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The KBANN (Knowledge-Based Artificial Neural Networks) approach
uses neural networks to refine knowledge that can be written in the
form of simple propositional rules. We extend this idea further by pre-
senting the MANNCON (Multivariable Artificial Neural Network Con-
trol) algorithm by which the mathematical equations governing a PID
(Proportional-Integral-Derivative) controller determine the topology
and initial weights of a network, which is further trained using back-
propagation. We apply this method to the task of controlling the out-
flow and temperature of a water tank, producing statistically significant
gains in accuracy over both a standard neural network approach and
a nonlearning PID controller. Furthermore, using the PID knowledge
to initialize the weights of the network produces statistically less vari-
ation in testset accuracy when compared to networks initialized with
small random numbers.

1 Introduction

Research into the design of neural networks for process control has
largely ignored existing knowledge about the task at hand. One form
this knowledge (often called the “domain theory”) can take is embod-
ied in traditional controller paradigms. The recently developed KBANN
approach (Towell et al. 1990) addresses this issue for tasks for which a
domain theory (written using simple, nonrecursive propositional rules)
is available. The basis of this approach is to use the existing knowledge
to determine an appropriate network topology and initial weights, such
that the network begins its learning process at a “good” starting point.
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This paper describes the MANNCON algorithm, a method of using
a traditional controller paradigm to determine the topology and initial
weights of a network. The use of a PID controller in this way eliminates -
network-design problems such as the choice of network topology (i.e.,
the number of hidden units) and reduces the sensitivity of the network -
to the initial values of the weights. Furthermore, the initial configura-
tion of the network is closer to its final state than it would normally be
in a randomly configured network. Thus, the MANNCON networks per-
form better and more consistently than the standard, randomly initialized
three-layer approach.

The task we examine here is learning to control a nonlinear Multiple-
Input, Multiple-Output (MIMO) system. There are a number of reasons
to investigate this task using neural networks. First, many processes in-
volve nonlinear input-output relationships, which matches the nonlinear
nature of neural networks. Second, there have been a number of success-
ful applications of neural networks to this task (Bhat and McAvoy 1990;
Jordan and Jacobs 1990; Miller et al. 1990). Finally, there are a number of
existing controller paradigms that can be used to determine the topology
and the initial weights of the network. »

The next sections introduce the MANNCON algorithm and describe
an experiment that involves controlling the temperature and outflow of
a water tank. The results of our experiment show that our network,
designed using an existing controller paradigm, performs significantly
better (and with significantly less variation) than a standard, three-layer
network on the same task. The concluding sections describe some related
work in the area of neural networks in control and some directions for
future work on this algorithm.

In the course of this article, we use many symbols not only in defining
the topology of the network, but also in describing the physical system
and the PID controller. Table 1 defines these symbols and indicates the
section of the paper in which each is defined. The table also describes
the various subscripts to these symbols.

2 Controller Networks

The MANNCON algorithm uses a Proportional-Integral-Derivative (PID)
controller (Stephanopoulos 1984), one of the simplest of the traditional
feedback controller schemes, as the basis for the construction and initial-
ization of a neural network controller. The basic idea of PID control is
that the control action u (a vector) should be proportional to the error, the
integral of the error over time, and the temporal derivative of the error.
Several tuning parameters determine the contribution of these various
components. Figure 1 depicts the resulting network topology based on
the PID controller paradigm. The first layer of the network, that from
ysp (desired process output or setpoint) and y(,-1) (actual process output
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Table 1: Definitions of Symbols.

Symbol Definition Section Introduced
d =[F;,Ty] Process disturbances Section 2
u=|[Fc,Fy] Process inputs Section 2

= [F(h),T] Process outputs Section 2

e Simple error Section 2
€ Precompensated error Section 2
Gy Precompensator matrix Section 2
F Flow rate Figure 1
T Temperature Figure 1
h Height Figure 2
K, 7,7 PID tuning parameters Section 2
AT Time between control actions Section 2
w Network weights based on PID controller Section 2
by Error signal at plant output Section 3
Oui Error signal at plant input Section 3
Subscripts
(n) Value at current step
n-1) Value at previous step
sp Setpoint
d Disturbance
C Cold water stream
H Hot water stream

of the past time step), calculates the simple error (e). A simple vector
difference,

€=Ysp—Y
accomplishes this. The second layer, that between e, £(,_1), and ¢, calcu-
lates the actual error to be passed to the PID mechanism. In effect, this
layer acts as a steady-state precompensator (Ray 1981), where

e = Gpe

and produces the current error and the error signals at the past two time
steps. This compensator is a constant matrix, Gy, with values such that
interactions at steady state between the various control loops are elimi-
nated. The final layer, that between ¢ and u, (controller output/plant
input), calculates the controller action based on the velocity form of the
discrete PID controller:

AT TDC
ny = 1 n
ucny = HUc- 1)+KC{ +— AT] E1(n)

- Kc [l + X7 ] ein-1) + Kc [AT] E1(n—-2)
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Figure 1: MANNCON network showing weights that are initialized using Ziegler~
Nichols tuning parameters. See Table 1 for definitions of symbols.

where K¢, 7ic, and 7pc are the tuning parameters mentioned above, and
AT is the discrete time interval between controller actions. This can be
rewritten as

UC(ny = UC(n-1) + WcoE1n) + WC1€1(n—1) + WC2E1(n-2)

where wcp, wci, and we, are constants determined by the tuning pa-
rameters of the controller for that loop. A similar set of equations and
constants (wyp, Wi, wi2) exist for the other controller loop.

Figure 2 shows a schematic of the water tank (Ray 1981) that the
network controls. This figure also shows the variables that are the con-
troller variables (F¢ and Fy), the tank output variables [F(h) and T], and
the disturbance variables (F4 and T3). The controller cannot measure the .
disturbances, which represent noise in the system.

MANNCON initializes the weights of the network in Figure 1 with
values that mimic the behavior of a PID controller tuned with Ziegler-
Nichols (Z-N) parameters (Stephanopoulos 1984) at a particular operat-
ing condition (the midpoint of the ranges of the operating conditions).
Using the KBANN approach (see Appendix), it adds weights to the net-
work such that all units in a layer are connected to all units in all sub-
sequent layers, and initializes these weights to small random numbers
several orders of magnitude smaller than the weights determined by the
PID parameters. We scaled the inputs and the outputs of the network to
be in the range [0, 1].
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Figure 2: Stirred mixing tank requiring outflow and temperature control. See
Table 1 for definitions of symbols.

Initializing the weights of the network in the manner given above
assumes that the activation functions of the units in the network are
linear, that is,

0j linear = Z W;i0;

but the strength of neural networks lie in their having nonlinear (typically
sigmoidal) activation functions. For this reason, the MANNCON system
initially sets the weights (and the biases of the units) so that the linear
response dictated by the PID initialization is approximated by a sigmoid
over the output range of the unit. For units that have outputs in the
range {—1, 1], the activation function becomes

2
j,sigmoid = -1
0j sigmoid 14 exp(—2.31 X wj0;)

which approximates the linear response quite well in the range [—0.6, 0.6].

Once MANNCON configures and initializes the weights of the network,
it uses a set of training examples and backpropagation to improve the
accuracy of the network. The weights initialized with PID information,
as well as those initialized with small random numbers, change during
backpropagation training.

3 Experimental Details

We compared the performance of three networks that differed in their
topology and/or their method of initialization. Table 2 summarizes the
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Table 2: Topology and Initialization of Networks.

Network Topology Weight Initialization 7
1. Standard neural network Three-layer Random
(14 hidden units)
2. MANNCON network I PID topology Random
3. MANNCON network II PID topology Z-N tuning

network topology and weight initialization method for each network. In
this table, “PID topology” is the network structure shown in Figure 1.
“Random” weight initialization sets all weights to small random numbers
centered around zero. We trained the networks using backpropagation
over a randomly determined schedule of setpoint y,, and disturbance d
changes that did not repeat. The setpoints, which represent the desired
output values that the controller is to maintain, are the temperature and
outflow of the tank. The disturbances, which represent noise, are the
inflow rate and temperature of a disturbance stream. The magnitudes
of the setpoints and the disturbances each formed gaussian distributions
centered at 0.5. The number of training examples between changes in
the setpoints and disturbances were exponentially distributed. For ex-
ample, the original setpoints could be an output flow of 0.7 liters/sec at
a temperature of 40°C. After 15 sec (which represents 15 training exam-
ples since time is discretized into one-second slices), the setpoints could
change to new values, such as a flow of 0.3 liters/sec at 35°C. The flow
rate and the temperature of the disturbance stream also varied in this
manner.

We used the error at the output of the plant (y in Fig. 1) to determine
the network error (at u) by propagating the error backward through the
plant (Jordan and Rumelhart 1990). In this method, the error signal at
the input to the process is given by

o Ay,
bui :f (netu,-) Z bwg%‘
j i

where 6,; represents the simple error at the output of the water tank and
&, is the error signal at the input of the tank. Since we used a model of the
process and not a real tank, we can calculate the partial derivatives from
the process model equations. We periodically interrupted training and
tested the network over a different (but similarly determined) schedule.
Results are averaged over 10 runs for each of the networks.

We also compare these networks to a (nonlearning) PID controller, that
had its tuning parameters determined using a standard design methodol-
ogy (Stephanopoulos 1984). Using the MIDENT program of the CONSYD
package (W. Harmon Ray Research Group 1989), we fit a linear, first-order



752 G. M. Scott, J. W. Shavlik, and W. Harmon Ray

model to the outputs of the system when stimulated by random inputs.
We then determined an appropriate steady-state precompensator (Ray
1981) and Z-N tuning parameters for a PID controller (Stephanopoulos
1984) using this model. Further details and additional experimentation
are reported in Scott (1991).

4 Results

Figure 3 compares the performance of the three networks. As can be
seen, the MANNCON networks show an increase in correctness over the
standard neural network approach. Statistical analysis of the errors using
a t test show that they differ significantly (p = 0.005). Furthermore,
while the difference in performance between MANNCON network I and
MANNCON network II is not significant, the difference in the variance of
the testing error over different runs is significant (p = 0.005). Finally,
the MANNCON networks perform significantly better (p = 0.0005) than
the nonlearning PID controller tuned at the operating midpoint. The
performance of the standard neural network represents the best of several
trials with a varying number of hidden units ranging from 2 to 20.

A second observation from Figure 3 is that the MANNCON networks
learned much more quickly than the standard neural-network approach.
The MANNCON networks required significantly fewer training instances
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Figure 3: Mean square error of networks on the testset as a function of the
number of training instances presented.
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Table 3: Comparison of Network Performance.

Method Mean square error Training instances
1. Standard neural network 0.0103 + 0.0004 25,200 + 2,260

2. MANNCON network I 0.0090 + 0.0006 5,000 + 3,340

3. MANNCON network 11 0.0086 + 0.0001 640 £+ 200

4. PID control (Z-N tuning) 0.0131

to reach a performance level within 5% of its final error rate. Table 3 sum-
marizes the final mean error for each of these three network paradigms,
as well as the number of training instances required to achieve a perfor-
mance within 5% of this value.

5 Related Research

A great deal of research in both recurrent networks and in using neural
networks for control share similarities with the approach presented here.
The idea of returning the output of the network (and of the system) from
the previous training instance to become part of the input for the current
training instance is quite common in works pertaining to control (Jordan
and Jacobs 1990; Miller et al. 1990). However, this idea also appears in
problems pertaining to natural language (Gori et al. 1989) and protein
folding (Maclin and Shavlik 1991).

In the area of process control, there have been many approaches that
use neural networks. Introductions to neural network control are given
by Bavarian (1988), Franklin (1990), and Werbos (1990). Feedforward
controllers, in which the neural network learns to mimic the inverse of
the plant are discussed by Psaltis et al. (1988), Hosogi (1990), Li and Slo-
tine (1989), and Guez and Bar-Kana (1990). Chen (1990) proposes an
adaptive neural network controller where the controller uses a system of
two neural networks to model the plant. Herndndez and Arkun (1990)
propose a Dynamic Matrix Control (DMC) scheme in which the linear
model is replaced by a neural network model of the process. Narendra
and Parthasarathy (1990) propose a method of indirect adaptive control
using neural networks in which one network is used as a controller while
the second is the identification model for the process. Bhat and McAvoy
(1990) propose an Internal Model Controller (IMC) that utilizes a neural
network model of the process and its inverse. Systems that use neural
networks in a supervisory position to other controllers have been devel-
oped by Kumar and Guez (1990) and Swiniarski (1990). The book by
Miller et al. (1990) gives an overview of many of the techniques men-
tioned here. ’
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6 Future Work

In training the MANNCON initialized networks, we found the backprop-
agation algorithm to be sensitive to the value of the learning rate and
momentum value. There was much less sensitivity in the case of the
randomly initialized networks. Small changes in either of these val-
ues could cause the network to fail to learn completely. The use of a
method involving adaptive training parameters (Battiti 1990), and espe-
cially methods in which each weight has its own adaptive learning rate
(Jacobs 1988; Minai and Williams 1990) should prove useful. Since not
all weights in the network are equal (that is, some are initialized with
information while some are not), the latter methods would seem to be
particularly applicable.

Another question is whether the introduction of extra hidden units
into the network would improve the performance by giving the network
“room” to learn concepts that are completely outside of the given domain
theory. The addition of extra hidden units as well as the removal of
unused or unneeded units is still an area with much ongoing research.

Some “ringing” occurred in some of the trained networks. A future
enhancement of this approach would be to create a network architec-
ture that prevented this ringing from occurring, perhaps by limiting the
changes in the controller actions to some relatively small values.

Another important goal of this approach is the application of it to
other real-world processes. The water tank in this project, while illustra-
tive of the approach, was quite simple. Much more difficult problems
(such as those containing significant time delays) exist and should be
explored.

There are several other controller paradigms that could be used as
a basis for network construction and initialization. There are several
different digital controllers, such as Deadbeat or Dahlin’s, that could be
used in place of the digital PID controller used in this project. DMC and
IMC are also candidates for consideration for this approach.

Finally, neural networks are generally considered to be “black boxes,”
in that their inner workings are completely uninterpretable. Since the
neural networks in this approach are initialized with information, it may
be possible to in some way interpret the weights of the network and
extract useful information from the trained network.

7 Conclusions

We have shown that using the MANNCON algorithm to structure and
initialize a neural-network controller significantly improves the perfor-
mance of the trained network in the following ways:

¢ Improved mean testset accuracy
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o Less variability between runs

e Faster rate of learning

The MANNCON algorithm also determines a relevant network topology
without resorting to trial-and-error methods. In addition, the algorithm,
through initialization of the weights with prior knowledge, gives the
backpropagation algorithm an appropriate direction in which to continue
learning. Finally, since the units and some of the weights initially have
physical interpretations, it seems that the MANNCON networks would
be easier to interpret after training than standard, three-layer networks
applied to the same task.

Appendix: Overview of the KBANN Algorithm

The KBANN algorithm translates symbolic knowledge into neural net-
works by defining the topology and connection weights of the network
(Towell etal. 1990). It uses knowledge in the form of ProLOG-like clauses,
to define what is known about a topic. As an example of the KBANN
method, consider the simple knowledge base in Figure 4a, which defines
the membership in category A. Figure 4b represents the hierarchical struc-
ture of these rules where solid lines and dashed lines represent necessary
and prohibitory dependencies, respectively. Figure 4c represents the neu-
ral network that results from a translation of this knowledge base. Each
unit in the neural network corresponds to a consequent or an antecedent
in the knowledge base. The solid and dashed lines represent heavily
weighted links in the neural network. The dotted lines represent the
lines added to the network to allow refinement of the knowledge base.

\ \ ‘
:f' (B},, Sott?;x; ﬁxen B n ‘
if I, J then C ;e
K K 4
(s) () (c)

Figure 4: Translation of a knowledge base into a neural network using the
KBANN algorithm. :
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