


locality, in which contemporaneous 
references to a memory word come 
from a single processor, rather than 
many different ones [l]. Many 
multiprocessors which devote sub- 
stantial resources to providing a large 
cache for each processor to hide this 
feature, allowing programmers to 
write correct programs without 
reasoning about these caches. Al- 
though programmers find it not only 
possible, but easy to write multi- 
processor programs in which each 
process has substantial locality, in- 
teractions among processes reduce 
performance and diminish the bene- 
fit of moving from a uniprocessor to 
a multiprocessor. This article de- 
scribes the behavior of these hidden 
caches and presents some guidelines 
for programmers wh.o wish to use 
them more effectively. 

We are most interested in cache- 
coherent, shared-memory multi- 
processors (mu&) [5]. Many commer- 
cial multiprocessors, such as the 
Sequent Symmetry, Encore Multi- 
max, and Alliant FX/8 are multis. 
Figure 1 shows the typical structure 
of these machines. Each processor 
contains a local cache that reduces the 
expected long delay of referencing 
main memory through an intercon- 
nection network (e.g., shared bus). 
As long as a processor accesses data 
that is not shared with any other pro- 
cessor, the cache works like a uni- 
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processor’s cache, keeping a copy of 
recently used locations. However, 
when a memory location is shared 
among processors, a cache-coherence 
protocol ensures that each processor 
sees a consistent view of the datum, 
even though it may be stored in more 
than one cache [4]. These protocols 
can reduce a program’s performance 
by requiring expensive, nonlocal 
operations to invalidate or update 
shared data in other caches. These 
operations directly affect the pro- 
cessors referencing the shared data 
and indirectly slow all processors by 
increasing contention for the inter- 
connection network and main 
memory. 

Even multiprocessors that are not 
multis distinguish local and remote 
memories. On some computers, such 
as the BBN Butterfly, a portion of each 
processor’s address space is local and 
can be accessed at low cost. On other 
machines, such as hypercubes, all 
memory is local and remote memory 
can only be referenced through a 
message to another processor. Pro- 
grammers on these computers typical- 
ly cache code and data in a processor’s 
local memory. Some systems for these 
machines present an illusion of shared 
memory by caching pages in local 
memory [9]. Even though these local 
memories are not managed in hard- 
ware, many of the considerations we 
will discuss are applicable. 

In future multiprocessors, the 
relative cost of coherence protocol 
operations will be larger than it is at 
the present time because technologi- 
cal improvements are not reducing 
communication costs as rapidly as 
computation times. Users are also 
demanding increasingly large sys- 
tems, which require more commun- 
ication. Properly exploiting all types 
of locality is critical to using tomor- 
row’s multiprocessors efficiently. 
Eggers has presented empirical re- 
sults demonstrating that today’s 
multiprocessor programs frequent- 
ly misuse the cache, thereby reduc- 
ing its performance [7]. 

In the future, perhaps languages 
and compilers for parallel compu- 
ters will take the following issues 
into consideration. In the mean- 

time, the programmer must under- 
stand and efficiently use caches in 
order to take full advantage of 
multis. 

This article restates results by 
Eggers and other computer architec- 
ture researchers in a manner com- 
prehensible to programmers who 
may know little or nothing about 
caches. We will also introduce four 
simple models that help program- 
mers appreciate the implications of 
multiprocessor caches (summarized 
in Table I). The Appendix contains 
a more detailed description of the 
underlying hardware. 

No-Caches Model 
The no-caches model assumes that 
all memory references go to main 
memory. The advantage of this mo- 
del is that a programmer does not 
need to worry about locality, since all 
memory references are equally ex- 
pensive. Nonlocal communication 
can only be reduced by eliminating 
memory references (i.e., keeping 
data within a processor’s registers or 
recomputing results).. This is the 
multiprocessor model which many 
programmers use. It is adequate for 
the purpose of discussing the func- 
tionality of concurrent programs. It 
fails, however, to capture the need 
for locality. 

Dniinlte-Word-Caches 
Model 
Our simplest cache model assumes 
an infinite cache of single memory 
locations. Once a location is refer- 
enced, it remains in a uniprocessor’s 
cache forever. On a multiprocessor, 
the word disappears from a pro- 
cessor’s cache when another pro- 
cessor writes into it.’ 

This model’s principal software 
implication is that programmers 
should avoid unnecessary interleav- 
ing of references by more than one 
processor to the same memory word 
(unless all references are reads). To 

‘This model is most accurate for write-invalidate 
cache-coherence protocols (see Appendix). For the 
other class of protocols (write-update), this model 
correctly indicates that nonlocal references are 
caused by active sharing, but it does not reflect the 
exact costs of sharing. 
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TABLE I. MOdeI I;ummcrry 

wheti memory Referme is local (Iaaapensive~ 

modeINane -&processor Rule M~ltlprocwsor Role 
No-Caches Never. Never 
Infinte-Word-Caches %-The processor referenced the The processor referenced the 

location in the past. A location in the past and no 
refemre is a read or write. other processor wrote into it 

since this reference. 
Infinite-Block-caches The Processor referenced the The processor referenced the 

location’s cache block. A 
cache block is a group of 5 
adjacent, aligned words. 

location’s cache block and no 
other processor wrote into a 
location in the cache block 
since this reference. 

Finite-Block-Caches -iiie processor referenced the The processor referenced the 
location’s cache Mock recent/j! location’s cache block recently 
With a finite cache of C and no other processor wrote 
wards, a reference is recent if into a location in the cache 
it accesses one of the last C/B block since this reference. 
distinct blocks referenced. 

appreciate this point, t!onsider the 
common programming paradigm of 
maintaining a central queue of tasks 
and having a process running on 
each processor remove tasks, exe- 
cute them, and return new tasks to 
the queue. Although the arrrange- 
ment described is convenient, it ig- 
nores locality since a ,datum may be 
modified by many tasks executing 
on different processors. Nonlocal 
operations will transfer the modified 
location between the processors’ 
caches. If writes .are frequent 
enough, the traffic generated by 
these operations will h.eavily load the 
memory system and can reduce the 
whole system’s perfbrmance. One 
way to avoid this problem is to main- 
tain a separate task queue for each 
processor [3]*. In this case, 
repeated operations on an object will 
usually execute on the same pro- 
cessor. If a processor empties its 
queue, it can remove tasks’ from 
another processor’s queue. 

The interleaving problem can be 
most severe for variables used for in- 
terprocess synchronization, such as 
locks. A test-and-set operation 
that obtains a lock always modifies 
a memory location, regardless of 
whether the lock is free. After a pro- 
cess executes a test-and-set, the 

2This has the additional benefit of’reducingthe bot- 
tleneck caused by a single queue. 

lock resides exclusively in that pro- 
cessor’s cache. Two or more pro- 
cesses contending for a lock ag- 
gravate the situation by causing the 
lock to “ping-pang” between caches, 
generating large amounts of net- 
work traffic and slowing other pro- 
cessors. A simple solution is to test 
the state ofthe lock before perform- 
ing a test-and-set instruction [ll]. 
Only when the lock is free, should 
the more expensive operations be 
used: 

repeat 
I * Wait until lock is free before tying 

test-and-set */ 
while (lock # Free) do skip od; 

until (test-and-set(lock) = Free); 

With proper care, this solution, 
called test-and-test-and-set, 
works well for processors connected 
through a shared bus [3]. An 
equivalent technique for syn- 
chronization over more general in- 
terconnection networks is currently 
the subject of research [8, 131. 

InQinlte-Block-Caches 
Model 
Most real caches do not hold in- 
vididual memory locations. Instead, 
they hold groups of words surround- 
ing the referenced locations. These 
word groups form what is called a 
block, and are loaded together when 
any constituent location is refer- 

enced. Blocks of size B words are 
usually aligned, meaning that the ad- 
dress of the first word is a multiple of 
B. Typical values for B are 4, 8 or 16 
words. Cache blocks exploit spatial 
locality. A program typically uses 
data in locations near the word it is 
currently referencing. These nearby 
words are brought into the cache 
along with the first referenced 
location. 

These blocks, however, may cause 
problems when different processors 
modify adjacent locations. The first 
write transfers the block to one pro- 
cessor’s cache. The second write 
moves it to the other processor’s 
cache. This sequence is called false 
sharing since no information is 
transferred [7]. False sharing arises 
when the data of two processors lie 
adjacent in memory. For example, in 

declare integer data [loo]; 
declare lock lock [loo]; 

each element of a data vector is pro- 
tected by a lock in the lock vector. If 
locks occupy a single memory word 
and cache blocks contain four words 
(typical values), a block could hold 
four different locks, each of which 
may ping-pong among eight dif- 
ferent processors, no more than two 
of which ever use it. A more effective 
way to arrange this data is to group 
related items together and keep un- 
related items in separate cache 
blocks: 

structure dataNlock [ 
integer data; 
lock lock; 
I* Cache blocks are 4 words long *I 
integer padl, pad 2;) 

declare dataNlock lockeddata[lOO]; 

The last two fields (pad1 and pad2) 
enlarge the structures so each lock- 
value pair resides in a distinct cache 
block (assuming that the array 
lockeddata is allocated starting on a 
four-word boundary). 

Flnlte-BlOckCaches MCMlel 
One feature not accounted for by the 
above models is the finite size of real 
caches, which often hold only 1K to 
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64K words. A cache of size C words 
with B-word blocks tends to contain 
the C/B blocks surrounding the most 
recent memory references. Finite 
caches limit locality on both uni- 
processors and multiprocessors. 

In uniprocessors, limited caches 
are the principal cause of cache 
misses. To reduce the number of 
misses, data should be organized 
with common access patterns 
referencing adjacent words; this 
enables the cache to hold the last C- 
referenced words. If references are B 
or more addresses apart, the cache 
holds only the last C/B-referenced 
words. In this case, the effective 
cache size is reduced by a factor of B 
(which is often 4 to 8). In addition, 
a programmer should try to reuse 
words before they are pushed out of 
the cache. For instance, consider 
arithmetic operations on vectors. 
The following two loops compute 
A+BxCandE+AxD, whereA, B, 
C, D, and E, are vectors of length N. 

If N is large, when the first loop 

for i+i to Ndo 
A[i]+B[i] * C[i]; 

od; 
for j+l to Ndo 

Eh]‘Al-j] * DG]; 
od; 

finishes, the first locations ofA may 
have been flushed from the cache. A 
better approach is to write these 
loops as a single loop and use values 
before they are flushed from the 
cache:3 

for i+l to N do 
A[i]+B[i] * C[i]; 
E[i]+-A[i] * D[i]; 

od; 

Optimizing programs to take into 
account finite caches is less impor- 
tant on multiprocessors than 
uniprocessors. In many programs; 
the finite cache size will not be the 
dominant cause of cache misses. 
Many misses will be the result of fac- 
tors discussed previously. Also, 

30n vector machines with caches, programmers (or 
compilers) may have to compromise vectorizabil- 
ityto attaincache performance. [IO]. In thisexam- 
ple, however, coalescing the loops does not prevent 
vectorization. 

reducing cache misses is more com- 
plex on a multiprocessor due to 
interactions with other processors. 
For example, a change that keeps 
more items in a cache by packing 
them tightly may introduce false 
sharing between processors, degrad- 
ing performance. Programmers 
should not optimize multiprocessor 
programs for finite caches unless 
the amount of data each processor 
uses is very large and the changes 
do not cause harmful interactions 
with other processors. 

Conclusion 
A program running on a multi- 
processor no longer has a single, 
sequential order of execution. The 
temporal and spatial locality of a 
processor is easily disturbed by ac- 
tions of other processors. Some of 
these interactions are visible to a 
programmer, while others are arti- 
facts of hardware. A programmer 
who understands the basics of 
multiprocessor caches can reduce 
the extraneous interference and im- 
prove a program’s performance. 

Here are three rules-of-thumb to 
consider when writing a parallel 
program: 

Try to perform all operations 
on a datum in the same pro- 
cessor to avoid unnecessary 
communication. 
Align data to prevent locations 
used by different processors 
from occupying the same 
cache block. 
Cluster work and re-use parts 
of the data quickly, instead of 
making long passes over all the 
data. 

Programming languages do not cur- 
rently facilitate this style of pro- 
gramming. A programmer must be 
aware of the underlying behavior of 
the multis and write programs that 
properly exploit shared caches. 
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Caches In More Detail 

T 
he body of this article explains the Software 
implications of multiprocessor caches. This 
appendix explains details of how these 
caches operate for readers who wish to 
understancl the basis of the implications. 

we first argue that virtual memory and uniprocessor 
caches are similar, and then discuss how multiprocess- 
ing complicates cach’es. 

Hardware caches operate on the same principle as 
virtual memory Pages of memory reside on disks, 
whose access time is much larger than that of physical 
or main memory. To reduce average access time, a vir- 
tual memory system (operating system software, often 
with microcode or hardware support) keeps copies of 
the most recently referenced pages in main memory. 
When memory is updated, a disk page becomes out-of- 
date or Stale. User5 never access stale data, because the 
virtual memory system directs references to the 
memory copy when one exists and always updates the 
disk page before the memory copy is replaced. 

Uniprocessor CaChc?S function like virtual memory, 
except that the faster level of storage is the cache 
(USUallv fast, static RAM), while the slower level is main 
memory (USUally large!, dynamic RAM). cache pages are 
called blocks or lines, and cache management is han- 
dled totally bv hardware. Figure 2 shows the structure 
of a typical cache. 

A multiprocessorwith per-processor caches is more 
complex, because data also becomes stale when 
another processor updates it. Consider the case in 
which processor 1 has updated a cache block, but not 
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main memory; processor 2 does not have a copy of this 
block; and then processor 2 references the block. Some 
mechanism must ensure that processor 2 receives the 
updated copy from processor I’S cache, not stale copy 
from main memory Otherwise, a programmers model 
of a shared, cache-less memory is compromised. This 
mechanism is called a cacl7e-coherence protoco/. 

For computers with more than four processors, the 
first commercial Systems with cache-coherence pro- 
tocols connected processors and main memory 
through a single, shared bus. A bus simplifies the 
coherence protocol by providing inexpensive, atomic 
broadcasts. Multiprocessors with a bus exploit this 
capability by having all processors (actually the pro- 
cessors’ cache controllers) monitor bus transactions. 
when a transaction affects a location in a processors 
cache, the controller updates the cache, places data on 
the bus, or both. 

Bus-based cache-coherence protocols can be classi- 
fied as write-invalidate or write-update 14, 61. Write- 
invalidate protocols guarantee that there exist either: 
(1) no Cached copies of a block, (2) one or more read- 
only copies, or (31 one read-write copy. Bus transactions 
maintain this invariant. The protocols are Called write- 
invalidate because a processor wishing to write a block 
invalidatesall read-only copies. Figure 3 illustratesasim- 
ple write-invalidate protocol. Most of these PrOtOCOlS’ 
overhead is due to invalidate operations and the subse- 
quent cache misses incurred bv other processors when 
they re-reference invalidated blocks. 

Write-update cache-coherence PrOtOCOlS allow 
multiple read-write copies, but require that each up- 
date be broadcast, preventing the existence of stale 
copies. These protocols USUallv contain a mechanism 
allowing a writing processor to determine that no 
other cache copies exist, so subsequent writes need 
not be broadcast. Write-update protocols increase the 
cost of all writes to shared blocks, but eliminate there- 
reference misses of write-invalidate protocols. 

The obvious bandwidth limitations of a single, shared 
bus have led researchers and hardware designers to in- 
vestigate cache-coherence PrOtOCOlS on more general 
interconnection networks. On these networks, broad- 
casts are expensive and often non-atomic Many broad- 
casts can be avoided by adding a level of indirection. 
Instead of issuing a broadcast request to all processors, 
a protocol can lookat a known location, called a direc- 
tory entry, to get pointer&) to a block’s cached loca- 
tion(s). The protocol can then communicate directly 
with the processors that have copies of a location. 
AgatWal eta/. extend a write-invalidate PrOtOCOl to this 
type of computer 121. Contrary to wide-spread belief, 
access to directory entries does not introduce a cen- 
tralized bottleneck since entries for different blocks 
can be in different places. Write-update protocols ap- 
pear less amenable to multiprocessors with general 
interconnection networks, because updates are dif- 
ficult to propagate atomically and efficiently. R 
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