
University of Wisconsin Machine Learning Group Working Paper 06-2

Advice-based Transfer

in Reinforcement Learning

Lisa Torrey1, Jude Shavlik1, Trevor Walker1 and Richard Maclin2

1 Computer Science Department, University of Wisconsin, Madison WI 53705, USA
2 Computer Science Department, University of Minnesota, Duluth, MN 55812, USA

Abstract. This report is an overview of our work on transfer in rein-
forcement learning using advice-taking mechanisms. The goal in transfer
learning is to speed up learning in a target task by transferring knowledge
from a related, previously learned source task. Our methods are designed
to do so robustly, so that positive transfer will speed up learning but
negative transfer will not slow it down. They are also designed to allow
human teachers to provide simple guidance that increases the benefit of
transfered knowledge. These methods allow us to push the boundaries
of current work in this area and perform transfer between complex and
dissimilar tasks in the challenging RoboCup simulated soccer domain.

1 Introduction

Reinforcement learning (RL) tasks are often addressed independently, under the
implicit assumption that each new task has no relation to the tasks that came
before. However, many RL domains contain several related tasks. Instead of
learning a new task from scratch, agents in such domains should be able to use
knowledge learned in previous tasks to speed up learning in the new task. This
is the goal of transfer learning in RL.

For example, consider the domain of simulated soccer (e.g., RoboCup [27]).
Suppose an RL agent has learned a game of keeping the ball from its opponents
by passing among its teammates. Suppose the next game to learn is to score
goals against opponents. Since these games have some similarities, the agent
could benefit from using its knowledge from the first game while learning the
second. In this case we refer to the first game as the source task and the second
game as the target task.

Transfer in RL can be challenging for several reasons. The source and target
tasks may differ in their features, actions, or rewards. This means that not all
of the knowledge will be transferable (e.g., some actions in the source may not
exist in the target) and even transferable knowledge may not be helpful (e.g., an
action exists in both, but leads to rewards in the source and not in the target).
This uncertainty is compounded by the fact that RL agents may use actions in
unintended ways (e.g., using a ’shoot’ action to pass to a teammate near the
goal, not as an attempt to score a goal).

One straightforward transfer method would be to use the final solution to the
source task as the initial solution for the target task, and then perform standard

1

University of Wisconsin Machine Learning Group Working Paper 06-2

reinforcement learning to build on that solution incrementally. We refer to this
approach as model reuse. This method might speed up learning considerably if
the task solutions are very similar, but it seems likely to slow down learning if
they are even moderately different. Since the agent does not know how similar
the solutions will be before actually learning the target task, we would prefer a
more robust transfer method. We use the advice taking paradigm [20] to achieve
this goal.

Advice is a set of instructions about the task solution. For example, here is
some advice about passing in soccer:

if an opponent is near me
and my nearest teammate is open
then pass to nearest teammate

In advice-taking RL algorithms, advice can be followed, refined, or ignored
according to its value. We can therefore express source task knowledge as advice
– it is followed if it leads to positive transfer, but is quickly refined or ignored if
it leads to negative transfer.

When advice comes from a source task, we refer to it as transfer advice. Our
transfer methods are essentially different ways of getting transfer advice from
the source task. Advice can also express direct human guidance, in which case
we refer to it as user advice. Some of our transfer methods allow user advice to
further guide the transfer process, which provides a natural and powerful way
for users to interact with the learning system.

2 Background

In this section we provide some background information on reinforcement learn-
ing and advice taking. We rely on this material when we discuss our transfer
methods later. Furthermore, we describe a motivating domain for transfer in
RL: RoboCup simulated soccer. The experiments we present later use this do-
main.

2.1 Reinforcement Learning and Advice

In reinforcement learning [38], an agent navigates through an environment try-
ing to earn rewards. The environment’s state is typically described by a set of
features. After each action the agent takes, it receives a reward and observes the
next state.

In Q-learning [45], one common form of RL, the agent builds a Q-function to
estimate the long-term value of taking an action from a state. An agent’s policy
is typically to take the action with the highest Q-value in the current state,
except for occasional exploratory actions. After taking the action and receiving
a reward, the agent updates its Q-value estimates for the current state.

In our RL implementation, agents build Q-functions using the SARSA and
TD(λ) procedures [37]. We use λ = exp(−age/100) where the age of a game

2

University of Wisconsin Machine Learning Group Working Paper 06-2

is the number of games the learner trained on before that game; older games
therefore have smaller λ. Our learning rate has an initial value α = 0.5 and a
half-life of 1000 games. The form of the Q-function for each action is a weighted
linear sum of the state features. Rather than updating their Q-functions after
every action, our agents play batches of 25 full games at a time. After each batch
they solve a linear optimization problem to find the weights that minimize:

ModelSize + C × DataMisfit

Here ModelSize is the sum of the absolute values of the feature weights, and
DataMisfit is the disagreement between the learned function’s outputs and the
training examples. The numeric parameter C specifies the relative importance
of minimizing disagreement with the data versus finding a simple model.

We incorporate advice into this RL algorithm by adding another term to the
optimization problem, so that it minimizes:

ModelSize + C × DataMisfit + µ × AdviceMisfit

Here AdviceMisfit is the disagreement between the learned function’s outputs
and the advice constraints. The numeric parameter mu specifies the relative
importance of minimizing disagreement with the advice versus minimizing the
original quantity. Over time mu decays so that advice fades as the learner gains
experience and no longer requires guidance, and C correspondingly increases.

Advice is therefore a set of soft constraints on the task solution. Depending on
whether it agrees with the training examples, the learner can follow the advice,
only follow it approximately (which is like refining it), or ignore it altogether.
This RL algorithm is based on Knowledge-Based Kernel Regression [20, 21, 24].
The next section goes into further technical detail about KBKR.

There is a substantial body of related work in advice taking. One approach
that is quite different from ours, but might also be considered advice taking, is
expert imitation. Examples of this are Lin [17], who replays teacher sequences
to bias a learner towards a teacher’s performance, and Sammut et al. [30], who
use imitation of human experts to train a flight simulation program.

Another form of advice puts direct constraints on the policies that RL agents
learn. Andre and Russell [1] describe a language for giving policy constraints to
learning agents. Kuhlmann et al. [16] propose a rule-based advice system that
increases Q-values by a fixed amount. Our method differs from these in that the
user only needs to specify action preferences, not internal details like desired
Q-values.

Some advice is only used at the beginning of the learning process, as in
Driessens and Dzeroski [6], who use human guidance to create a partial initial
Q-function in relational RL. Other advice is used only at a specific step, as in
Clouse and Utgoff [4], who allow a human observer to step in and advise the
learner to take a specific action. Our method differs from these in that the advice
is present throughout the learning process, although its impact decreases over
time.

3

University of Wisconsin Machine Learning Group Working Paper 06-2

There are several methods that use advice rules that look like ours. Gordon
and Subramanian [13] accept advice in the form if condition then achieve goals
and use genetic algorithms to adjust it with respect to the data. Maclin and
Shavlik [19] develop an if-then advice language to incorporate rules into a
neural network for later adjustment. Our method differs from these because
we incorporate the rules into an optimization problem instead of using neural
networks or genetic algorithms.

2.2 Knowledge-Based Kernel Regression

In this section we explain the KBKR advice-taking algorithm in more detail and
note the settings that we used for our transfer experiments. This information
is technical and need not be read in order to understand the transfer learning
concepts, but it explains more precisely how advice is applied in our system.

As we mentioned above, after each batch of games the RL agent in KBKR
uses its training examples to build a Q-function model. The form of the Q-
function for each action is a weighted linear sum of the state features, which
means the agent is actually finding an optimal weight vector w that has one
weight for each feature in the feature vector x. Each action has its own weight
vector and offset term b, and the expected Q-value of taking that action from
the state described by x is wx + b. Our learners take the action that scores
the highest with probability (1 − ε), and take a sub-optimal exploratory action
with probability ε. In our transfer experiments we used an initial ε = 0.025 and
decayed it exponentially with a half-life of 5000 episodes.

To compute the weight vector for an action, we find the subset of training
examples in which that action was taken and place those feature vectors into
rows of a data matrix A of size 1000. When there are too many examples to
fit into A, we begin to discard games randomly such that the probability of
discarding a game increases exponentially with the age of the game. Using the
current model and the actual rewards received in the examples, we compute
Q-value estimates and place them into an output vector y. The optimal weight
vector is then described by

Aw + b−→e = y (1)

where −→e denotes a vector of ones (we omit this for simplicity from now on).

For our transfer experiments, the matrix A contains 25% exploration exam-
ples and 75% regular exploitation examples. We do this so that bad moves are
not forgotten, as they would be if we used almost entirely exploitation examples.
Since the exploration rate is only 2.5%, we create enough exploration examples
by randomly choosing exploitation steps and using the model to score off-policy
actions for those steps.

In practice, we prefer to have non-zero weights for only a few important
features in order to keep the model simple and avoid overfitting the training
examples. We therefore introduce slack variables s that allow inaccuracies on

4

University of Wisconsin Machine Learning Group Working Paper 06-2

some examples, and a penalty parameter C for trading off these inaccuracies
with the complexity of the solution. The resulting minimization problem is

min
(w,b,s)

||w||1 + ν|b| + C||s||1

s.t. −s ≤ Aw + b − y ≤ s.
(2)

where |·| denotes an absolute value, ||·||1 denotes a sum of absolute values, and ν
is a penalty on the offset term. By solving this problem, we can produce a weight
vector w for each action that compromises between accuracy and simplicity. For
our experiments, we used ν = 100 and C = 1000 decaying exponentially with a
half-life of 2500 episodes.

In Mangasarian et al.’s [24] original formulation, called Knowledge Based
Kernel Regression (KBKR), advice can be given in the form of a rule about
a single action. This rule creates new constraints on the problem solution, in
addition to the constraints from the training data. More recently, we introduced
an extension to KBKR called Preference-KBKR [21], which allows advice about
pairs of actions in the form

Bx ≤ d =⇒ Qp(x) − Qn(x) ≥ β, (3)

which can be read as:

If the current state satisfies Bx ≤ d, the Q-value of the preferred action
p should exceed that of the non-preferred action n by at least β.

For example, consider giving the advice that shooting is better than moving
ahead when the distance to the goal is at most 10. The vector B would have
one row with a 1 in the column for the “distance to goal” feature and zeros
elsewhere. The vector d would contain only the value 10, and β could be set to
some small positive number.

Just as we allowed some inaccuracy on the training examples, we allow advice
to be followed only partially. To do so, we introduce slack variables z and ζ and
penalty parameters µ1 and µ2 for trading off the impact of the advice on the
solution with the impact of the training examples. For our experiments, we used
µ1 = 1 and µ2 = 100, both decaying exponentially with a half-life of 1000
episodes.

The new minimization problem addresses all the actions together so that it
can apply constraints to their relative values. Multiple pieces of preference advice
can be incorporated, each with its own B, d, p, n, and β. This makes it possible
to advise taking a particular action (by stating that it is preferred over all the
other actions). We use the CPLEX commercial software program to solve the
resulting linear program:

5

University of Wisconsin Machine Learning Group Working Paper 06-2

min
(wa,ba,sa,zi,ζi≥0,ui≥0)

m∑

a=1

(||wa||1 + ν|ba| + C||sa||1) +

k∑

i=1

(µ1||zi||1 + µ2ζi)
(4)

s.t. for each action a ∈ {1, . . . ,m} :

− sa ≤ Aawa + ba − ya ≤ sa

for each piece of advice i ∈ {1, . . . , k} :

− zi ≤ wp − wn + BT
i ui ≤ zi

− dT ui + ζi ≥ βi − bp + bn.

Note that while this method is called Kernel Regression, we do not actually
use a kernel, because we found that the non-kernelized version worked best.

We have also developed a version of KBKR called ExtenKBKR [22], which
incorporates advice in another way designed to allow a higher volume of advice.
Some of our transfer experiments require this version, since they produce large
amounts of advice. We refer the reader to Maclin et al. [22] for details on that
method.

2.3 RoboCup

One motivating domain for transfer in RL is RoboCup simulated soccer. The
RoboCup project [27] has the overall goal of producing robotic soccer teams that
compete on the human level, but it also has a software simulator for research
purposes. Stone and Sutton [35] introduced RoboCup as an RL domain that
is challenging because of its large, continuous state space and nondeterministic
action effects.

Since the full game of soccer is quite complex, researchers have developed
several smaller games in the RoboCup domain (see Figure 1). These are inher-
ently multi-agent games, but a standard simplification is to have only one agent
(the one in possession of the soccer ball) learning at a time using a model built
with combined data from all the agents.

KeepAway BreakAway MoveDownfield

Fig. 1. Snapshots of RoboCup soccer tasks.

6

University of Wisconsin Machine Learning Group Working Paper 06-2

The first RoboCup task we use is M -on-N KeepAway [35], in which the
objective of the M reinforcement learners called keepers is to keep the ball away
from N hand-coded players called takers. The keeper with the ball may choose
either to hold it or to pass it to a teammate. Keepers without the ball follow a
hand-coded strategy to receive passes. The game ends when an opponent takes
the ball or when the ball goes out of bounds. The learners receive a +1 reward
for each time step their team keeps the ball.

Our KeepAway state representation is based on the one designed by Stone
and Sutton [35]. The features are listed in Table 1. The keepers are ordered by
their distance to the learner k0, as are the takers.

Note that we present these features as predicates in first-order logic. Variables
are capitalized and typed (Player, Keeper, etc.) and constants are uncapitalized.
For simplicity we indicate types by variable names, leaving out implied terms
like player(Player), keeper(Keeper), etc. Since we are not using fully relational
reinforcement learning, the predicates are actually grounded and used as proposi-
tional features during learning (and for the first two transfer methods). However,
our final transfer method uses the features in their first-order representation, so
we show that version here.

A second RoboCup task is M -on-N MoveDownfield, where the objective of
the M reinforcement learners called attackers is to move across a line on the
opposing team’s side of the field while maintaining possession of the ball. The
attacker with the ball may choose to pass to a teammate or to move ahead,
away, left, or right with respect to the opponent’s goal. Attackers without the
ball follow a hand-coded strategy to receive passes. The game ends when they
cross the line, when an opponent takes the ball, when the ball goes out of bounds,
or after a time limit of 25 seconds. The learners receive symmetrical positive and
negative rewards for horizontal movement forward and backward.

Our MoveDownfield state representation is the one presented in Torrey et
al. [41]. The features are listed in Table 1. The attackers are ordered by their
distance to the learner a0, as are the defenders.

A third RoboCup task is M -on-N BreakAway, where the objective of the M
attackers is to score a goal against N − 1 hand-coded defenders and a hand-
coded goalie. The attacker with the ball may choose to pass to a teammate, to
move ahead, away, left, or right with respect to the opponent’s goal, or to shoot
at the left, right, or center part of the goal. Attackers without the ball follow a
hand-coded strategy to receive passes. The game ends when they score a goal,
when an opponent takes the ball, when the ball goes out of bounds, or after a
time limit of 10 seconds. The learners receive a +1 reward if they score a goal,
and zero reward otherwise.

Our BreakAway state representation is the one presented in Torrey et al. [43].
The features are listed in Table 1. The attackers are ordered by their distance
to the learner a0, as are the non-goalie defenders.

Our system discretizes each feature in these tasks into 32 intervals called
tiles, each of which is associated with a Boolean feature. For example, the tile
denoted by distBetween(a0, a1)[10,20] takes value 1 when a1 is between 10 and

7

University of Wisconsin Machine Learning Group Working Paper 06-2

Table 1. RoboCup task feature spaces.

KeepAway features

distBetween(k0, Player)
distBetween(Keeper, minDistTaker(Keeper))
angleDefinedBy(Keeper, k0, minAngleTaker(Keeper))
distBetween(Player, fieldCenter)

MoveDownfield features

distBetween(a0, Player)
distBetween(Attacker, minDistDefender(Attacker))
angleDefinedBy(Attacker, a0, minAngleDefender(Attacker))
distToRightEdge(Attacker)
timeLeft

BreakAway features

distBetween(a0, Player)
distBetween(Attacker, minDistDefender(Attacker))
angleDefinedBy(Attacker, a0, minAngleDefender(Attacker))
distBetween(Attacker, goalPart)
distBetween(Attacker, goalie)
angleDefinedBy(Attacker, a0, goalie)
angleDefinedBy(GoalPart, a0, goalie)
angleDefinedBy(topRightCorner, goalCenter, a0)
timeLeft

8

University of Wisconsin Machine Learning Group Working Paper 06-2

20 units away from a0 and 0 otherwise. Stone and Sutton [35] found tiling to be
important for timely learning in RoboCup. It also gives our linear Q-function
model the ability to represent complex nonlinear functions.

These three RoboCup games have substantial differences in features, actions,
and rewards. The goal, goalie, and shoot actions exist in BreakAway but not in
the other two tasks. The move actions do not exist in KeepAway but do in the
other two tasks. Rewards in KeepAway and MoveDownfield occur for incremental
progress, but in BreakAway the reward is more sparse. These differences mean
the solutions to the tasks may be quite different. However, some knowledge
should clearly be transferable between them, since they share many features and
some actions, such as the pass action. Furthermore, since these are difficult RL
tasks, speeding up learning through transfer would be desirable.

3 Transfer in Reinforcement Learning

The goal in transfer learning is to speed up learning in a target task by trans-
ferring knowledge from a related source task. To design a method for transfer in
reinforcement learning, we need to answer three questions:

– What knowledge will we transfer from the source task?
– How will we extract that knowledge from the source task?
– How will we apply that knowledge in the target task?

To put our methods in context, we will discuss a range of possible answers
to these questions (and mention relevant related work).

3.1 Types of Knowledge in the Source Task

Perhaps the most straightforward type of knowledge learned in the source task
is the actual solution to the source task: the Q-functions (or whatever type of
model is being learned). Taylor et al. [40] and Taylor and Stone [39] transfer
Q-functions, and Gorski and Laird [14] transfer value functions.

Another type of knowledge is the policy created by the model; that is, the
choice of which action to take in each state. This information consists of action
preferences, rather than the explicit values of actions. We transfer policies in
Torrey et al. [43], which we discuss further in Section 5.

A skill is like one piece of a policy: the circumstances in which to take one
specific action. Skills can express more general information than a full policy.
We transfer skills in Torrey et al.[41, 42], which we discuss further in Section 6.

In domains where there are many possible actions, so that considering every
action is too expensive, the source task may provide information on which actions
are important and which can be ignored. Sherstov and Stone [31] transfer this
type of knowledge.

Multi-step actions are known as options, and the source task may provide
insight into which of the many possible action sequences would make useful

9

University of Wisconsin Machine Learning Group Working Paper 06-2

options. Perkins and Precup [28] and Soni and Singh [33] transfer this type of
knowledge.

If there is an explicit or implicit Markov Decision Process (MDP) that de-
scribes the RL task, then we could transfer information about states and tran-
sitions in the MDP. Asadi et al. [2], Ferguson and Mahadevan [10] and Walsh et
al. [44] describe approaches in this vein.

3.2 Methods for Extracting Knowledge from the Source Task

The types of knowledge mentioned above could be extracted from the source task
in two general ways: by analyzing the underlying model (e.g, the Q-function),
or by observing the agent’s successful behavior in the source task.

Analyzing the underlying model can be as simple as copying the model di-
rectly, as in Taylor et al. [40]. We take a slightly different approach in Torrey et
al. [43]: using the source-task model to find the highest-value target-task action.

By observing successful behavior in the source task, learners can imitate
expert agents – either human (as in Sammut et al. [30]) or electronic (as in Price
and Boutilier [29]). We also use observed games in Torrey et al. [41] by learning
rules that described skills.

3.3 Methods for Applying Knowledge in the Target Task

In almost any method of applying source-task knowledge in a target task, a
mapping between the two tasks is required. The mapping shows how the tasks
are related by matching up corresponding features and actions. Standard practice
is currently to assume a human provides this information, although some recent
work by Liu and Stone [18] uses analogical structure mapping [9] to acquire it
automatically.

One alternative that should be mentioned here is relational reinforcement
learning (RRL), which can make mapping unnecessary. If the domain can be
formulated using RRL in a general way that applies to both the source and target
task, then no translation between them may be required. Driessens et al. [7] and
Stracuzzi and Asgharbeygi [36] describe ways to apply RRL to transfer learning.

However, assuming a mapping exists to translate source-task knowledge into
target-task terms, there are several possible ways to apply the knowledge. One
that we have mentioned already is model reuse: using the final model for the
source task as the initial model for the target task, and performing normal RL
from there. Singh [32], Mehta et al. [25], and Taylor et al. [40] are examples of
this approach.

Another method is to follow source task policies during the exploration steps
of normal RL in the target task, instead of doing random exploration. This
approach is sometimes referred to as policy reuse. Madden and Howley [23] and
Fernandez and Veloso [11, 12] are examples of this approach.

One technique sometimes used to speed up normal RL is reward shaping, in
which the designer of an RL task deliberately constructs its rewards in a way

10

University of Wisconsin Machine Learning Group Working Paper 06-2

that helps the learner toward a solution. Konidaris and Barto [15] apply this
idea to transfer by using source-task knowledge to shape rewards.

The approach that we focus on is advice taking. As we have explained, advice
can be viewed as a set of soft constraints on the task solution. Our transfer
methods in Torrey et al. [43] and Torrey et al. [41] construct advice from the
source task and then use an advice-taking RL algorithm to learn the target task.

3.4 Our Transfer Methods

Our work so far has produced two advice-based transfer methods, which we have
mentioned above. The first is called policy transfer, in which we encourage the
RL agents to apply the source-task policy (as specified by its Q-functions) in the
target task. The second is called skill transfer, in which we give advice about
skills learned by observation of the source task.

In the following sections, we provide results from experiments with these
transfer methods. We also include experiments on model reuse as a baseline
approach.

4 Model Reuse

Model reuse is our baseline transfer method of using the final source-task model
as the initial target-task model. In our experiments, the model is a Q-function
that gives the value of each action as a weighted sum of the features. We assume
that the user provides a mapping that shows how (propositional) features and
actions correspond between the tasks. Using this mapping, we translate the
source-task model into a model for the target task.

The actions in the two tasks need not have one-to-one correspondences. If an
action in the source does not exist in the target, we simply ignore the Q-function
for that action. For example, we ignore the hold action when we transfer from
KeepAway to BreakAway. If an action exists in the target that did not exist in
the source, we initialize the Q-function for that action with all zero weights. This
applies to the shoot actions when we transfer from KeepAway to BreakAway.
We also allow a source-task action to be mapped to more than one action in the
target task; each such mapping can have a separate set of feature mappings. This
allows, for example, the single pass action in 2-on-1 BreakAway to be mapped
to both of the pass actions in 3-on-2 BreakAway. In one mapping, the player a1
in the source is mapped to a1 in the target, and in the second one, it is mapped
to a2 in the target.

The features in the two tasks might also be only partially overlapping. If
a feature in the source does not exist in the target, it needs to be mapped to
a numeric value that is typical or average for that feature. We then replace
the feature with that constant in the translated Q-function. This applies to the
distanceToCenter feature when we transfer from KeepAway to BreakAway. If a
feature exists in the target that did not exist in the source, we simply give it
a zero weight in the translated Q-function. When a feature does exist in both

11

University of Wisconsin Machine Learning Group Working Paper 06-2

tasks but with different ranges, we allow the mapping to specify that feature
values should be scaled or shifted accordingly. Also recall that there are tiles
representing segments of each numeric feature; we automatically map each tile
in the source task to a tile in the target task (the one for which the ratio of
overlap area between the tile intervals to non-overlap area is highest).

Given a translated model, we perform model reuse in our RL system by
having the agent play the target task using that model for 10 batches of 25 games.
After this, it learns normally by solving the optimization problem described in
Section 2.1 after every batch to produce new Q-functions. Note that since our
RL system relearns Q-functions completely after each batch instead of changing
them incrementally, it is necessary to play with the translated model at first
to generate training examples that cause the model’s influence to persist after
learning.

To help the model persist further, we found it useful to add some additional
examples during the first few batches of learning. We create these additional
examples in the same way that extra exploration examples are created in KBKR,
as described in Section 2.2. We start with 100 of these pseudo-examples when
first learning and decay the number linearly down to zero during the second 10
batches of 25 games.

Model Reuse Results

Figures 2, 3, and 4 display target-task learning curves from several transfer
experiments using this method. One curve is always the average of 25 runs
of standard reinforcement learning. The other curves are RL with transfer via
model reuse from various source tasks. For each transfer curve we average 5
transfer runs from 5 different source runs, for a total of 25 runs (this way, the
results include both source and target variance). Because the variance is high,
we smooth the y-value at each data point by averaging over the y-values of the
last 10 data points. The mappings we use for these experiments are listed in the
Appendix (Section A.1).

For each task, we use an appropriate measure of performance to plot against
the number of training games. In BreakAway, it is the probability that the
agents will score a goal in a game. In MoveDownfield, it is the average total
reward acquired in a game. In KeepAway, it is the average length of a game.

Each figure has one curve for which the source task is the same as the target
task, except with each team size decreased by one. We refer to this as close
transfer since the tasks are closely related. There are close transfer results for
all three subtasks. The remaining curves in Figure 2 have different source and
target tasks but equivalent team sizes. We refer to this as distant transfer since
the tasks are more distantly related. With distant transfer we concentrate on
transfer from easier tasks to harder tasks (from KeepAway to BreakAway and
from MoveDownfield to BreakAway).

For distant transfer, model reuse produces an immediate performance de-
crease that takes half the learning curve to recover. This is what we expected:
model reuse produces negative transfer when tasks are not closely related.

12

University of Wisconsin Machine Learning Group Working Paper 06-2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000

P
ro

ba
bi

lit
y

of
 G

oa
l

Training Games

Standard RL(25)
MR from BA(25)
MR from MD(25)
MR from KA(25)

Fig. 2. Probability of scoring a goal while training in 3-on-2 BreakAway with standard
RL and model reuse (MR) from 2-on-1 BreakAway (BA), 3-on-2 MoveDownfield (MD)
and 3-on-2 KeepAway (KA).

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 T
ot

al
 R

ew
ar

d

Training Games

Standard RL(25)
MR from MD(25)

Fig. 3. Average total reward while training in 4-on-3 MoveDownfield with standard
RL and model reuse (MR) from 3-on-2 MoveDownfield (MD).

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 G
am

e
Le

ng
th

 (
se

c)

Training Games

Standard RL(25)
MR from KA(25)

Fig. 4. Average game length while training in 4-on-3 KeepAway with standard RL and
model reuse (MR) from 3-on-2 KeepAway (KA).

13

University of Wisconsin Machine Learning Group Working Paper 06-2

Table 2. Statistical results from model reuse (MR) experiments in BreakAway (BA),
MoveDownfield (MD), and KeepAway (KA), comparing area under the curve to stan-
dard reinforcement learning (SRL).

Experiment Conclusion p-value 95% confidence interval

BA to BA MR higher with 92% confidence 0.0740 -11.86, 101.15
MD to BA SRL higher with 99% confidence 0.0005 -169.52, -49.93
KA to BA SRL higher with 99% confidence 0.0012 -161.25, -40.41
MD to MD MR and SRL equivalent 0.3796 -871.30, 1227.32
KA to KA MR and SRL equivalent 0.4776 -199.32, 214.36

For close transfer, model reuse always produces an immediate performance
increase over standard RL. However, it quickly falls to or below the level of
standard RL once the players begin learning instead of using the old model
directly. This probably would not happen in an incremental learning system, as
in Taylor et al. [40], because there would be no sudden changes like this. However,
in our RL system, model reuse has mixed results even for close transfer.

To compare the learning curves quantitatively, we use a randomization test to
calculate a p-value for the areas under the curves. This p-value is the probability
that a t-statistic measured on these areas would be as high if the transfer learning
curves were not inherently different from the standard RL curves. A low p-
value means that we are more confident that the curves with higher area are in
fact significantly higher. To estimate the magnitude of this difference, we also
calculate a bootstrapped 95% confidence interval. These performance measures
are derived from work by Paul Cohen’s group for the DARPA Transfer Learning
program [5].

Table 2 summarizes these statistical results for our model reuse experiments.
For each experiment it gives a p-value, a confidence level for which curves have
higher area, and a 95% confidence interval for the average transfer curve area
minus the average standard RL curve area.

The statistical results show that model reuse does not reliably increase total
area under the learning curve, even though for close transfer the graphs show
that it provides an initial benefit. For distant transfer, model reuse significantly
decreases the total area. The advice-based transfer methods we present in the
next two sections are more robust.

5 Policy Transfer via Advice

Policy transfer via advice taking is a transfer method in which we advise the
source-task policy (as specified by its Q-functions) in the target task. Rather
than reusing the Q-functions directly, this method transfers the policy created
by the Q-functions. It advises the target-task learner to take the same actions

14

University of Wisconsin Machine Learning Group Working Paper 06-2

Table 3. A simple example of constructing policy-transfer advice. The actions in the
old task are a, b, and c, and the corresponding actions in the new task are a′, b′, and c′.
The learned model for the old task is a set of linear Q-value expressions with weights
w and features f , and these are translated into advice that uses the corresponding new
task features f ′.

source task model: advice format:

Qa = wa1 ∗ f1 + wa2 ∗ f2 if Q′

a − Q′

b ≥ ∆

Qb = wb1 ∗ f1 then prefer a′ to b′

Qc = wc2 ∗ f2 (and so on for each pair of actions)

user-provided mapping: full advice expression:

(a, b, c) −→ (a′, b′, c′) if (wa1 − wb1) ∗ f ′

1 + wa2 ∗ f ′

2 ≥ ∆

(f1, f2) −→ (f ′

1, f
′

2) then prefer a′ to b′

translated model: (and so on for each pair of actions)

Q′

a = wa1 ∗ f ′

1 + wa2 ∗ f ′

2

Q′

b = wb1 ∗ f ′

1

Q′

c = wc2 ∗ f ′

2

that it would have in the source task, but leaves the learner free to determine
the actual Q-values of those actions.

We have already described how we give advice to an RL agent and explained
why advice taking is a robust mechanism for transfer. Therefore, to finish de-
scribing this method we need only explain how we build the transfer advice.

As with model reuse, we assume that the user provides a mapping of (propo-
sitional) features and actions between the tasks. We use the same strategies for
dealing with partially overlapping feature and action sets, and we continue to
allow shifting, scaling, and multiple mappings.

After applying the mapping, we can take a state from the target task and
evaluate the Q-values of actions in that state using the translated model. We can
then compare all pairs of target-task actions that have source-task analogues,
and advise that the higher-scoring action should be preferred over the lower-
scoring action. Table 3 gives a simple but concrete example of this process. We
set ∆ to approximately 1% of the target-task Q-value range.

Policy Transfer Results

Figures 5, 6, and 7 display results from several policy-transfer experiments. They
represent the same close and distant transfer scenarios as in the previous section,
performed with the same experimental methodology. We use the same mappings
as for the model-reuse experiments, as listed in the Appendix (Section A.1).

These graphs show that unlike model reuse, policy transfer can have a small
overall positive impact in both close and distant transfer scenarios. We performed
the same statistical analysis described in the previous section, and the results in
Table 4 indicate that in most cases the policy transfer curves have significantly
higher area than the standard RL curves. While the impact of policy transfer is
small, practically speaking, it is more robust than model reuse.

15

University of Wisconsin Machine Learning Group Working Paper 06-2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000

P
ro

ba
bi

lit
y

of
 G

oa
l

Training Games

Standard RL(25)
PT from BA(25)
PT from MD(25)
PT from KA(25)

Fig. 5. Probability of scoring a goal while training in 3-on-2 BreakAway with standard
RL and policy transfer (PT) from 2-on-1 BreakAway (BA), 3-on-2 MoveDownfield
(MD) and 3-on-2 KeepAway (KA).

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 T
ot

al
 R

ew
ar

d

Training Games

Standard RL(25)
PT from MD(25)

Fig. 6. Average total reward while training in 4-on-3 MoveDownfield with standard
RL and policy transfer (PT) from 3-on-2 MoveDownfield (MD).

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 G
am

e
Le

ng
th

 (
se

c)

Training Games

Standard RL(25)
PT from KA(25)

Fig. 7. Average game length while training in 4-on-3 KeepAway with standard RL and
policy transfer (PT) from 3-on-2 KeepAway (KA).

16

University of Wisconsin Machine Learning Group Working Paper 06-2

Table 4. Statistical results from policy transfer (PT) experiments in BreakAway (BA),
MoveDownfield (MD), and KeepAway (KA), comparing area under the curve to stan-
dard reinforcement learning (SRL).

Experiment Conclusion p-value 95% confidence interval

BA to BA PT higher with 99% confidence 0.0013 39.49, 160.69
MD to BA PT and SRL equivalent 0.4015 -53.69, 70.67
KA to BA PT higher with 97% confidence 0.0301 0.26, 121.04
MD to MD PT higher with 98% confidence 0.0208 118.04, 2522.17
KA to KA PT higher with 99% confidence 0.0045 92.78, 510.08

Policy transfer produces a large amount of complex advice – so much that
we had to use a variant of KBKR, called ExtenKBKR [22], that handles high
advice volumes. Furthermore, like model reuse, this method relies on the low-
level, task-specific Q-functions to perform transfer. Our second transfer method
in the next section attempts to transfer higher-level knowledge, which leads to
larger performance gains.

6 Skill Transfer via Advice

A main objective in transfer learning is to determine which source-task knowl-
edge is general (and presumably transferable) and which is specific (and presum-
ably non-transferable). The Q-functions combine these two types of knowledge,
so methods like model reuse and policy transfer that use Q-functions cannot
separate them.

Skill transfer is a method designed to capture general knowledge from the
source task and filter out specific knowledge. Instead of transferring an entire
policy, this method transfers only the skills that the source and target tasks
have in common. Furthermore, instead of using Q-functions to describe skills,
this method uses inductive logic programming (ILP) [26] to learn skill concepts
that generalize over games played in the source task. We learn first-order rules
because they can be more general than propositional rules, since they can contain
variables. For example, the rule pass(Teammate) is likely to capture the essential
elements of the passing skill better than rules for passing to specific teammates.
We expect these common skill elements to transfer better to new tasks.

Figure 8 shows an example of the skill transfer process in the context of
transfer from KeepAway to BreakAway. In this example, KeepAway games pro-
vide training examples for the concept “states in which passing to a teammate is
a good action.” An ILP algorithm then learns a rule representing the pass skill.
Finally, a mapping is applied to produce transfer advice for BreakAway.

Note that we represent states and actions using first-order predicates for this
method. During learning in the source and target tasks, both features and ac-
tions are still propositional; we only “lift” them into first-order logic temporarily

17

University of Wisconsin Machine Learning Group Working Paper 06-2

ILP

Mapping

State 1:

distBetween(k0,k1) = 15

distBetween(k0,k2) = 10

distBetween(k0,t0) = 6

...

action = pass(k1)

outcome = caught(k1)

Training examples

pass(Teammate) :-

distBetween(k0,Teammate) > 14,

distBetween(k0,t0) < 7.

Skill concept

IF distBetween(a0,a2) > 14

distBetween(a0,d0) < 7

THEN prefer pass(a2)

Advice

Fig. 8. Example showing how we transfer skills.

during the transfer process. In a first-order representation, matching feature and
action predicates are identical throughout the domain, so there is no need to map
them. However, we assume the user provides a mapping between logical objects
in the source and target tasks (e.g., k0 in KeepAway maps to a0 in BreakAway).

The problem of partially overlapping feature sets has a simple solution in
this transfer method, because the ILP algorithm for learning advice rules is able
to limit its search space to a subset of the feature predicates. We therefore allow
only feature predicates that exist in the target task to appear in advice rules.
This forces the algorithm to find skill definitions that are relevant in the target
task.

6.1 Learning Skills

There are several ILP algorithms for searching the space of possible rules [26].
We use the Prolog-based Aleph software package [34], which can conduct both
random and heuristic search in the hypothesis space. The skill transfer method
selects the rule it finds with the highest F(β) score (a generalization of the more
familiar F(1) metric; we use β2 = 0.1 to put more weight on rule precision than
rule recall).

To produce datasets for this search, the skill-transfer method examines states
from games in the source task and selects positive and negative examples. We
found that not all states should be used as training examples; some are not
unambiguously positive or negative and should be left out of the datasets. These
states can be detected by looking at their Q-values, as described below. Figure 9
summarizes the overall process with an example from RoboCup.

In a good positive example, several conditions should be met: the skill is
performed, the desired outcome occurs, the expected Q-value (using the most
recent Q-function) is above the 10th percentile in the training set and is at
least 1.05 times the predicted Q-values of all other actions. The purpose of these
conditions is to remove ambiguous examples in which several actions may be
good or no actions seem good.

There are two types of good negative examples. These conditions describe
one type: some other action is performed, that action’s Q-value is above the

18

University of Wisconsin Machine Learning Group Working Paper 06-2

action = pass(Teammate) ?

outcome = caught(Teammate) ?

pass(Teammate) good?

pass(Teammate)
clearly best?

some action good?

pass(Teammate)
clearly bad?

Positive example for
pass(Teammate)

Negative example
for pass(Teammate)

yes

no

yes

yes

yes

yes

yes

Reject
example

no

no

no

no

no

Fig. 9. Example showing how we select training examples.

10th percentile in the training set, and the Q-value of the skill being learned is
at most 0.95 times that Q-value and below the 50th percentile in the training
set. These conditions remove similarly ambiguous examples. The second type of
good negative example includes states in which the skill being learned was taken
but the desired outcome did not occur.

To make the search space finite, it is necessary to replace continuous features
(like distances and angles) with finite sets of discrete features. For example, the
rule in Figure 9 contains the Boolean constraint distBetween(k0,t0) < 7, derived
from the continuous distance feature. The skill transfer method finds the 25
thresholds with the highest information gain and allows the intervals above and
below those thresholds to appear as constraints in rules. Furthermore, we allow
up to 7 constraints in each rule. We found these parameters to produce reasonable
running times for RoboCup, but they should be adjusted appropriately for other
domains.

6.2 Converting Skills to Transfer Advice

To convert a skill concept into transfer advice, we need to apply an object
mapping and propositionalize the rule. Propositionalizing is necessary because
the KBKR advice-taking algorithm only works with propositional advice. This
automated process preserves the meaning of the first-order rules without losing
any information, but there are several technical details involved.

First we instantiate skills like pass(Teammate) for the target task. For 3-on-2
BreakAway, this would produce two rules, pass(a1) and pass(a2). Next we deal
with any other conditions in the rule body that contain variables. For example,
a rule might have this condition:

10 < distBetween(a0, Attacker) < 20

This is effectively a disjunction of conditions: either the distance to a1 or the
distance to a2 is in the interval [10, 20]. Since disjunctions are not part of the

19

University of Wisconsin Machine Learning Group Working Paper 06-2

advice language, we use tile features to represent them. Recall that each feature
range is divided into Boolean tiles that take the value 1 when the feature value
falls into their interval and 0 otherwise. This disjunction is satisfied if at least
one of several tiles is active; for 3-on-2 BreakAway this is:

distBetween(a0, a1)[10,20] + distBetween(a0, a2)[10,20] ≥ 1

If these exact tile boundaries do not exist in the target task, we add new tile
boundaries to the feature space. Thus transfer advice can be expressed exactly
even though the target-task feature space is unknown at the time the source
task is learned.

It is possible for multiple conditions in a rule to refer to the same variable.
For example:

distBetween(a0, Attacker) > 15,
angleDefinedBy(Attacker, a0, ClosestDefender) > 25

Here the variable Attacker represents the same object in both clauses, so
the system cannot propositionalize the two clauses separately. Instead, it de-
fines a new Boolean background-knowledge predicate that puts simultaneous
constraints on both features:

newFeature(Attacker, ClosestDefender) :-
Dist is distBetween(a0, Attacker),
Ang is angleDefinedBy(Attacker, a0, ClosestDefender),
Dist > 15, Ang > 25.

It then expresses the entire condition using the new feature; for 3-on-2 Break-
Away this is:

newFeature(a1, d0) + newFeature(a2, d0) ≥ 1

We add these new Boolean features, which could be considered multi-dimensional
tiles, to the target task. Thus skill transfer can actually enhance the feature space
of the target task.

Each advice item produced from a skill says to prefer that skill over the other
actions shared between the source and target task. As in policy transfer, we set
the preference amount ∆ to approximately 1% of the target-task Q-value range.

6.3 User Advice

Compared to policy transfer, skill transfer produces a small number of simple,
interpretable rules. We believe this introduces the possibility of further user input
in the transfer process. If users can understand the transfer advice, they may
wish to add to it, either further specializing rules or writing their own rules for
new, non-transferred skills in the target task. The skill transfer method therefore
allows optional user advice.

For example, the passing skills transferred from KeepAway to BreakAway
make no distinction between passing toward the goal and away from the goal.
Since the new objective is to score goals, players should clearly prefer passing
toward the goal. A user could provide this guidance by instructing the system
to add a condition like this to the pass(Teammate) skill:

20

University of Wisconsin Machine Learning Group Working Paper 06-2

distBetween(a0, goal) - distBetween(Teammate, goal) ≥ 1

Alternatively, an expert user could make use of the system’s ability to define
new features in the target task. The advantage of this approach is that formally
defining the feature allows it to be tiled. To do this, the user would first write
the definition in Prolog:

diffGoalDistance(Teammate, Value) :-
DistTeammate is distBetween(Teammate, goal),
DistA0 is distBetween(a0, goal),
Value is DistA0 - DistTeammate.

Then the user would instruct the system to add to the pass(Teammate) rule:

diffGoalDistance(Teammate, Value),

Value ≥ 1

There are also several actions in this transfer scenario that are new in the
target task, such as shoot and moveAhead. We allow users to write simple rules
to approximate skills like these, such as:

if distBetween(a0, GoalPart) < 10
and angleDefinedBy(GoalPart, a0, goalie) > 40
then prefer shoot(GoalPart) over all actions

if distBetween(a0, goalCenter) > 10
then prefer moveAhead over moveAway and the shoot actions

User advice provides a natural and powerful way for users to facilitate transfer
beyond providing a mapping.

6.4 Skill Transfer Results

Figures 10, 11, and 12 display results from several skill-transfer experiments.
They represent the same close-transfer and distant-transfer scenarios as in the
previous two sections, performed with the same experimental methodology. The
mappings and user advice that we use for these experiments are listed in the
Appendix (Sections A.2 and A.3), as are examples of some learned skill concepts
(Section A.4).

These graphs show that skill transfer can have a large overall positive impact
in both close-transfer and distant-transfer scenarios. We performed the same
statistical analysis as in the previous two sections, and the results in Table 5
indicate that in most cases the skill transfer curves have significantly higher
area than the standard RL curves. Furthermore, a comparison of the confidence
intervals with those from Table 4 confirms that the impact tends to be larger
than with policy transfer.

Because skill transfer has the robustness of policy transfer and can also pro-
duce larger performance gains, it is currently our preferred transfer method.

21

University of Wisconsin Machine Learning Group Working Paper 06-2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000

P
ro

ba
bi

lit
y

of
 G

oa
l

Training Games

Standard RL(25)
ST from BA(25)
ST from MD(25)
ST from KA(25)

Fig. 10. Probability of scoring a goal while training in 3-on-2 BreakAway with standard
RL and skill transfer (ST) from 2-on-1 BreakAway (BA), 3-on-2 MoveDownfield (MD)
and 3-on-2 KeepAway (KA).

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 T
ot

al
 R

ew
ar

d

Training Games

Standard RL(25)
ST from MD(25)

Fig. 11. Average total reward while training in 4-on-3 MoveDownfield with standard
RL and skill transfer (ST) from 3-on-2 MoveDownfield (MD).

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 G
am

e
Le

ng
th

 (
se

c)

Training Games

Standard RL(25)
ST from KA(25)

Fig. 12. Average game length while training in 4-on-3 KeepAway with standard RL
and skill transfer (ST) from 3-on-2 KeepAway (KA).

22

University of Wisconsin Machine Learning Group Working Paper 06-2

Table 5. Statistical results from skill transfer (ST) experiments in BreakAway (BA),
MoveDownfield (MD), and KeepAway (KA), comparing area under the curve to stan-
dard reinforcement learning (SRL).

Experiment Conclusion p-value 95% confidence interval

BA to BA ST higher with 99% confidence 0.0003 63.75, 203.36
MD to BA ST higher with 99% confidence < 0.0001 153.63, 278.02
KA to BA ST higher with 97% confidence < 0.0001 176.42, 299.87
MD to MD ST higher with 98% confidence < 0.0001 3682.59, 6436.61
KA to KA ST and SRL equivalent 0.1491 -114.32, 389.20

7 Further Analysis of Skill Transfer

In this section we discuss a few additional experiments that test the boundaries
of skill transfer. In particular, we consider the impact of two factors on the
effectiveness of skill transfer: quality of learning in the source task, and quality
of user guidance.

So far we have performed transfer without paying any attention to the source-
task learning curve. However, it might be interesting to know if some types of
source-task learning curves indicate better or worse transfer. If we had a choice
of source runs to choose from, we could choose one that we expect to produce
better target-task performance.

Figure 13 plots the average area under the curve in the target task with skill
transfer against the area under the curve in the source task from which transfer
was performed. In order to plot data from all the skill-transfer experiments on one
scale, we normalize the areas within each group to fall into [0,1]. The correlation
coefficient is 0.21, which indicates a small correlation between source-task and
target-task area. Therefore it may be helpful to choose source runs with higher
area under the curve, although the impact is not likely to be large.

The second factor we consider is how the quality of user guidance affects
skill transfer. So far we have simply given reasonable, non-optimized user advice
for skill-transfer experiments. Now we investigate the results produced using
reasonable variants that a user might easily have used instead.

Figure 14 shows learning curves for skill transfer from KeepAway to Break-
Away with variants on the user advice. Variant 1 is more ambitious, encouraging
the players to shoot more often, and Variant 2 is more cautious, giving stricter
conditions for shooting. These variants are listed in the Appendix (Section A.3).

Figure 15 shows a learning curve for skill transfer from MoveDownfield to
BreakAway with no user advice at all. Skill transfer still produces a significantly
higher area under the curve than standard RL does, although the gain is smaller.
The addition of user advice produces another significant gain.

These results indicate that changes in the user advice do affect the perfor-
mance of skill transfer, but that reasonable variants still do well. This robustness

23

University of Wisconsin Machine Learning Group Working Paper 06-2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Normalized Source Task AOC

N
o

rm
al

iz
ed

 A
vg

 T
ar

g
et

 T
as

k
A

O
C

Fig. 13. A plot showing how target-task performance correlates with source-task per-
formance.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000

P
ro

ba
bi

lit
y

of
 G

oa
l

Training Games

Standard RL(25)
ST original(25)

ST variant 1(25)
ST variant 2(25)

Fig. 14. Probability of scoring a goal while training in 3-on-2 BreakAway with skill
transfer from 3-on-2 KeepAway, using variants on the original user advice.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000

P
ro

ba
bi

lit
y

of
 G

oa
l

Training Games

Standard RL(25)
ST original(25)

No user advice(25)

Fig. 15. Probability of scoring a goal while training in 3-on-2 BreakAway with skill
transfer from 3-on-2 MoveDownfield, with and without the original user advice.

24

University of Wisconsin Machine Learning Group Working Paper 06-2

means that users need not worry about providing perfect advice in order for the
skill-transfer method to work. Furthermore, even approximate user advice can
significantly improve the performance.

8 Future Work

It may be possible to combine multiple transfer methods to achieve higher per-
formance. Policy transfer and skill transfer could be combined in any scenario,
and model reuse could be combined with either for close-transfer scenarios.

We plan to extend our ILP methods to learning multiple-step relational plans
instead of single-step rules. This would produce temporally extended actions,
which are sometimes known as options or macros. Whether applied to a target
task as advice or through some other approach, relational plans might capture
more information from the source task than single rules do.

Another possible direction for this work would be developing advice-taking
methods for relational reinforcement learning (RRL). In RRL, as developed by
(for example) Dzeroski et al. [8] and Asgharbeygi et al. [3], transfer advice could
be applied directly in a first-order form.

9 Conclusions

Reinforcement learners can benefit significantly from knowledge transferred from
a previous task. Advice-taking transfer methods, and particularly the ILP-based
skill-transfer method, can lead to robust transfer in challenging, dissimilar tasks.
The use of first-order logic and relational information helps to separate general
from specific information in the source task. The use of advice provides protec-
tion against negative transfer effects. Our skill transfer experiments also demon-
strate that simple user guidance can naturally be incorporated into advice-based
transfer methods, resulting in better transfer.

10 Acknowledgements

This research is partially supported by DARPA grant HR0011-04-1-0007 and
United States Naval Research Laboratory grant N00173-06-1-G002.

We offer a public distribution of our RoboCup players and server code at
http://www.biostat.wisc.edu/ ml-group/RoboCup.

References

1. D. Andre and S. Russell. Programmable reinforcement learning agents. In NIPS

13, 2001.
2. M. Asadi, V. Papudesi, and M. Huber. Learning skill and representation hierar-

chies for effective control knowledge transfer. In ICML Workshop on Structural

Knowledge Transfer for Machine Learning, 2006.

25

University of Wisconsin Machine Learning Group Working Paper 06-2

3. N. Asgharbeygi, D. Stracuzzi, and P. Langley. Relational temporal difference learn-
ing. In ICML, 2006.

4. J. Clouse and P. Utgoff. A teaching method for reinforcement learning. In ICML,
1992.

5. P. Cohen. Personal communication, 2006.
6. K. Driessens and S. Dzeroski. Integrating experimentation and guidance in rela-

tional reinforcement learning. In ICML, 2002.
7. K. Driessens, J. Ramon, and T. Croonenborghs. Transfer learning for reinforce-

ment learning through goal and policy parametrization. In ICML Workshop on

Structural Knowledge Transfer for Machine Learning, 2006.
8. S. Dzeroski, L. De Raedt, and H. Blockeel. Relational reinforcement learning. In

ICML, 1998.
9. B. Falkenhainer, K. Forbus, and D. Gentner. The structure-mapping engine: Al-

gorithm and examples. Artificial Intelligence, 41:1–63, 1989.
10. K. Ferguson and S. Mahadevan. Proto-transfer learning in markov decision pro-

cesses using spectral methods. In ICML Workshop on Structural Knowledge Trans-

fer for Machine Learning, 2006.
11. F. Fernandez and M. Veloso. Policy reuse for transfer learning across tasks with

different state and action spaces. In ICML Workshop on Structural Knowledge

Transfer for Machine Learning, 2006.
12. F. Fernandez and M. Veloso. Probabilistic policy reuse in a reinforcement learning

agent. In AAMAS, 2006.
13. D. Gordon and D. Subramanian. A multistrategy learning scheme for agent knowl-

edge acquisition. Informatica, 17:331–346, 1994.
14. N. Gorski and J. Laird. Experiments in transfer across multiple learning mecha-

nisms. In ICML Workshop on Structural Knowledge Transfer for Machine Learn-

ing, 2006.
15. G. Konidaris and A. Barto. Autonomous shaping: Knowledge transfer in reinforce-

ment learning. In ICML, 2006.
16. G. Kuhlmann, P. Stone, R. Mooney, and J. Shavlik. Guiding a reinforcement

learner with natural language advice: Initial results in RoboCup soccer. In AAAI

Workshop on Supervisory Control of Learning and Adaptive Systems, 2004.
17. L. Lin. Self-improving reactive agents based on reinforcement learning, planning,

and teaching. Machine Learning, 8:293–321, 1992.
18. Y. Liu and P. Stone. Value-function-based transfer for reinforcement learning using

structure mapping. In AAAI, 2006.
19. R. Maclin and J. Shavlik. Creating advice-taking reinforcement learners. Machine

Learning, 22:251–281, 1996.
20. R. Maclin, J. Shavlik, L. Torrey, and T. Walker. Knowledge-based support vector

regression for reinforcement learning. In IJCAI Workshop on Reasoning, Repre-

sentation, and Learning in Computer Games, 2005.
21. R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild. Giving advice about

preferred actions to reinforcement learners via knowledge-based kernel regression.
In AAAI, 2005.

22. R. Maclin, J. Shavlik, T. Walker, and L. Torrey. A simple and effective method
for incorporating advice into kernel methods. In AAAI, 2006.

23. M. Madden and T. Howley. Transfer of experience between reinforcement learning
environments with progressive difficulty. AI Review 21, pages 375–398, 2004.

24. O. Mangasarian, J. Shavlik, and E. Wild. Knowledge-based kernel approximation.
JMLR 5, pages 1127–1141, 2004.

26

University of Wisconsin Machine Learning Group Working Paper 06-2

25. N. Mehta, S. Natarajan, P. Tadepalli, and A. Fern. Transfer in variable-reward
hierarchical reinforcement learning. In NIPS Workshop on Transfer Learning, 2005.

26. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming 19,20, pages 629–679, 1994.

27. I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer server: A tool for research
on multiagent systems. Applied Artificial Intelligence, 12:233–250, 1998.

28. T. Perkins and D. Precup. Using options for knowledge transfer in reinforcement
learning. Technical Report UM-CS-1999-034, 1999.

29. B. Price and C. Boutilier. Implicit imitation in multiagent reinforcement learning.
In ICML, 1999.

30. C. Sammut, S. Hurst, D. Kedzier, and D. Michie. Learning to fly. In ICML, 1992.

31. A. Sherstov and P. Stone. Action-space knowledge transfer in MDP’s: Formalism,
suboptimality bounds, and algorithms. In COLT, 2005.

32. S. Singh. Transfer of learning by composing solutions of elemental sequential tasks.
Machine Learning, 8(3-4):323–339, 1992.

33. V. Soni and S. Singh. Using homomorphisms to transfer options across continuous
reinforcement learning domains. In AAAI, 2006.

34. A. Srinivasan. The Aleph manual, 2001.

35. P. Stone and R. Sutton. Scaling reinforcement learning toward RoboCup soccer.
In ICML, 2001.

36. D. Stracuzzi and N. Asgharbeygi. Transfer of knowledge structures with relational
temporal difference learning. In ICML Workshop on Structural Knowledge Transfer

for Machine Learning, 2006.

37. R. Sutton. Learning to predict by the methods of temporal differences. Machine

Learning 3, pages 9–44, 1988.

38. R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

39. M. Taylor and P. Stone. Behavior transfer for value-function-based reinforcement
learning. In AAMAS, 2005.

40. M. Taylor, P. Stone, and Y. Liu. Value functions for rl-based behavior transfer: A
comparative study. In AAAI, 2005.

41. L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Relational skill transfer via advice
taking. In ECML, 2006.

42. L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Relational skill transfer via
advice taking. In ICML Workshop on Structural Knowledge Transfer for Machine

Learning, 2006.

43. L. Torrey, T. Walker, J. Shavlik, and R. Maclin. Using advice to transfer knowledge
acquired in one reinforcement learning task to another. In ECML, 2005.

44. T. Walsh, L. Li, and M. Littman. Transferring state abstractions between mdps.
In ICML Workshop on Structural Knowledge Transfer for Machine Learning, 2006.

45. C. Watkins. Learning from delayed rewards. Technical Report PhD Thesis, Uni-
versity of Cambridge, Psychology Dept., 1989.

27

University of Wisconsin Machine Learning Group Working Paper 06-2

Appendix

This appendix gives specifics on mappings, user advice, and skill concepts learned.

A.1 Mappings for Model Reuse and Policy Transfer

Mappings for model reuse and policy transfer match propositional features and
actions between the source and target.

For 2-on-1 BreakAway to 3-on-2 BreakAway, we use multiple mappings so
that knowledge about the pass(a1) action transfers to both pass(a1) and pass(a2).
Since this is close transfer, the feature and action sets are very similar and
straightforward to map. These mappings are shown in Table 6.

Table 6. The two feature and action mappings from 2-on-1 BreakAway to 3-on-2
BreakAway used in model reuse and policy transfer. The less obvious parts are shown
in bold text.

2-on-1 BreakAway 3-on-2 BreakAway

distBetween(a0, a1) distBetween(a0, a1)
distBetween(a0, goalie) distBetween(a0, goalie)
distBetween(a1, goalie) distBetween(a1, goalie)
angleDefinedBy(a1, a0, goalie) angleDefinedBy(a1, a0, goalie)
distBetween(a0, goalLeft) distBetween(a0, goalLeft)
distBetween(a0, goalRight) distBetween(a0, goalRight)
distBetween(a0, goalCenter) distBetween(a0, goalCenter)
angleDefinedBy(goalLeft, a0, goalie) angleDefinedBy(goalLeft, a0, goalie)
angleDefinedBy(goalRight, a0, goalie) angleDefinedBy(goalRight, a0, goalie)
angleDefinedBy(goalCenter, a0, goalie) angleDefinedBy(goalCenter, a0, goalie)
angleDefinedBy(topRightCorner, goalCenter, a0) angleDefinedBy(topRightCorner, goalCenter, a0)
timeLeft timeLeft
moveAhead moveAhead
moveAway moveAway
moveRight moveRight
moveLeft moveLeft
shoot(goalLeft) shoot(goalLeft)
shoot(goalRight) shoot(goalRight)
shoot(goalCenter) shoot(goalCenter)
pass(a1) pass(a1)

distBetween(a0, a1) distBetween(a0, a2)
distBetween(a0, goalie) distBetween(a0, goalie)
distBetween(a1, goalie) distBetween(a2, goalie)
angleDefinedBy(a1, a0, goalie) angleDefinedBy(a2, a0, goalie)
distBetween(a0, goalLeft) distBetween(a0, goalLeft)
distBetween(a0, goalRight) distBetween(a0, goalRight)
distBetween(a0, goalCenter) distBetween(a0, goalCenter)
angleDefinedBy(goalLeft, a0, goalie) angleDefinedBy(goalLeft, a0, goalie)
angleDefinedBy(goalRight, a0, goalie) angleDefinedBy(goalRight, a0, goalie)
angleDefinedBy(goalCenter, a0, goalie) angleDefinedBy(goalCenter, a0, goalie)
angleDefinedBy(topRightCorner, goalCenter, a0) angleDefinedBy(topRightCorner, goalCenter, a0)
timeLeft timeLeft
pass(a1) pass(a2)

28

University of Wisconsin Machine Learning Group Working Paper 06-2

Table 7. The two feature and action mappings from 3-on-2 MoveDownfield to 4-on-3
MoveDownfield used in model reuse and policy transfer. The less obvious parts are
shown in bold text.

3-on-2 MoveDownfield 4-on-3 MoveDownfield

distBetween(a0, a1) distBetween(a0, a1)
distBetween(a0, a2) distBetween(a0, a3)
distBetween(a0, d0) distBetween(a0, d0)
distBetween(a0, d1) distBetween(a0, d2)
distBetween(a1, minDistDefender(a1)) distBetween(a1, minDistDefender(a1))
distBetween(a2, minDistDefender(a2)) distBetween(a3, minDistDefender(a3))
angleDefinedBy(a1, a0, minAngleDefender(a1)) angleDefinedBy(a1, a0, minAngleDefender(a1))
angleDefinedBy(a2, a0, minAngleDefender(a2)) angleDefinedBy(a3, a0, minAngleDefender(a3))
distToRightEdge(a0) distToRightEdge(a0)
distToRightEdge(a1) distToRightEdge(a1)
distToRightEdge(a2) distToRightEdge(a3)
timeLeft timeLeft
moveAhead moveAhead
moveAway moveAway
moveRight moveRight
moveLeft moveLeft
pass(a1) pass(a1)
pass(a2) pass(a3)

distBetween(a0, a1) distBetween(a0, a1)
distBetween(a0, a2) distBetween(a0, a2)
distBetween(a0, d0) distBetween(a0, d0)
distBetween(a0, d1) distBetween(a0, d2)
distBetween(a1, minDistDefender(a1)) distBetween(a1, minDistDefender(a1))
distBetween(a2, minDistDefender(a2)) distBetween(a2, minDistDefender(a2))
angleDefinedBy(a1, a0, minAngleDefender(a1)) angleDefinedBy(a1, a0, minAngleDefender(a1))
angleDefinedBy(a2, a0, minAngleDefender(a2)) angleDefinedBy(a2, a0, minAngleDefender(a2))
distToRightEdge(a0) distToRightEdge(a0)
distToRightEdge(a1) distToRightEdge(a1)
distToRightEdge(a2) distToRightEdge(a2)
timeLeft timeLeft
pass(a2) pass(a2)

The mappings from 3-on-2 MoveDownfield to 4-on-3 MoveDownfield and
from 3-on-2 KeepAway to 4-on-3 KeepAway are similar in nature. By default,
we map the furthest teammate in the source to the furthest teammate in the
target, but in a secondary mapping we also cover the second furthest teammate.
These mappings are shown in Tables 7 and 8.

For 3-on-2 MoveDownfield to 3-on-2 BreakAway, we use a single mapping
that relates players one-to-one. Since this is distant transfer, more features and
actions are left out of the mapping. We also chose to leave some move actions
out because we felt they might not transfer well in this scenario. This mapping
is shown in Table 9.

The mapping for 3-on-2 KeepAway to 3-on-2 BreakAway has even fewer
features and actions in common, so that some features in KeepAway are mapped
to constants in BreakAway. We chose constants that we thought were typical
values for those features. This mapping is shown in Table 10.

29

University of Wisconsin Machine Learning Group Working Paper 06-2

Table 8. The two feature and action mappings from 3-on-2 KeepAway to 4-on-3 Keep-
Away used in model reuse and policy transfer. The less obvious parts are shown in bold

text.

3-on-2 KeepAway 4-on-3 KeepAway

distBetween(k0, k1) distBetween(k0, k1)
distBetween(k0, k2) distBetween(k0, k3)
distBetween(k0, t0) distBetween(k0, t0)
distBetween(t0, t1) distBetween(k0, t2)
distBetween(k1, minDistKeeper(k1)) distBetween(k1, minDistKeeper(k1))
distBetween(k2, minDistKeeper(k2)) distBetween(k3, minDistKeeper(k3))
angleDefinedBy(k1, k0, minAngleKeeper(k1)) angleDefinedBy(k1, k0, minAngleKeeper(k1))
angleDefinedBy(k2, k0, minAngleKeeper(k2)) angleDefinedBy(k3, k0, minAngleKeeper(k3))
distBetween(k0, fieldCenter) distBetween(k0, fieldCenter)
distBetween(k1, fieldCenter) distBetween(k1, fieldCenter)
distBetween(k2, fieldCenter) distBetween(k3, fieldCenter)
distBetween(t0, fieldCenter) distBetween(t0, fieldCenter)
distBetween(t1, fieldCenter) distBetween(t2, fieldCenter)
holdBall holdBall
pass(k1) pass(k1)
pass(k2) pass(k3)

distBetween(k0, k1) distBetween(k0, k1)
distBetween(k0, k2) distBetween(k0, k2)
distBetween(k0, t0) distBetween(k0, t0)
distBetween(t0, t1) distBetween(k0, t2)
distBetween(k1, minDistKeeper(k1)) distBetween(k1, minDistKeeper(k1))
distBetween(k2, minDistKeeper(k2)) distBetween(k2, minDistKeeper(k2))
angleDefinedBy(k1, k0, minAngleKeeper(k1)) angleDefinedBy(k1, k0, minAngleKeeper(k1))
angleDefinedBy(k2, k0, minAngleKeeper(k2)) angleDefinedBy(k2, k0, minAngleKeeper(k2))
distBetween(k0, fieldCenter) distBetween(k0, fieldCenter)
distBetween(k1, fieldCenter) distBetween(k1, fieldCenter)
distBetween(k2, fieldCenter) distBetween(k2, fieldCenter)
distBetween(t0, fieldCenter) distBetween(t0, fieldCenter)
distBetween(t1, fieldCenter) distBetween(t2, fieldCenter)
pass(k2) pass(k2)

Table 9. The feature and action mapping from 3-on-2 MoveDownfield to 3-on-2 Break-
Away used in model reuse and policy transfer. The less obvious parts are shown in bold

text.

3-on-2 MoveDownfield 3-on-2 BreakAway

distBetween(a0, a1) distBetween(a0, a1)
distBetween(a0, a2) distBetween(a0, a2)
distBetween(a0, d0) distBetween(a0, d0)
distBetween(a0, d1) distBetween(a0, d0)
distBetween(a1, minDistDefender(a1)) distBetween(a1, minDistDefender(a1))
distBetween(a2, minDistDefender(a2)) distBetween(a2, minDistDefender(a2))
angleDefinedBy(a1, a0, minAngleDefender(a1)) angleDefinedBy(a1, a0, minAngleDefender(a1))
angleDefinedBy(a2, a0, minAngleDefender(a2)) angleDefinedBy(a2, a0, minAngleDefender(a2))
distToRightEdge(a0) distBetween(a0, goalCenter)
distToRightEdge(a1) distBetween(a1, goalCenter)
distToRightEdge(a2) distBetween(a2, goalCenter)
timeLeft timeLeft
moveAhead moveAhead
pass(a1) pass(a1)
pass(a2) pass(a2)

30

University of Wisconsin Machine Learning Group Working Paper 06-2

Table 10. The feature and action mapping from 3-on-2 KeepAway to 3-on-2 Break-
Away used in model reuse and policy transfer. The less obvious parts are shown in
bold text.

3-on-2 KeepAway 3-on-2 BreakAway

distBetween(k0, k1) distBetween(a0, a1)
distBetween(k0, k2) distBetween(a0, a2)
distBetween(k0, t0) distBetween(a0, d0)
distBetween(t0, t1) distBetween(a0, d0)
distBetween(k1, minDistTaker(k1)) distBetween(a1, minDistDefender(a1))
distBetween(k2, minDistTaker(k2)) distBetween(a2, minDistDefender(a2))
angleDefinedBy(k1, k0, minAngleTaker(k1)) angleDefinedBy(a1, a0, minAngleDefender(a1))
angleDefinedBy(k2, k0, minAngleTaker(k2)) angleDefinedBy(a2, a0, minAngleDefender(a2))
distBetween(k0, fieldCenter) 15
distBetween(k1, fieldCenter) 15
distBetween(k2, fieldCenter) 15
distBetween(t0, fieldCenter) 10
distBetween(t1, fieldCenter) 10
pass(k1) pass(a1)
pass(k2) pass(a2)

A.2 Mappings for Skill Transfer

Mappings for skill transfer match objects in the source and target tasks. In
RoboCup, the objects are players and goal parts. We only use single mappings
here, because most objects in rules are variables and cover all players.

For 2-on-1 BreakAway to 3-on-2 BreakAway, the mapping is very straight-
forward:

a0 −→ a0
a1 −→ a1
goalie −→ goalie
goalLeft −→ goalLeft
goalRight −→ goalRight
goalCenter −→ goalCenter

For 3-on-2 MoveDownfield to 4-on-3 MoveDownfield, it is similar except that
the indices of the furthest players change:

a0 −→ a0
a1 −→ a1
a2 −→ a3
d0 −→ d0
d1 −→ d2
minDistDefender(a1) −→ minDistDefender(a1)
minDistDefender(a2) −→ minDistDefender(a3)
minAngleDefender(a1) −→ minAngleDefender(a1)
minAngleDefender(a2) −→ minAngleDefender(a3)

For 3-on-2 KeepAway to 4-on-3 KeepAway the indices also change:

31

University of Wisconsin Machine Learning Group Working Paper 06-2

k0 −→ k0
k1 −→ k1
k2 −→ k3
t0 −→ t0
t1 −→ t2
minDistTaker(k1) −→ minDistTaker(k1)
minDistTaker(k2) −→ minDistTaker(k3)
minAngleTaker(k1) −→ minAngleTaker(k1)
minAngleTaker(k2) −→ minAngleTaker(k3)

For 3-on-2 MoveDownfield to 3-on-2 BreakAway, there is one less defender:

a0 −→ a0
a1 −→ a1
a2 −→ a2
d0 −→ d0
d1 −→ d0
minDistDefender(a1) −→ minDistDefender(a1)
minDistDefender(a2) −→ minDistDefender(a2)
minAngleDefender(a1) −→ minAngleDefender(a1)
minAngleDefender(a2) −→ minAngleDefender(a2)

For 3-on-2 KeepAway to 3-on-2 BreakAway, again there is one less defender:

k0 −→ a0
k1 −→ a1
k2 −→ a2
t0 −→ d0
t1 −→ d0
minDistTaker(k1) −→ minDistDefender(a1)
minDistTaker(k2) −→ minDistDefender(a2)
minAngleTaker(k1) −→ minAngleDefender(a1)
minAngleTaker(k2) −→ minAngleDefender(a2)

A.3 User advice for Skill Transfer

We use a subset of the following user advice in all of our skill transfer experi-
ments:

if distBetween(a0, GoalRight) < 10
and angleDefinedBy(GoalRight, a0, goalie) > 40
then prefer shoot(GoalRight) over all actions

if distBetween(a0, GoalLeft) < 10
and angleDefinedBy(GoalLeft, a0, goalie) > 40
then prefer shoot(GoalLeft) over all actions

if distBetween(a0, goalCenter) > 10
then prefer moveAhead over moveAway and shoot

Add to pass(Teammate): diffGoalDistance(Teammate, Value), Value ≥ 1

32

University of Wisconsin Machine Learning Group Working Paper 06-2

For each scenario, we only add the user advice that covers skills not already
being transferred. We use all of it when transferring from KeepAway to Break-
Away, but only the shoot parts from MoveDownfield to BreakAway.

The variants of the KeepAway to BreakAway advice that we use in Section 7
are shown below. Variant 1 encourages more attempted shots, which a user might
choose under the assumption that more attempts will lead to more success:

if distBetween(a0, GoalRight) < 15
and angleDefinedBy(GoalRight, a0, goalie) > 35
then prefer shoot(GoalRight) over all actions

if distBetween(a0, GoalLeft) < 15
and angleDefinedBy(GoalLeft, a0, goalie) > 35
then prefer shoot(GoalLeft) over all actions

if distBetween(a0, goalCenter) > 15
then prefer moveAhead over moveAway and shoot

Add to pass(Teammate): diffGoalDistance(Teammate, Value), Value ≥ 1

Variant 2 does the opposite and gives stricter conditions for shooting, which
a user might choose under the assumption that fewer but safer attempts will
lead to more success:

if distBetween(a0, GoalRight) < 5
and angleDefinedBy(GoalRight, a0, goalie) > 45
then prefer shoot(GoalRight) over all actions

if distBetween(a0, GoalLeft) < 5
and angleDefinedBy(GoalLeft, a0, goalie) > 45
then prefer shoot(GoalLeft) over all actions

if distBetween(a0, goalCenter) > 5
then prefer moveAhead over moveAway and shoot

Add to pass(Teammate): diffGoalDistance(Teammate, Value), Value ≥ 1

A.4 Sample Skill Concepts Learned in Skill Transfer

Below are a few examples of skills that our algorithm learned for skill transfer.

From 2-on-1 BreakAway, an example rule for shoot is:
shoot(GoalPart) :-

distBetween(a0, goalCenter) ≥ 6,

angleDefinedBy(GoalPart, a0, goalie) ≥ 52,

distBetween(a0, oppositePart(GoalPart)) ≥ 6,

angleDefinedBy(oppositePart(GoalPart), a0, goalie) ≤ 33,

angleDefinedBy(goalCenter, a0, goalie) ≥ 28.

33

University of Wisconsin Machine Learning Group Working Paper 06-2

This rule requires a large open shot angle, a minimum distance to the goal,
and angle constraints that restrict the goalie’s position to a small area.

From 3-on-2 MoveDownfield, an example rule for pass is:
pass(Teammate) :-

distBetween(a0, Teammate) ≥ 15,

distBetween(a0, Teammate) ≤ 27,

angleDefinedBy(Teammate, a0, minAngleDefender(Teammate)) ≥ 24,

distToRightEdge(Teammate) ≤ 10,

distBetween(a0, Opponent) ≥ 4.

This rule specifies an acceptable range for the distance to the receiving team-
mate and a minimum pass angle. It also requires that the teammate be close to
the finish line on the field and that an opponent not be close enough to intercept.

From 3-on-2 KeepAway, an example rule for pass is:
pass(Teammate) :-

distBetween(Teammate, fieldCenter) ≥ 6,

distBetween(Teammate, minDistTaker(Teammate)) ≥ 8,

angleDefinedBy(Teammate, a0, minAngleTaker(Teammate)) ≥ 41,

angleDefinedBy(OtherTeammate, a0, minAngleTaker(OtherTeammate)) ≤ 23.

This rule specifies a minimum pass angle and an open distance around the
receiving teammate. It also requires that the teammate not be too close to the
center of the field and gives a maximum pass angle for the alternate teammate.

Some parts of these rules were unexpected, but make sense in hindsight.
For example, the shoot rule specifies a minimum distance to the goal rather
than a maximum distance. Presumably this is because large shot angles are only
available at reasonable distances anyway. This shows the advantages that advice
learned through transfer can have over user advice.

34

