902536,
A. T. & T. Bell Laboratories, Gray Research,
Digital Equipment Corporation, Texas In-
struments, and the graduate school at the Univer-
sity of Wisconsin-Madison.

processor’s cache, keeping a copy of
recently used locations. However,
when a memory location is shared
among processors, a cache-coherence
protocol ensures that each processor
sees a consistent view of the datum,
even though it may be stored in more
than one cache [4]. These protocols
can reduce a program’s performance
by requiring expensive, nonlocal
operations to invalidate or update
shared data in other caches. These
operations directly affect the pro-
cessors referencing the shared data
and indirectly slow all processors by
increasing contention for the inter-
connection network and main
memory.

Even multiprocessors that are not
multis distinguish local and remote
memories. On some computers, such
as the BBN Butterfly, a portion of each
processor’s address space is local and
can be accessed at low cost. On other
machines, such as hypercubes, all
memory is local and remote memory
can only be referenced through a
message to another processor. Pro-
grammers on these computers typical-
ly cache code and data in a processor’s
local memory. Some systems for these
machines present an illusion of shared
memory by caching pages in local
memory [9]. Even though these local
memories are not managed in hard-
ware, many of the considerations we
will discuss are applicable.

In future multiprocessors, the
relative cost of coherence protocol
operations will be larger than it is at
the present time because technologi-
cal improvements are not reducing
communication costs as rapidly as
computation times. Users are also
demanding increasingly large sys-
tems, which require more commun-
ication. Properly exploiting all types
of locality is critical to using tomor-
row’s multiprocessors efficiently.
Eggers has presented empirical re-
sults demonstrating that today’s
multiprocessor programs frequent-
ly misuse the cache, thereby reduc-
ing its performance [7].

In the future, perhaps languages
and compilers for parallel compu-
ters will take the following issues
into consideration. In the mean-

time, the programmer must under-
stand and efficiently use caches in
order to take full advantage of
multis.

This article restates results by
Eggers and other computer architec-
ture researchers in a manner com-
prehensible to programmers who
may know little or nothing about
caches. We will also introduce four
simple models that help program-
mers appreciate the implications of
multiprocessor caches (summarized
in Table I). The Appendix contains
a more detailed description of the
underlying hardware.

No-Caches Model
The no-caches model assumes that
all memory references go to main
memory. The advantage of this mo-
del is that a programmer does not
need to worry about locality, since all
memory references are equally ex-
pensive. Nonlocal communication
can only be reduced by eliminating
memory references (i.e., keeping
data within a processor’s registers or
recomputing results).. This is the
multiprocessor model which many
programmers use. It is adequate for
the purpose of discussing the func-
tionality of concurrent programs. It
fails, however, to capture the need
for locality.

Dniinlte-Word-Caches
Model
Our simplest cache model assumes
an infinite cache of single memory
locations. Once a location is refer-
enced, it remains in a uniprocessor’s
cache forever. On a multiprocessor,
the word disappears from a pro-
cessor’s cache when another pro-
cessor writes into it.’

This model’s principal software
implication is that programmers
should avoid unnecessary interleav-
ing of references by more than one
processor to the same memory word
(unless all references are reads). To

‘This model is most accurate for write-invalidate
cache-coherence protocols (see Appendix). For the
other class of protocols (write-update), this model
correctly indicates that nonlocal references are
caused by active sharing, but it does not reflect the
exact costs of sharing.

98 August 199O/Vo1.33. No.E/COYYUNIWTIONSOFTWE~CLI

Incoming Address A Cache Block (Frame)

L--II Compare Incoming & Stored Tags

Data Word 4 Hit/Miss 4

4. Processor
Read

~___________________-----------~’ U
10. Nehvork Read 5. Processor

Read or Write

modvltes via aWhterconnection net-
work. The systetm’s cache-coherence
PrOtOCOl ensures that each processor
sees a consistent view of locations in its
own cache, just as if al reads and writes
went to main memory,

CIRURR 3 This figure WIStrateS a
typical cache. information is stored in a * ._
two-dimensional array Of cache b1oc,k
fr#M!S. Each frame contains state Infor-

‘_. %, ‘;,
.~: ,”

mation tag., whether a frame contains
valW data), an address tag (the main

.1 : :‘:‘j-

memory address of data in the frame),
” ; ;

8. ‘-2
and several words of dota. The number
of words of data in a block is the block

’ ,‘~*I G.’
‘~ ;‘:ji

site the number of frames in a row is
the associativity and the number of
fratYM times the block size is the

I) i^
cacnesize .%"

On a memory access, the cache par%
tions the incoming address into three

.. I$ “‘> ;I::
_ I lli ;. ~,-?s

fields: tag, IncY~and offset. The index .’ : {jr:
field selects one row of frames. The tag . 3; ‘$..,
fielCl is then compared with State and > _. iq
tag fields of each selected frame. For ’ e :, >‘:
s@ecJ, the$e.cWnparisons occur in
parallel. If the block is found ta h/cl, the j,

‘,:‘:$
s .t :A

offset field s@ectsthe data word from s_ C”.?s
the appropriate frame. on a miss (not
shown), the ciwtae ctwoses a block to

,, ‘:ha $

replace, reads tnenew block from main
memory, and$hen returns the requested

.:‘I, ,+j
^ . it

data word.
1_ *>”

A multiProCeSsor cache differs from a
1 ;” j”?

uniprocessds cache in two ways. First,
s;,,;;;”

the cache must rebpohd to network . i *;G;

activity in aUW,ioh to handling normal ,,
Processor accesses. SeconU, the State

.’ , :i;j-:$

information ih each frame expands
to include the states of the cachp

, : 1 ;* dir
.:*’

coherence protocol.

PlaURI 3 A simple write-invalidate ,
cache-coherence protocol has three
cache states: iNVALID fblock not in the I y-
cache), READ4NLY (processor mayread (3 ,, :
from, but not write to the block) at-&d
READ-WRITE (reads and Writes permit-
ted). State transitions are CaUSed by:

_ :‘.> -1::

processor reads and writes (arcs I-5);
cache block replacements to make

‘,+ ;,i.

room for another block (arcs 6-7); and
network (e.g., b&I read and wrfte re-

). .” I;.‘)

quests (broken arcs 840). Except for arcs
4,5,6, and 8, St&e transitions require
network operations: request read-only
copy of the block (arc 11, request ex-
elusive copy (21, make copy exclusive (31,
update main memory copy (71, send
block to requesting processor (9), and
update main memory copy and send
block to requester MO).

-

TABLE I. MOdeI I;ummcrry

wheti memory Referme is local (Iaaapensive~

modeINane -&processor Rule M~ltlprocwsor Role
No-Caches Never. Never
Infinte-Word-Caches %-The processor referenced the The processor referenced the

location in the past. A location in the past and no
refemre is a read or write. other processor wrote into it

since this reference.
Infinite-Block-caches The Processor referenced the The processor referenced the

location’s cache block. A
cache block is a group of 5
adjacent, aligned words.

location’s cache block and no
other processor wrote into a
location in the cache block
since this reference.

Finite-Block-Caches -iiie processor referenced the The processor referenced the
location’s cache Mock recent/j! location’s cache block recently
With a finite cache of C and no other processor wrote
wards, a reference is recent if into a location in the cache
it accesses one of the last C/B block since this reference.
distinct blocks referenced.

appreciate this point, t!onsider the
common programming paradigm of
maintaining a central queue of tasks
and having a process running on
each processor remove tasks, exe-
cute them, and return new tasks to
the queue. Although the arrrange-
ment described is convenient, it ig-
nores locality since a ,datum may be
modified by many tasks executing
on different processors. Nonlocal
operations will transfer the modified
location between the processors’
caches. If writes .are frequent
enough, the traffic generated by
these operations will h.eavily load the
memory system and can reduce the
whole system’s perfbrmance. One
way to avoid this problem is to main-
tain a separate task queue for each
processor [3]*. In this case,
repeated operations on an object will
usually execute on the same pro-
cessor. If a processor empties its
queue, it can remove tasks’ from
another processor’s queue.

The interleaving problem can be
most severe for variables used for in-
terprocess synchronization, such as
locks. A test-and-set operation
that obtains a lock always modifies
a memory location, regardless of
whether the lock is free. After a pro-
cess executes a test-and-set, the

2This has the additional benefit of’reducingthe bot-
tleneck caused by a single queue.

lock resides exclusively in that pro-
cessor’s cache. Two or more pro-
cesses contending for a lock ag-
gravate the situation by causing the
lock to “ping-pang” between caches,
generating large amounts of net-
work traffic and slowing other pro-
cessors. A simple solution is to test
the state ofthe lock before perform-
ing a test-and-set instruction [ll].
Only when the lock is free, should
the more expensive operations be
used:

repeat
I * Wait until lock is free before tying

test-and-set */
while (lock # Free) do skip od;

until (test-and-set(lock) = Free);

With proper care, this solution,
called test-and-test-and-set,
works well for processors connected
through a shared bus [3]. An
equivalent technique for syn-
chronization over more general in-
terconnection networks is currently
the subject of research [8, 131.

InQinlte-Block-Caches
Model
Most real caches do not hold in-
vididual memory locations. Instead,
they hold groups of words surround-
ing the referenced locations. These
word groups form what is called a
block, and are loaded together when
any constituent location is refer-

enced. Blocks of size B words are
usually aligned, meaning that the ad-
dress of the first word is a multiple of
B. Typical values for B are 4, 8 or 16
words. Cache blocks exploit spatial
locality. A program typically uses
data in locations near the word it is
currently referencing. These nearby
words are brought into the cache
along with the first referenced
location.

These blocks, however, may cause
problems when different processors
modify adjacent locations. The first
write transfers the block to one pro-
cessor’s cache. The second write
moves it to the other processor’s
cache. This sequence is called false
sharing since no information is
transferred [7]. False sharing arises
when the data of two processors lie
adjacent in memory. For example, in

declare integer data [loo];
declare lock lock [loo];

each element of a data vector is pro-
tected by a lock in the lock vector. If
locks occupy a single memory word
and cache blocks contain four words
(typical values), a block could hold
four different locks, each of which
may ping-pong among eight dif-
ferent processors, no more than two
of which ever use it. A more effective
way to arrange this data is to group
related items together and keep un-
related items in separate cache
blocks:

structure dataNlock [
integer data;
lock lock;
I* Cache blocks are 4 words long *I
integer padl, pad 2;)

declare dataNlock lockeddata[lOO];

The last two fields (pad1 and pad2)
enlarge the structures so each lock-
value pair resides in a distinct cache
block (assuming that the array
lockeddata is allocated starting on a
four-word boundary).

Flnlte-BlOckCaches MCMlel
One feature not accounted for by the
above models is the finite size of real
caches, which often hold only 1K to

100 August 199ONol.33, No.8/COMYUYIUTIONSOCTWEAC.CY

64K words. A cache of size C words
with B-word blocks tends to contain
the C/B blocks surrounding the most
recent memory references. Finite
caches limit locality on both uni-
processors and multiprocessors.

In uniprocessors, limited caches
are the principal cause of cache
misses. To reduce the number of
misses, data should be organized
with common access patterns
referencing adjacent words; this
enables the cache to hold the last C-
referenced words. If references are B
or more addresses apart, the cache
holds only the last C/B-referenced
words. In this case, the effective
cache size is reduced by a factor of B
(which is often 4 to 8). In addition,
a programmer should try to reuse
words before they are pushed out of
the cache. For instance, consider
arithmetic operations on vectors.
The following two loops compute
A+BxCandE+AxD, whereA, B,
C, D, and E, are vectors of length N.

If N is large, when the first loop

for i+i to Ndo
A[i]+B[i] * C[i];

od;
for j+l to Ndo

Eh]‘Al-j] * DG];
od;

finishes, the first locations ofA may
have been flushed from the cache. A
better approach is to write these
loops as a single loop and use values
before they are flushed from the
cache:3

for i+l to N do
A[i]+B[i] * C[i];
E[i]+-A[i] * D[i];

od;

Optimizing programs to take into
account finite caches is less impor-
tant on multiprocessors than
uniprocessors. In many programs;
the finite cache size will not be the
dominant cause of cache misses.
Many misses will be the result of fac-
tors discussed previously. Also,

30n vector machines with caches, programmers (or
compilers) may have to compromise vectorizabil-
ityto attaincache performance. [IO]. In thisexam-
ple, however, coalescing the loops does not prevent
vectorization.

reducing cache misses is more com-
plex on a multiprocessor due to
interactions with other processors.
For example, a change that keeps
more items in a cache by packing
them tightly may introduce false
sharing between processors, degrad-
ing performance. Programmers
should not optimize multiprocessor
programs for finite caches unless
the amount of data each processor
uses is very large and the changes
do not cause harmful interactions
with other processors.

Conclusion
A program running on a multi-
processor no longer has a single,
sequential order of execution. The
temporal and spatial locality of a
processor is easily disturbed by ac-
tions of other processors. Some of
these interactions are visible to a
programmer, while others are arti-
facts of hardware. A programmer
who understands the basics of
multiprocessor caches can reduce
the extraneous interference and im-
prove a program’s performance.

Here are three rules-of-thumb to
consider when writing a parallel
program:

Try to perform all operations
on a datum in the same pro-
cessor to avoid unnecessary
communication.
Align data to prevent locations
used by different processors
from occupying the same
cache block.
Cluster work and re-use parts
of the data quickly, instead of
making long passes over all the
data.

Programming languages do not cur-
rently facilitate this style of pro-
gramming. A programmer must be
aware of the underlying behavior of
the multis and write programs that
properly exploit shared caches.

Acknowledgments.
We wish to thank Paul Adams, Eric
Bach, Renato De Leone, Susan
%gers, Susan Horwitz, Douglas
Johnson, Luigi Semenzato, Peter
Sweeney, Mary Vernon, and David

Wood for reading and improving
drafts of this article.

References

1. Agarwal, A. and Gupta, A. Memory-
Reference Characteristics of Multiprocessor
Applications under MACH. In Proceedings of
ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Syslemr (Santa Fe,
N.M., 1988) pp. 215-226.

2. Agarwal, A., Simoni, R., Horowitz, M., and
Hennessy, J, An Evaluation of Discretionary
Schemes for Cache Coherence. In Pmceedinss of
the 15th Annual International Symposium on Com-
pub-r A~chifrctun (Hawaii 1988) pp. 280-289.

3. Anderson, T.E., Lazowska, E.D., and Levy,
H.M. The Performance Implications of
Thread Management Alternatives for Shared-
Memory Multiprocessors. In PmceediqrofACM
SIGMETRICS Conference on Mearurement and
Modeling of Compufer Sy~tenv (Berkeley, Calif.

1989) pp. 49-60.
4. Archibald, J. and Baer, J.-L. Cache-Coherence

Protocols: Evaluation Using a Multiprocessor
Simulation Model. ACM 7ians. Comput. $jwt 4,
4 (1986) 273-298.

5. Bell, CG. M&is: A New Class of Multiproces-
sor Computers. Science, 228 (1985), 462-466.

6. Eggers, SJ. and Katz, R.H. A Characteriza-
tion of Sharing in Parallel Programs and its Ap-
plication to Coherency Protocol Evaluation. In
Prowdints of the 15th Annual International Sym-
posium on Computer Architecture (Honolulu,
Hawaii 1988), pp. 373-382.

7. Eggers, SJ. and Katz, R.H. The Effect of Shar-
ing on the Cache and Bus Performance of
Parallel Programs. In Proceedings of the Third In-
ternational Conference on Architetural Supportfor Ao-
gramming Languqes and Operating Sysfems
(ASPLOS Ill) (Boston, Mass. 1989) pp.
257-270.

8. Goodman, J.R., Vernon, M.K., and Woest, P.J.
Efficient Synchronization Primitives for Large-
Scale Cache-Coherent Multiprocessors. In Pm-
ceedings of the Third International Conference on Ar-
chitectural Supportfor Pqmmming Languqees and
Operating Systems (ASPLOS III) (Boston, Mass.
April 1989), pp. 64-77.

9. Li, K. and Hudak, P. Memory Coherence in
Shared Virtual Memory Systems. ACM ‘Iknr.
Comput. &t. 7, 4 (November 1989), 321-359.

10. Liu, B. and Strother, N. Programming in VS
Fortran on the IBM 3090 for Maximum Vec-
tor Performance. IEEE Computer, 21, 6 (June

1988), 65-76.
11. Rudolph, L. and &gall, Z. Dynamic Decen-

tralized Cache Schemes for MIMD Parallel
Processors. In Proceedings of the 11th Annual In-
ternational Symposium on Computer Architecture
(Ann Arbor, Mich. 1984) 340-347.

12. Smith, A.J. Cache Memories. ACM Compuf.
Sum, I4, 3 (1982) 473-530.

13. Yew, P.-C., Tzeng, N.-F. and Lawrie, D.H.

COMPUIIIC~TIOIISOFTREdCYlAugust 199O/Vo1.33, No.8 101

Distributing Hot-Spot Addxssing in Large-
Scale Multiprocessors. IEEE 7ianr. CompuI.,
C-36 (1987) 388-395.

CR Categories and Subject Dercriptors B.O. [Hard-
ware]: General; B.3 [Memory Srructuml; B.3.2 [Design
Styles]: Cache Memories; C.O. [Computer System
Organization]: General; CL2 [M:ultiple Data Stream
Architceturel: Parallel Processors: DO. ISoftwaml: Gene-
ral; D.I. [Programming Teehniqucs]; D.l.3. [Concurrent
Programmers]

General Terms: Performance
Additional Key Words and Phrases: Cache coherence,

shared-memory multiprocessors.

About the Authors:

MARK D. HILL is an assistant professor in the
Computer Sciences Department at the University
of Wisconsin, Madison. His research interests
center on computer architecture, with an emphasis

on performance considerations and implementa-
tion factors in memory systems.

JAMES R. LARUS is an assistant professor in the
Computer Sciences Department at the University
of Wisconsin, Madison. His research interests
center on programming languages and compilers
for parallel computers.

Authors’ Present Address: Computer Sciences
Dept., 1210 West Dayton St., Univ. of Wisconsin-
Madison, WI 53706, markhill@cs.wisc.edu. and
larus@cs.wisc.edu.

Caches In More Detail

T
he body of this article explains the Software
implications of multiprocessor caches. This
appendix explains details of how these
caches operate for readers who wish to
understancl the basis of the implications.

we first argue that virtual memory and uniprocessor
caches are similar, and then discuss how multiprocess-
ing complicates cach’es.

Hardware caches operate on the same principle as
virtual memory Pages of memory reside on disks,
whose access time is much larger than that of physical
or main memory. To reduce average access time, a vir-
tual memory system (operating system software, often
with microcode or hardware support) keeps copies of
the most recently referenced pages in main memory.
When memory is updated, a disk page becomes out-of-
date or Stale. User5 never access stale data, because the
virtual memory system directs references to the
memory copy when one exists and always updates the
disk page before the memory copy is replaced.

Uniprocessor CaChc?S function like virtual memory,
except that the faster level of storage is the cache
(USUallv fast, static RAM), while the slower level is main
memory (USUally large!, dynamic RAM). cache pages are
called blocks or lines, and cache management is han-
dled totally bv hardware. Figure 2 shows the structure
of a typical cache.

A multiprocessorwith per-processor caches is more
complex, because data also becomes stale when
another processor updates it. Consider the case in
which processor 1 has updated a cache block, but not

102

main memory; processor 2 does not have a copy of this
block; and then processor 2 references the block. Some
mechanism must ensure that processor 2 receives the
updated copy from processor I’S cache, not stale copy
from main memory Otherwise, a programmers model
of a shared, cache-less memory is compromised. This
mechanism is called a cacl7e-coherence protoco/.

For computers with more than four processors, the
first commercial Systems with cache-coherence pro-
tocols connected processors and main memory
through a single, shared bus. A bus simplifies the
coherence protocol by providing inexpensive, atomic
broadcasts. Multiprocessors with a bus exploit this
capability by having all processors (actually the pro-
cessors’ cache controllers) monitor bus transactions.
when a transaction affects a location in a processors
cache, the controller updates the cache, places data on
the bus, or both.

Bus-based cache-coherence protocols can be classi-
fied as write-invalidate or write-update 14, 61. Write-
invalidate protocols guarantee that there exist either:
(1) no Cached copies of a block, (2) one or more read-
only copies, or (31 one read-write copy. Bus transactions
maintain this invariant. The protocols are Called write-
invalidate because a processor wishing to write a block
invalidatesall read-only copies. Figure 3 illustratesasim-
ple write-invalidate protocol. Most of these PrOtOCOlS’
overhead is due to invalidate operations and the subse-
quent cache misses incurred bv other processors when
they re-reference invalidated blocks.

Write-update cache-coherence PrOtOCOlS allow
multiple read-write copies, but require that each up-
date be broadcast, preventing the existence of stale
copies. These protocols USUallv contain a mechanism
allowing a writing processor to determine that no
other cache copies exist, so subsequent writes need
not be broadcast. Write-update protocols increase the
cost of all writes to shared blocks, but eliminate there-
reference misses of write-invalidate protocols.

The obvious bandwidth limitations of a single, shared
bus have led researchers and hardware designers to in-
vestigate cache-coherence PrOtOCOlS on more general
interconnection networks. On these networks, broad-
casts are expensive and often non-atomic Many broad-
casts can be avoided by adding a level of indirection.
Instead of issuing a broadcast request to all processors,
a protocol can lookat a known location, called a direc-
tory entry, to get pointer&) to a block’s cached loca-
tion(s). The protocol can then communicate directly
with the processors that have copies of a location.
AgatWal eta/. extend a write-invalidate PrOtOCOl to this
type of computer 121. Contrary to wide-spread belief,
access to directory entries does not introduce a cen-
tralized bottleneck since entries for different blocks
can be in different places. Write-update protocols ap-
pear less amenable to multiprocessors with general
interconnection networks, because updates are dif-
ficult to propagate atomically and efficiently. R

Augur 199ONo1.33, N~S,COYY”W,C*T,OIISOCT”EACY

