
Appears in Proceedings of the 20th International Conference on Inductive Logic Programming

Automating the ILP Setup Task:

Converting User Advice about Specific Examples

into General Background Knowledge

Trevor Walker1, Ciaran O‟Reilly2, Gautam Kunapuli1, Sriraam Natarajan1,
Richard Maclin3, David Page1 and Jude Shavlik1

1University of Wisconsin – Madison, USA
{twalker, kunapg, natarasr, shavlik, page}@biostat.wisc.edu

 2SRI International 3University of Minnesota, Duluth, USA
 ciaran.oreilly@sri.com rmaclin@d.umn.edu

Abstract. Inductive Logic Programming (ILP) provides an effective method of

learning logical theories given a set of positive examples, a set of negative

examples, a corpus of background knowledge, and specification of a search

space (e.g., via mode definitions) from which to compose the theories. While

specifying positive and negative examples is relatively straightforward,

composing effective background knowledge and search-space definition

requires detailed understanding of many aspects of the ILP process and limits

the usability of ILP. We introduce two techniques to automate the use of ILP

for a non-ILP expert. These techniques include automatic generation of

background knowledge from user-supplied information in the form of a simple

relevance language, used to describe important aspects of specific training

examples, and an iterative-deepening-style search process.

Keywords: Advice Taking, Human Teaching of Machines.

1 Introduction

Inductive Logic Programming (ILP) provides a method to learn logical theories that

cover most of a given set of positive examples and as few as possible of a set of

negative examples. Unlike many other supervised learning approaches, ILP often

needs a complex corpus of background knowledge beyond just information provided

as part of the example description (i.e., the example features). This information is

vital to both forming the hypothesis space and guiding the search; effective use of ILP

depends upon this background knowledge. The ILP-setup problem of articulating

background knowledge can be difficult and requires detailed understanding of the ILP

algorithm, greatly limiting ILP‟s usability by non-experts.

At least two possible solutions to this problem exist. One is a two-step process in

which an ILP expert closely works with a domain expert in the first step to tailor the

general-purpose ILP system to a specific domain, such as drug design (e.g., [3]). In

the second step, domain experts, who are not ILP experts, can then use the tailored

system. A second solution to this ILP-setup problem, which retains the general-

purpose nature of the ILP system, is to allow a teacher to, as naturally as technically

2 Walker et al.

possibly, explain why specific examples are positive or negative through some advice

language. This teacher-provided advice supplies hints about the concept being

learned, beyond the traditional labeling of examples. Given this teacher-provided

advice, the automated learner can generate background knowledge and set appropriate

search parameters. This paper is the first study to explore this second approach,

although some prior ILP work is related and is reviewed in Section 5.

Consider the following sample dialog between the teacher and the learner. Assume

the formula (p(X) ∧ q(X,Y)) ∨ r(X)1 is a relevant piece of background knowledge for

concept C. The teacher might express this indirectly via the following dialogue about

a small number of training examples:

“In example 1, object a is a positive instance of concept C because p(a) is true.”

Note that, in human instruction, the teacher might say this to mean simply that

p is relevant to C rather than the complete definition of C.

“In example 2, object b is a positive instance of C because r(b) is true.”

Note here that an algorithm that induces background knowledge from these

statements needs to map both objects a and b to the same variable.

“In example 3, object d is a negative instance of C because q(d, d) is false.”

Note that the teacher is telling the learner about relevant background

knowledge through a negative example. The piece of advice in this case needs

to be negated. In addition, the machine learner does not know whether the

advice is about (1) all possible choices for the second (or first) argument of q,

(2) restricting the choice of the second argument to be the same as the first, or

(3) just the specific choice of constant d as the second (or first) argument.

Although (p(X) ∧ q(X, Y)) ∨ r(X) may be the formula necessary to define the

concept, formulas such as (p(X) ∨ q(X, Y)) ∧ r(X), or p(X) ∧ q(Y, X) ∧ r(X), or

p(X) ∧ (q(X, d) ∨ r(X)), or yet still others are also consistent with this human-

provided advice.

Allowing the teacher to provide such advice permits the use of ILP in an

unexplored setting in which only a few examples, along with teacher-provided

annotations, are sufficient to learn the target concept. However, in a setting with few

examples, while the target concept might be complex, such as (p(X) ∧ q(X, Y)) ∨
r(X), a simple clause, say p(X), by itself might be sufficient to discriminate between

examples. Thus, in this setting the advice should motivate the learner to prefer

formulas that use all the teacher-mentioned predicates (i.e., p, q and r), rather than

just the simplest formula consistent with the labeled examples.

Below, we present an algorithm to convert teacher-provided advice into ILP

background knowledge. We designed this algorithm with the sparse example setting

in mind. Motivations for the algorithm we present include the following:

1. High accuracy of the learned concept definition on teacher-labeled

training examples.

1 We use standard Prolog notation for constants and variables throughout this paper, but use

standard logical notation otherwise.

Automating the ILP Setup Task 3

2. Robustness in the presence of a small number of training examples and

perhaps a total lack of negative examples.

3. Inclusion of most, if not all, teacher-mentioned predicates in the learned

concept definition.

4. Flexible combination and generalization of the teacher‟s advice within

and across examples.

5. Robustness to teacher errors, both in data labeling and advice.

6. Learned concepts may need to include predicates not mentioned in

teacher-provided advice but supplied as part of example descriptions.

Our primary motivation is to allow human users of ILP systems to express their

knowledge about the learning task at hand in whatever means seems most natural to

them, from explaining (partially or fully) why some specific examples are positive or

negative members of the concept being learned, to simply stating the proper

categories (i.e., positive or negative) for other examples. We present our approach as

a “batch” system that is given a set of labeled examples and possibly some advice

about the examples, and then produces a set of one or more logical clauses (“inference

rules”) that best capture the concept being taught. However, we envision our

approach as being best situated in a setting where the human-machine dialog is

continual; the human teacher provides some initial training, the algorithm then learns,

after which the teacher can provide additional guidance and the process repeats until

an acceptable concept description results (where „acceptable‟ can either be based on

inspection of the learned clauses, or, more likely, on the quality of the predictions of

the learned clauses for new examples).

ILP systems search a space of possible clauses composed from background

knowledge; the space is typically defined declaratively by a set of mode definitions.

For this work, we used an implementation that closely follows the Aleph ILP system

[19], although we present general techniques with few Aleph dependencies. We made

one major changes to the default Aleph implementation, wrapping Aleph in an

iterative-deepening style search algorithm, as further explained in the next section.

As mentioned above, we address the problem of effectively incorporating, into the

ILP framework, teacher-provided advice; a human teacher usually provides the latter

and this interaction can be viewed from the wider perspective of human-machine

interaction. Such teaching refers to humans teaching computers concepts and/or

behaviors, through as natural and human-like dialog as possible. In our setting, the

taught concepts take the form of logical theories and the teacher provides relevance

advice about specific examples. The relevance advice takes a number of different

forms, from simple “this feature is important” advice to complex statements that can

be mapped to a grounded form of the concept being taught. The advice can be

provided by a human familiar with the advice language but with no ILP experience,

i.e., a non-expert. In the experiments we report later in this paper, all the instruction

was provided by non-ILP-experts, all who are independent from this paper‟s authors.

Figure 1 illustrates, using propositional logic for simplicity, how advice-generated

background knowledge can help focus ILP‟s search. A common ILP search strategy

is to build clauses in a top-down manner, successively adding various literals that

might improve a rule. If a long clause is needed, the search space can be

4 Walker et al.

exponentially large, and if there are only a few training examples, many possible rules

can accurately match the training examples. However, good background knowledge

can quickly lead to the consideration of long clauses, as the figure shows. It can also

help choose among many equally performing rules.

Section 3 discusses the conversion of this teacher-provided advice into ILP

background knowledge. To accommodate differing amounts of advice, and different

levels of concreteness of advice, we employ a control structure, explained in

Section 2, which is capable of exploring successive layers of the hypothesis space,

from a layer that tightly follows the advice to an outermost, rarely-used layer that

effectively ignores the advice. Section 4 presents a discussion of our empirical study.

Section 5 discusses the relationship to prior work within ILP.

2 The Onion

Our ILP advice algorithm generates a number of hypotheses, some of which we deem

less likely than others. Additionally, since we assume the teacher has little to no ILP

expertise, we must utilize a method to select ILP parameters automatically, in a way

that consistently supports the motivations discussed above. We developed the ONION,

a control structure that iteratively searches a set of successively larger and less likely

ILP search spaces.

Algorithm 1 presents the basic structure of the ONION. Essentially, the ONION

iterates over a set of ILP parameter settings and priority levels, performing an ILP

search for each. When a given ILP search returns a theory, the ONION evaluates that

theory against a set of acceptance criteria (such as minimum accuracy and coverage,

i.e., precision and recall), and if the theory is acceptable, the ONION returns it.

target q, r, …, z

target true

target q, r, … , y

target q target p …

… … …

Standard ILP Search

 With Advice

…

…

Figure 1. An illustration of a top-down ILP search for a inference rule to predict

the literal predicate, whose definition is the conjunction of literals q through z.

Finding a long clause such as this can be quite hard, but if a teacher gives advice

(possibly across multiple examples) that the conjunction of literals q through y is

relevant, then finding the correct definition is much easier.

Automating the ILP Setup Task 5

Algorithm 1: THE ONION

1: For each set of criteria C in {C1, C2, …, Cn} for an acceptable theory

2: For each priority level P in {High, Medium, Low, None}

3: For each set of Aleph parameter settings S in {S1, S2, …, Sm}

4: Only consider literals or generated clauses whose relevance is a least P

5: Call Aleph with parameter settings S

6: If Aleph‟s learned theory meets criteria C then Return theory

7: Return FAIL

We order the sets of acceptance criteria and possible settings from most restrictive

to least restrictive, while we order the generated background according to a priority.

We discuss how we assign that priority in the next section. The priority level “None”

is given to those literals not mentioned by the teacher‟s advice, but which appear in

the descriptions of examples.

3 Converting Advice to Background Knowledge

Teacher advice provides a method for the user to instruct our learning algorithm. The

advice takes the form of logical statements. From this information, we construct new

background knowledge representing sub-concepts. We also generate the necessary

ILP modes (these modes specify the types of arguments and state, for the arguments

of a new literal being considered for addition to a clause, which need already appear

in the clause, which can be new variables, and which should be constants).

Additionally, we attach priorities to all of the generated background knowledge for

use by our ONION algorithm. Currently, we assume the teacher talks about a specific

example (either positive or negative) and specifies the advice in a ground format that

we then variablize into a general form. It is straightforward to extend our system to

allow the teacher to provide generalized advice, but we believe that for most users it

will be easier to explain why specific examples are or are not members of the concept

being taught and that is the interaction style on which we focus.

Although we assume that the user understands basic logic (i.e., the meaning of

AND, OR, and NOT), we attempt to allow the user to communicate advice in a natural,

and possibly somewhat inaccurate manner. Thus, although we specify the exact

logical format of the advice below, our system attempts to rectify common user

misunderstandings, such as predicate/function confusion. We also do not expect the

user to understand the algorithmic details of the underlying ILP system.

Table 1 shows two training examples and three pieces of teacher provided advice

for a sample concept ReadyToFly. The ReadyToFly concept indicates, as one might

guess, that an airplane is ready to fly. We will be using this simple concept to

demonstrate our approach. We define the concept as:

 readyToFly(Plane) fueled(Plane) ∧ gearDown(Plane) ∧ ¬ damaged(Plane).

 Algorithm 2 details the process of creating background knowledge from the

teacher-provided advice. The process proceeds in several phases. The first phase

(lines 4 to 10), variablizes the ground advice statements via applying anti-substitution,

i.e., a mapping from occurrences of ground terms to variables. For our purposes, we

6 Walker et al.

only need to map constants to variables. The anti-substitution may be either a direct-

mapping that maps all occurrences of the same constant to the same variable and

occurrences of distinct constants to distinct variables, or an indirect-mapping, where

occurrences of the same constant can be mapped to different variables.

Indirect-mappings address cases where two constants are coincidentally equivalent.

This occurs regularly in examples with numeric constants, where common numbers

such as 1.0 may perform two different roles. Later, when we assign priorities to

generated background knowledge, those created with indirect-mappings receive a

lower priority than those created with direct-mappings. Indirect mapping anti-

substitutions perform what is sometimes called “variable splitting” in ILP [18], where

two occurrences of the same term are generalized to different variables. It is well-

known that variable splitting can lead to an increase in run-time that is exponential in

the number of occurrences of the same term within a formula. In practice, such

multiple occurrences are rare, except in the case of very common constants within a

domain, for example, the 1.0 case discussed above. To prevent this exponential worst-

case increase, in practice, we limit the maximum number of variable splittings (cases

of two occurrences of the same term being mapped to distinct variables) by an anti-

substitution to some small constant k. Alternative approaches to controlling the cost

of variable splitting, such as employing domain-specific heuristics about commonly-

occurring constants, are a direction for future research.

Table 2 depicts both a direct and indirect anti-substitution. As shown, we perform

the same anti-substitution on both the example and the piece of advice, linking

variables in the example to variables in the advice. Although not shown in Table 2

we generalize all advice for a single example at the same time. Thus, constants can

be tied together across different advice for the same example, but are not tied across

advice for different examples.

Given the generalizations from the first phase, the second phase of

GENERATEBACKGROUNDKNOWLEDGE (lines 12 to 17) performs a unification

to merge variables that arose from constants found in the examples themselves. For

instance, if we consider the direct anti-substitutions of all pieces of advice, we have

readyToFly(A) ⟵ fueled(A); readyToFly(A) ⟵ gear_down(A); and

readyToFly(B) ⟵ damaged(B). After the unifications, the implications would be

readyToFly(X) ⟵ fueled(X); readyToFly(X) ⟵ gear_down(X); and
readyToFly(X) ⟵ damaged(X) where X is shared. This allows distinct constants

from different examples that played the same role to be merged into a single variable.

Advice # Ground Example Pos/Neg Teacher Advice

1 readyToFly(plane1) Positive fueled(plane1)

2 readyToFly(plane1) Positive gear_down(plane1)

3 readyToFly(plane2) Negative damaged(plane2)

Table 1. ReadyToFly concept. Training data includes two examples, one
positive, one negative, along with three pieces of teacher provided advice, two
pieces for the first example and one for the second.

Automating the ILP Setup Task 7

In the third phase (lines 19 to 27), we generate compound logical formulas by

connecting the generalizations for different pieces of advice with the AND and OR

logical connectives. We generate three different styles of formulas: per-piece, per-

example, and “Mega Rules”. The per-piece formulas correspond to the individual

pieces of advice specified by the teacher. The per-example formulas aggregate all the

advice provided for a single example into one formula with the individual pieces of

advice joined via AND connectives. The per-example formulas allow the teacher to

provide many small pieces of advice about an example instead of requiring the

teacher to compose a single complex piece of advice. Finally, Mega Rules attempt to

Algorithm 2: GENERATEBACKGROUNDKNOWLEDGE

1: Given: Labeled examples, some of which have associated advice
2: Do: Infer generalized background knowledge
3:
4: For each example ei ∈ {e1…en}
5: Given advice Ai associated with example ei
6: if ei is positive example then create an associated implication ei ⟵ Ai
7: else create an associated implication ei ⟵ ¬ Ai
8:
9: Generate all non-equivalent formulas via anti-substitution
10: from the implication to yield the set of formulas Fi
11:
12: Let F denote the set F1 ∪ F2 ∪ … Fn
13: Standardize apart all formulas in F
14: Let θ be the most general unifier of all consequents of formulas in F
15: For each Fi
16: Apply θ to all formulas in Fi to yield F’i
17: Collect all antecedents from formulas in F’i to yield Gi
18:
19: Let H = {}, a set of generated rule antecedents
20: For each generalized advice-piece Gi
21: Let H = H ∪ Gi // Per-piece antecedents
22:
23: For each example ej ∈ {e1…en} with associated advice
24: Let Kj = ∪ { g ∈ G | g was generated from example ej advice}
25: Let H = H ∪ Kj // Per-example antecdents
26:
27: Let H = H ∪ * “Mega-Rules” + // See text
28:
29: For each generated logical combination h ∈ H, introduce a new predicate
30: p and assert p(V1, V2, …, Vk) ⟵ h, where V1, V2, …, Vk are variables
31: generalized from constants in the example literal
32: If p ⟵ h is a Mega-Rule then assign p ⟵ h High priority
33: else if p ⟵ h is per-example then assign p ⟵ h Medium priority
34: otherwise assign p ⟵ h Low priority
35:
36: Return set of all generated implications p ⟵ h along with priorities

8 Walker et al.

capture all of the advice into one logical statement, by conjoining direct-mapping

generalizations of all advice from all positive and negative examples.

More specifically, we do the following to produce our Mega Rules:

Let Fi be the logical formula that our algorithm produces by conjoining

(“ANDing”) all of the relevance statements about positive example i.2

Let Gj be the logical formula that our algorithm produces by conjoining all of the

relevance statements about negative example j.

We make the following Mega Rules, where i ranges over the positive examples

with advice and j over those negative examples with associated advice:

 (F1 … Fi) ¬(G1 … Gj) example

 (F1 … Fi) ¬(G1 … Gj) example

 (F1 … Fi) ¬(G1 … Gj) example

 (F1 … Fi) ¬(G1 … Gj) example

The above are all ways to explain a collection of teacher-provided advice, though

some are more natural than the others. In the first one, our algorithm interprets the

teacher as using each positive example to provide aspects of a conjunctive concept

and each negative example to state properties that members of the concept lack (“this

is a bird because it has wings, this other example is a bird because it lays eggs, this

third example is not a bird because it has leaves, this fourth example is not a bird

because it is made of metal. …”). The third and fourth lines are appropriate for

disjunctive concepts (“Alice got to work by taking the bus. Bob got to work by

walking. … Carl did not make it to work because he slept all day.”). In addition to

the rules shown above, we also generate four additional Mega Rules in which we

negate positive advice and do not negate the negative advice.

When only direct-mapping generalizations exist, only a handful of formulas are

generated, providing excellent scalability. When indirect-mappings occur, we

generate additional rules in which we substitute all combinations of the indirectly-

mapped advice pieces into the per-piece and per-example formulas. This process

scales exponentially in the number of indirect-mapping generated.

In the final phase (lines 29 to 34) we convert each of the generated formulas back

into an implication (as a precursor to creating ILP background knowledge). During

2 We conjoin statements about the same example because we assume the teacher is telling us

various properties of that example that all hold, though it would be reasonable to extend our

algorithm by disjunctively combining them as another alternate interpretation. By allowing

only one or two ways to combine advice about the same example, we avoid the

combinatorics that would arise by combining in all logically possible ways.

Ground Example & Advice Anti-substitution Type

readyToFly(plane1) fueled(plane1) readyToFly(X) fueled(X) Direct

readyToFly(X) fueled(Y) Indirect

Table 2. Direct and indirect anti-substitutions. Direct anti-substitutions
generalize equivalent term to the same variable. Indirect anti-substitutions
generalize equivalent terms to different variables.

Automating the ILP Setup Task 9

this phase, we assign a search priority with a preference for longer formulas, i.e.,

those that use as much of the user-provided advice as possible. Mega Rules receive

the highest priority, followed by per-example formulas, and finally per-piece

formulas. The ONION uses these priorities to order the ILP search.

Table 3 shows several of the implications generated for the sample concept. The

head of the generated clause exposes all of the variables from the logical formula.

Variables tied to the example during the generalization phase become input variables

for the clause. In many situations, it is also advantageous to expose variables

occurring in the body of the rule as output variables. However, exposing additional

variables increases the size of the ILP search space. In absence of other information,

for each formula, we expose only a single output variable. For any given formula, we

determine the output variable by considering all of the literals that we derived from

positive pieces of advice and selecting the last variable that occurs. This approach

scales well. However, in some cases, variables that would be helpful may not be

exposed in the head of the generate clause. Clauses derived from formulas with OR

connectives have the additional requirement that the selected output variable must

occur in all of the OR-ed subformulas. Determining whether a variable occurs in all

of the subformulas requires us to determine if two variables are equivalent. If

argument-type information is available, we require only that type of the output

variable match in all of the subformulas. In the absence of typing information, we

disallow output variables for disjunctive formulas.

Statements about negative examples can be ambiguous. Imagine a teacher says an

example is negative because color = blue. Does this mean the example is negative

because it is blue or because it is not? Because the teacher is talking about specific

examples that are observable by our learning algorithm, we address this in an obvious

way. Namely, we evaluate the teacher‟s statement on the current example, and we

then, if necessary negate the advice so that it says something that is true. Hence if the

current example is red, we standardize the advice about color to color blue.

Finally, we assign input variables both an ILP input mode of „+‟ (the argument

must already be in the clause being constructed) and a constant mode of „#‟, plus we

Table 3. Generated Background Knowledge. Three types of background
knowledge are created during advice processing: per-piece, per-example, and
mega-rule background knowledge. Per-piece is composed of single pieces of
advice. Per-example is composed of all advice piece for a single example.
Mega-rules use all provided advice combined via various logical operators.

Generated Background Knowledge Type Priority

readyToFly(X)

fueled(X) gear_down(X) ¬ damaged(X)

Mega-Rule High

readyToFly(X)

(fueled(X) gear_down(X)) ¬ damaged(X)

Mega-Rule High

readyToFly(X) fueled(X) gear_down(X) Per-Example Medium

readyToFly(X) ¬ damaged(X) Per-Example Medium

readyToFly(X) fueled(X) Per-Piece Low

readyToFly(X) gear(X, down) Per-Piece Low

10 Walker et al.

assign output variables both an output mode of „–‟ (a new variable can be introduced)

and a constant mode of „#‟. Additionally, our algorithm also works when the ground

advice contains logical functions. We convert the functions into Skolem-constants

and perform generalizations over all possible combinations of the Skolem-constants.

4 Experiments

We performed several experiments to demonstrate the performance of the ONION with

and without advice. In addition to measuring learning on our test beds, we also

conducted comprehensive empirical analyses to study the performance of the ONION

when there is noise in the labels on examples, as well as in the advice. These

experiments are designed to demonstrate the effectiveness of the ONION in the

absence of advice, its robustness to noise, and how the system is capable of

generalizing advice about specific examples to all the available examples leading to

improved learning and accuracy. The improvements in generalization performance

can be significant, especially in the presence of a very small number of examples.

4.1 Test Beds

We used learning tasks developed by an independent third party under the

Bootstrap Learning (BL) project [12] funded by the United States Defense Advanced

Research Projects Agency (DARPA). In the BL setting, the machine learner induces

concepts that build upon one another through a “ladder” of tasks, which are organized

as self-contained lessons; lower rungs of the lesson ladder teach simpler concepts,

which are learned first and then used to learn − i.e., bootstrap − more complex

concepts. The lessons in the project incorporate a wide variety of natural teacher

instruction methods, including providing domain descriptions, pedagogical examples,

telling of general instructions, demonstration, and feedback. Our role in the project is

supervised learning from examples. For our experimental setup considered here, we

use 14 lessons from two domains of the BL project: Unmanned Aerial Vehicle (UAV)

and Armored Task Force (ATF).

For each of the 14 lessons, third-party domain-experts, under the direction of

DARPA and not under our control, generated "lessons" to teach these tasks. The

lessons consist of a sequence of messages from the teacher to the learner. Teacher

instruction includes providing training examples (up to 100 examples for each task)

and expert advice for certain examples to help the student learn these tasks

effectively. For each lesson, we wrote software that converted the messages into ILP

facts and examples expressed in predicate calculus. The mean accuracy of always

guessing the majority category across each of these 14 lessons is 57%.While we had

access to the UAV and ATF testbeds during algorithm development, during Fall 2009

our algorithm was applied by DARPA to a “hidden” testbed, to which we had no

access. Our approached produced 100% accuracy on learning in that testbed. Since a

variant of that testbed will be used Spring 2011, at the time of this writing we have no

knowledge of the testbed and, hence, cannot report anything more about it here.

Automating the ILP Setup Task 11

Methodology. We are interested in studying the behavior of our advice algorithm,

along with the ONION, with respect to several criteria: (1) its ability to learn diverse

concepts across domains without the intervention of an ILP expert, (2) its ability to

effectively exploit teacher advice in order to learn concepts with only a small number

of examples, (3) its robustness to teacher errors of commission in the examples

(mislabeled examples) and (4) its robustness to teacher errors of omission in the

advice (incomplete or missing literals). Our experimental study consists of three

experiments that we describe below. For each lesson we have 100 training examples

and 100 test set examples. During our experiments, we split the training set to

generate a tuning set, used by the ONION for evaluating parameter settings. For runs

with more than 25 examples, we place two-thirds of the data provided to our learner

into a training set and one-third the data into a tuning set. For runs where fewer than

25 training examples, we do not use a separate tuning set, instead relying directly on

training-set accuracy to tune parameters in the ONION. In all experiments there were

an equal number of positive and negative examples.

Because there is an intended pedagogical order to the examples, some of which

have associated advice, we did not perform 10-fold cross validation within each

lesson (in addition, since we have data simulators, cross validation is not necessary –

instead we simply use fresh samples of 100 examples as our test sets). The results

presented for each experiment are the test-set accuracies averaged over all 14 tasks.

Across all of these tasks, we used the same parameter choices in the ONION. That

is, over all of the experiments that we report here, our ILP system was run unchanged.

Our ONION approach was able to find good parameter settings, trading off computer

time for the ability to operate without intervention from an ILP expert.

4.2 Results and Discussion

Experiment A. In our first experiment, we compare the performance of the

ONION with and without advice over all the 14 tasks. Figure 3 shows the results,

where we plot learning curves, i.e., test-set accuracy as a function of increasing

numbers of training examples. (As mentioned earlier, our implementation is not an

on-line, incremental learner. We simply run in “batch mode” for various numbers of

training examples.)

In the case where the learner is not given any advice, the ONION is able to

generalize across tasks and domains, and obtain an average test-set accuracy of 74.0%

when using all 100 training examples. Even when using smaller fractions of training

data, the ONION is able to effectively select parameters and automate the setup task to

obtain learning rates in excess of 57%, which is equivalent to random guessing. The

main results in Figure 3 however, are the test-set accuracies achieved by the ONION in

the presence of advice. Even when using only four training examples per lesson, the

ONION with advice achieves an average test-set accuracy of 93.8%, and reaches 100%

with only ten examples.

Experiment B. Experiment A involved advice from a 3
rd

 party who was careful to

create rich and accurate advice. However, real teachers are likely to make errors. In

12 Walker et al.

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

Te
st

se
t

A
cc

u
ra

cy

Number of Training Examples

With Advice

Without Advice

Figure 3. Experiment A: Testset accuracy as a function of the number of training

examples (“learning curves”), with and without advice.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Te
st

se
t

A
cc

u
ra

cy

Probability of Dropping Advice Literals

4 Training Examples

100 Training Examples

Figure 2. Experiment B: Impact of errors of omission in advice. The x axis

indicates the probability value used in the advice-removal process (see text).

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50

Te
st

se
t

A
cc

u
ra

cy

% of Data Noise

100 Training Examples w/Advice
24 Training Examples w/Advice
100 Training Examples w/o Advice
24 Training Examples w/o Advice

Figure 4. Experiment C: The impact of mislabeled examples under various

conditions. The x-axis indicates the percentage of training data that is mislabeled.

Automating the ILP Setup Task 13

our 2
nd

 experiment we simulate errors of omission by dropping literals from advice.

We randomly drop literals as follows. For each advice rule we flip a weighted coin,

and it if comes up „heads‟ we delete the last literal in the rule. If we deleted the last

literal, we flip the coin again and consider deleting the second-from-last literal; this

continues until either the rule‟s literals are exhausted or the coin comes up „tails.‟ In

the later case, we place the possibly truncated advice rule in our “noisy” advice set.

We choose to remove from the end of advice rules, since prefixes of conjunctive rules

are likely to be partially coherent, whereas dropping literals from the middle of multi-

literal (i.e., conjunctive) statements may lead to nonsensical advice. A topic for future

research is to create more realistic models of imperfect advice.

Figure 2 shows the results of our errors-of-omission experiment, where we plot the

test-set accuracy as a function of the probability of randomly removing each literal as

specified above. For each selected probability-of-removing, we generated 30

independent “noisy” advice sets for each of our 14 lessons. The impact of noisy

advice depends on the number of training examples, so we perform this experiment

using 2 and 100 training examples.

The behavior of the system with different training set sizes is nearly identical with

the test-set accuracy dropping steadily as increasing fractions of advice literals are

removed. However, with advice-omission rates as high as 50%, and with a small

number of examples, the ONION is able to produce average test-set accuracies of over

80%. This demonstrates that even partial advice can be effective for learning, and that

the ONION is able to leverage this information effectively even in the presence of

significant imperfections in advice.

Experiment C. In this final experiment, we compare the performance of the

ONION with and without advice in the presence of mislabeled training examples.

Figure 4 shows the results; we plot test-set accuracy as a function of the percentage of

mislabeled examples. We generate the noisy examples by first removing examples

that have advice attached from the set of training examples. With the remaining

training examples, we randomly select a fraction of the examples and flip their labels.

We then replace the examples with attached advice into the training set. Care was

taken to guarantee that the final fraction of mislabeled examples was correct when the

examples with advice added back into the training set. This approach to noise

generation limited the range of noise available, especially for small training sets. For

instance, if we have a training set size of four and two of those were examples with

advice attached, the minimum amount of noise that can be considered is 25% (the

result of flipping a single, non-advice, example).

For experiment C, we generate 30 independent sets of mislabeled examples and,

separately, ran with and without advice using each of these noisy data sets. The

results are averaged over all random 30 runs and over all 14 tasks. As expected, the

example noise reduces the performance of both the advice-free and with-advice cases.

The main result from Figure 4 is that our advice algorithm, combined with the ONION,

performs well even in the presence of large amounts of data noise. In contrast, the

no-advice case degrades more quickly to about the level of random guessing (57%).

In summary, our experiments demonstrate that our advice-taking ILP system can

learn well from advice about a small number of specific examples, while being robust

14 Walker et al.

to errors in advice and example labels. They also show that our ONION approach can

be an effective method even when users provide no advice.

5 Related Work

ILP research has a rich history of developing systems capable of initiating human-

computer interaction and using them guide and constrain the search. The most

notable such systems include MARVIN [15], MIS [16], DUCE [10], CIGOL [9] and

CLINT [2] where the algorithm can ask the human one or more questions that would

guide the search. For example MIS relied on the human answering queries by

providing the labels of examples, together with a proof, or derivation, for each

positive response. In contrast, in our present work the human initiates the input by

providing advice, either in general or in association with the original training data.

Another general area of related work is theory refinement or theory revision (e.g.,

[7, 13, 19, 20]) where the user provides an initial logical theory that explains many

and not all examples, and the learning system must modify this theory. As a result the

search is constrained to prefer theories close to the original theory, similar to the

present work. But a key distinction is that the advice in our present work is example-

specific, which can substantially ease the burden on the user, as compared to

expressing abstract rule(s) underlying the concept.

Our work is closely related to argument-based machine learning (ABML [8]) that

takes as input user-provided advice about specific examples, in the form of an

argument. A key distinction is that the present work does not assume the arguments

are exactly correct and therefore may combine various pieces of different arguments

in order to construct rules. Another distinction is that to our knowledge ABML has

been applied strictly to propositional-rule learning.

Automatic parameter selection for machine learning methods has been explored

earlier [5], where the goal is to use the expected error for each parameter setting to

guide the selection of the parameters for decision trees. Lavrac et al. [6] proposed a

feature selection framework for ILP that worked well in propositional learning and

special cases of relational learning. This was later extended by Alphonse and Matwin

[1] using powerful statistical feature-selection techniques to control the

dimensionality of the search space. The key idea in their work is to reduce ILP

examples to non-recursive Datalog clauses by removing irrelevant literals.

Muggleton [11] theoretically shows that as the number of predicates in the

background theory increases, the size of the search space of an ILP system can

increase greatly. This necessitates the intervention of an ILP expert who can reduce

the search space. In such a context, relevance information becomes crucial.

Srinivasan et al. [17] conducted an empirical study in several biomedical domains and

concluded that when not all the background knowledge can be used, the relevance

information from the expert is very useful in construction of good domain models.

6 Conclusions and Future Work

Not surprisingly, teacher advice is useful to learning. The key challenge is the need to

generalize hints and advice the teacher gives about specific examples so that it

Automating the ILP Setup Task 15

accurately applies to future examples. We present a formal approach to incorporating

this into the wider framework of ILP. The empirical results show that our system is

able to learn well, across multiple concepts, from a combination of training examples

and teacher-provided hints. Running our ILP system without these hints − i.e., only

using the training examples – also produces reasonable accuracies on held-out (“test

set”) examples. Another key challenge is effective parameter selection and the

automation of the ILP-setup task. The final challenge is to ensure that the system is

robust to noise, both in examples and in advice.

We evaluated our algorithms, holding all default parameter settings constant, on 14

tasks from two domains designed by third-parties not under our control; these human

teachers provided training examples as well as relevance information. In our

experiments, we demonstrated that our system, the advice-taking ONION, is capable of

(1) effectively automating the ILP-setup task over different tasks from significantly

different domains, (2) exploiting teacher hints and relevance information to learn

concepts with near-perfect test-set accuracies even if given only a small set of training

examples, (3) performing effective parameter selection to learn concepts well when

there is no teacher advice, (4) being robust to example-label noise that can arise from

teachers‟ errors of commission, and (5) being robust to advice noise that is likely to

arise from teachers‟ errors of omission.

Currently, we are focusing on improving our layered approach, to more robustly

automate ILP in tasks that are more complicated. Also, we are currently looking at

further exploiting teacher-provided feedback beyond statements about which features

and objects are relevant, such as allowing teachers to provide corrections to previous

advice statements. A possible future direction is to explore the possibility of refining

the learned theories using teacher feedback in the lines of theory refinement for ILP

[8, 11, 12, 13, 14]. Refining teacher's advice is important as it renders the ILP systems

more robust to teacher errors that occur naturally in human teaching. Another future

direction is deploying our approach in the context of probabilistic-logic learning [4].

A final appealing direction of this research is to embed it into some user interface

where a human can train their software by a combination of making simple English

statements, pulling down menus and selecting items, and gesturing at objects (e.g.,

clicking with the mouse, a pen, or even one‟s finger) to indicate relevance and objects

of discourse (“this object should not be near that one”).

In this work, we considered the problem of simplifying the use of ILP for non-ILP

experts. More precisely, we considered a human teacher who is trying to teach an ILP

learner using a mixture of examples and advice about these examples. We outlined

the challenges and presented solutions for the generation of background knowledge

from teacher advice, utilizing a layered ILP-search approach.

7 Acknowledgements

The authors gratefully acknowledge the support of the DARPA‟s Bootstrap Learning

program via the United States Air Force Research Laboratory (AFRL) under grant

HR0011-07-C-0060. Views and conclusions contained in this document are those of

the authors and do not necessarily represent the official opinion or policies, either

expressed or implied, of the US government, DARPA, or AFRL

16 Walker et al.

8 References

1. Alphonse, E., and Matwin, S. 2002. Feature subset selection and inductive logic

programming. In Proceedings of the 19th Intl. Conf. on Machine Learning, 11–18.

2. De Raedt, L. 1992. Interactive Theory Revision: An Inductive Logic Programming

Approach. Academic Press.

3. Finn, P., Muggleton, S., Page, D., and Srinivasan, A. 1998. Discovery of pharmacophores

using the inductive logic programming system Progol. Machine Learning, 30:241–270.

4. Getoor, L., and Taskar, B. (eds.) 2007. Introduction to Statistical Relational Learning.

MIT Press.

5. Kohavi, R., and John, G. 1995. Automatic parameter selection by minimizing estimated

error. In Proceedings of the 12th International Conf. on Machine Learning, 304–312.

6. Lavrac, N., Gamberger, D., and Jovanosk, V. 1999. A study of relevance for learning in

deductive databases. Journal of Logic Programming, 40:215–249.

7. Mangasarian, O., Shavlik, J., and Wild, E. 2004. Knowledge-based kernel approximation.

Journal of Machine Learning Research, 5:1127–1141.

8. Mozina, M., Zabkar, J., and Bratko, I. 2007. Argument based machine learning. Artificial

Intelligence, 171: 922-937.

9. Muggleton, S., and Buntine, W. 1988. Machine invention of first-order predicates by

inverting resolution. In Proceedings of the 5th Intl. Conf. on Machine Learning, 339–352.

10. Muggleton, S. 1987. DUCE, an oracle based approach to constructive induction. In

Proceedings of the International Joint Conf. on Artificial Intelligence, 287–292.

11. Muggleton, S. 1995. Inverse entailment and Progol. New Generation Comp., 13:245–286.

12. Oblinger, D. 2006. Bootstrap learning - external materials. http://www.sainc.com/bl-extmat.

13. Pazzani, M., and Kibler, D. 1992. The utility of knowledge in inductive learning. Machine

Learning, 9:57–94.

14. .Richards, B., and Mooney, R. 1995. Automated refinement of first-order Horn-clause

domain theories. Machine Learning, 19: 95–131.

15. Sammut, C. 1981. Learning Concepts by Performing Experiments. Ph.D. Dissertation,

Department of Computer Science, University of New South Wales.

16. Shapiro, E. Y. 1983. Algorithmic Program Debugging. MIT Press.

17. Srinivasan, A., King, R. D., and Bain, M. E. 2003. An empirical study of the use of

relevance information in inductive logic programming. JMLR 4:369–383.

18. Srinivasan, A., Muggleton, S., and King, R. 1995. Comparing the use of background

knowledge by inductive logic programming systems. In Proc. 5th ILP Workshop.

19. Srinivasan, A. The Aleph Manual. http://www.comlab.ox.ac.uk/activities/machinelearning/

Aleph/aleph.html.

20. Towell, G., and Shavlik, J. 1994. Knowledge-based artificial neural networks. Artificial

Intelligence, 70:119–165.

21. Walker, T. 2011 (forthcoming). Broadening the Applicability of Relational Learning. Ph.D.

Dissertation, Computer Sciences Department, University of Wisconsin – Madison.

