Appears in the Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI-93)

Heuristically Expanding Knowledge-Based Neural Networks*

David W. Opitz and Jude W. Shavlik
Computer Sciences Department
University of Wisconsin — Madison
Madison, WI 53706, U.S.A.

opitzQcs.wisc.edu

Abstract

Knowledge-based neural networks are networks
whose topology is determined by mapping the
dependencies of a domain-specific rulebase into
a neural network. However, existing network
training methods lack the ability to add new
rules to the (reformulated) rulebases. Thus, on
domain theories that are lacking rules, gener-
alization is poor, and training can corrupt the
original rules, even those that were initially cor-
rect. We present TopGen, an extension to the
KBANN algorithm, that heuristically searches
for possible expansions of a knowledge-based
neural network, guided by the domain theory,
the network, and the training data. It does
this by dynamically adding hidden nodes to the
neural representation of the domain theory, in
a manner analogous to adding rules and con-
juncts to the symbolic rulebase. Experiments
indicate that our method is able to heuristi-
cally find effective places to add nodes to the
knowledge-base network and verify that new
nodes must be added in an intelligent manner.

1 Introduction

The task of theory refinement is to improve a set
of approximately-correct domain-specific inference rules
(called a domain theory) using new data [Ginsberg, 1990;
Ourston and Mooney, 1990; Towell et al., 1990]. The
initial theory about a given task can involve such in-
formation as textbook knowledge or approximate rules
of thumb obtained from an expert. A learning system
should make repairs that minimize the changes to the ini-
tial domain theory, while making it consistent with the
data. We present a connectionist approach to theory re-
finement, particularly focusing on the task of expanding
tmpoverished domain theories.

Our system builds on the KBANN system [Towell,
1992]. KBANN translates the initial theory into a neu-
ral network, thereby determining the network’s topol-
ogy and initial weights. KBANN has been shown to be

*This work was partially supported by DOE Grant DE-
FG02-91ER61129, NSF Grant IRI-9002413, and ONR Grant
N00014-90-J-1941.

more effective at classifying previously-unseen examples
than a wide variety of machine learning algorithms [Tow-
ell et al., 1990; Towell, 1992]. A large part of the rea-
son for KBANN’s superiority over other symbolic systems
has been attributed to both its underlying learning al-
gorithm (i.e., backpropagation) and its effective use of
domain-specific knowledge [Towell, 1992].

However, KBANN suffers from the fact that, since it
does not alter the initial network’s topology, it can only
add and subtract antecedents of existing rules. Thus it
is unable to add new symbolic rules to an impoverished
rule set. Towell and Shavlik [1992] have shown that,
while KBANN is reasonably insensitive to extra rules in
a domain theory, its ability to generalize! degrades sig-
nificantly as rules are removed from a domain theory. In
addition, with sparse domain theories, KBANN needs to
significantly alter the original rules in order to account
for the training data. Hence, our goal is to expand, dur-
ing the training phase, knowledge-based neural networks
— networks whose topology s determined as a result of
the direct mapping of the dependencies of a domain the-
ory — so that they are able to learn the training examples
without needlessly corrupting their initial rules.

The TopGen (Topology Generator) algorithm, the sub-
ject of this paper, heuristically searches through the
space of possible expansions of a knowledge-based net-
work, guided by the symbolic domain theory, the net-
work, and the training data. It does this by adding hid-
den nodes to the neural representation of the domain
theory. TopGen uses beam search, rather than a faster
hill-climbing algorithm, because CPU cycles are becom-
ing increasingly plentiful and cheap. It therefore seems
wise to search more of the hypothesis space to find a good
network topology. Finding such a topology allows better
generalization, provides the network with the ability to
learn without overly corrupting the initial set of rules,
and increases the interpretability of the network so that
efficient rules may be extracted. This paper presents
evidence for these claims.

TopGen differs from other network-growing algorithms
[Fahlman and Lebiere, 1989; Frean, 1990] in that it is
designed for knowledge-based networks. TopGen uses a
symbolic interpretation of the trained network to help

YWe use generalization to mean classification accuracy on
examples not seen during training.

A :-B,— C.
B:-F- G, K.
B:-F—-H=-M
C:—1JL. SN
FGHIJKLM
(€Y (b)

Figure 1: Translating rules into a neural network.

decide where the primary errors are in the network.
Units are added in a matter analogous to adding rules
and conjuncts to the symbolic rulebase. Adding hid-
den nodes in this fashion synergistically combines the
strengths of refining the rules symbolically with the
strengths of refining them with backpropagation.

The rest of the paper is organized as follows. In the
next section, we give a brief overview of KBANN. We
present the details of the TopGen algorithm in Section 3.
This is followed by an example of how TopGen works. In
Section 5 we present results from four real-world Human
Genome domains and controlled studies on an artificial
domain. This is followed by discussion of these results,
as well as future and related work.

2 The KBANN Algorithm

KBANN is an approach for combining rule-based reason-
ing with neural networks. The relevant part of KBANN
for this paper is the rules-to-network translation algo-
rithm, which translates a set of propositional rules, rep-
resenting what is initially known about the topic, into
a neural network. This translation defines the net-
work’s topology and connection weights. Details of
this translation process appear in [Towell et al., 1990;
Towell, 1992].

An example of this process is shown in Figure 1. Fig-
ure la shows a Prolog-like rule set that defines member-
ship in category A. Figure 1b represents the hierarchical
structure of these rules, with solid lines representing nec-
essary dependencies and dotted lines representing pro-
hibitory dependencies. Figure lc represents the result-
ing network created from this translation. Units B1 and
B2 in Figure lc are introduced to handle the disjunction
in the rule set. Thick lines in Figure lc are heavily-
weighted links corresponding to dependencies in the do-
main theory, while thin lines represent lightly-weighted
links added to allow refinement of the knowledge base
during backpropagation training. Biases are set so that
nodes representing disjuncts have an output near 1 only
when at least one of their heavily-weighted children is
correct, while nodes representing conjuncts must have
all of their heavily-weighted children active. Otherwise
activations are near 0.

KBANN refines the network links with training exam-
ples. This training refines the antecedents of existing
rules; however, KBANN does not have the capability of
inducing new rules. For example, KBANN is unable to
add a new rule for inferring B. Being able to introduce
such new rules is the focus of this paper.

3 The TopGen Algorithm

TopGen heuristically searches through the space of pos-
sible ways of adding nodes to the network, trying to
find the network that best refines the initial domain the-
ory (as measured using “tuning sets”?). Briefly, TopGen
looks for nodes in the network with high error rates, and
then adds new nodes to these parts of the network.
Table 1 summarizes the beam-search-based TopGen al-
gorithm. TopGen uses two tuning sets, one to evaluate
the different network topologies, and one to help decide
where new nodes should be added (we also use the latter
tuning set to decide when to stop training individual net-
works). TopGen uses KBANN’s rule-to-network transla-
tion algorithm to define an initial guess for the network’s
topology. TopGen trains this network using backpropa-
gation [Rumelhart et al., 1986] and places it on a search
queue. In each cycle, TopGen takes the best network
from the search queue (as measured by tuning-set-2),
decides possible ways to add new nodes, trains these new
networks, and places them on the search queue. This
process repeats until reaching either (a) a tuning-set-2
accuracy of 100% or (b) a previously-set time limit.

3.1 Where Nodes Are Added

TopGen must first find nodes in the network with high
error rates. It does this by scoring each node using exam-
ples from tuning-set-1. By using examples from this
tuning set, TopGen adds nodes on the basis of where the
network fails to generalize, not where it fails to mem-
orize the training set. TopGen makes the empirically-
verified assumption that almost all of the nodes in a
trained knowledge-based network are either fully active
or inactive. By making this assumption, each non-input
node in a TopGen-net can be treated as a step function
(or a Boolean rule) so that errors have an all-or-nothing
aspect to them. This concentrates topology refinement
on misclassified examples, not on erroneous portions of
each example. Towell [1992], as well as self-inspection of
our networks, has shown this to be a valid assumption.
TopGen keeps two counters for each node, one for
false negatives and one for false positives®, defined with
respect to each individual node’s output. TopGen in-
crements counters by recording how often changing the
“Boolean” value of a node’s output leads to a misclassi-
fied example being properly classified. That is, if a node
is active for an erroneous example, and changing its out-
put to be inactive results in correct classification, then
TopGen increments the node’s false-positives counter.
TopGen increments a node’s false-negatives counter in a
similar fashion. By checking for single points of failure,
TopGen looks for rules that are near misses. TopGen adds
nodes where counter values are highest, while breaking
ties by preferring nodes farthest from the output node.
We also tried other approaches for blaming nodes for
error, but they did not work as well on our testbeds. One

?Data is first split into two disjoint sets: training and
testing sets. The training set is further split into a set of
training instances and two sets of tuning instances.

?An example is considered a false negative if it is incor-
rectly classified as a negative example, while a false positive
is one incorrectly classified as a positive example.

Table 1: The TopGen Algorithm

TopGen:
GOAL: Search for the best network describing the domain
theory and training examples.

1. Set aside a testing set. Break the remaining ex-
amples into a training set and two tuning sets
(tuning-set-1 and tuning-set-2).

2. Place the trained network, produced by KBANN, on
the search queue.

3. Until stopping criteria met:

(a) Remove the best network, according to
tuning-set-2, from the search queue.

(b) Use ScoreEachNode to determine the N best
ways to expand the topology.

(c¢) Create N new networks, train and put on the
search queue.

(d) Prune search queue to length M.

4. Output the best network seen so far according to
tuning-set-2.

ScoreEachNode:
GOAL: Use the errors in tuning-set-1to suggest good ways
to add new nodes.

1. Set each node’s correctable-false-negative and
correctable-false-positive counters to 0. As-
sume each node is a threshold unit.

2. For each misclassified example in tuning-set-1,
consider each node and determine if modifying its
output will correctly classify the example, incre-
menting the counters when appropriate.

3. Use the counters to order possible node correc-
tions. High correctable-false-negative counts
suggest adding a disjunct while high correctable-
false-positive counts suggest adding a conjunct.

such method is to propagate errors back by starting at
the final conclusion and recursively considering a rule’s
antecedent to be incorrect if both its consequent is incor-
rect and the antecedent does not match its “target.” We
consider an antecedent to have the same target as its
consequent, unless negated. While this method works
for symbolic rules, TopGen suffers under this method
because its antecedents are weighted. Because of this,
we also tried using the backpropagated error to blame
nodes; however, backpropagation error can become dif-
fused when networks have many layers, such as the ones
often created by TopGen. Since these methods are just
heuristics to help guide the search of where to add new
nodes, TopGen is able to backtrack from “bad” choices.

3.2 How Nodes Are Added

Once we know where to add new nodes, we need to know
how to add these nodes. TopGen makes the assumption
that when training one of its networks, the meaning of
a node does not shift significantly. Making this assump-
tion allows us to alter the network in a fashion similar to

Existing Node | | Decrease False Negatives || Decrease False Positives

B C B C New
OR Node Node
(@

\\/A Node \ A

New

Node

B C New
B ¢ Node
AND Node
(d)
Figure 2: Possible ways TopGen adds new nodes to a

knowledge-based neural network. Arcs indicate AND nodes.

refining symbolic rules. Towell [1992] showed that mak-
ing a similar assumption about KBANN-nets was valid.

Figure 2 shows the possible ways TopGen adds nodes to
a TopGen-net. In a symbolic rulebase that uses negation-
by-failure, we can decrease false negatives by either drop-
ping antecedents from existing rules or adding new rules
to the rulebase. Since KBANN is effective at removing
antecedents from existing rules, TopGen adds nodes, in-
tended to decrease false negatives, in a fashion that is
analogous to adding a new rule to the rulebase. If the
existing node is an OR node, TopGen adds a new node,
fully-connected to the inputs, as its child (see Figure 2a).
If the existing node is an AND node, TopGen creates a
new OR node that is the parent of the original AND node
and another new node that TopGen fully-connects to the
inputs (see Figure 2¢); TopGen moves the outgoing links
of the original node (A in Figure 2¢) to become the out-
going links of the new OR nodes.

To decrease false positives in a symbolic rulebase, we
can either add antecedents to existing rules or remove
rules from the rulebase. While KBANN can effectively re-
move rules [Towell, 1992], it is less effective at adding an-
tecedents to rules and is unable to invent (constructively
induce) new terms as antecedents. Figures 2b,d show
the ways (analogous to Figures 2a,c explained above) of
adding constructively-induced antecedents. By allowing
these additions, TopGen is able to add rules whose con-
sequents were previously undefined to the rulebase.

TopGen handles nodes that are neither AND nor OR
nodes by deciding if such a node is closer to an AND
node or an OR node (by looking at the node’s bias and
incoming weights). TopGen classifies previously-added
nodes in such a manner, when deciding how to add more
nodes to them at a later time.

3.3 Additional Algorithmic Details

After new nodes are added, TopGen must train the net-
work. While we want the new weights to account for
most of the error, we also want the old weights to change
if necessary. That is, we want the older weights to retain
what they have previously learned, while at the same
time move in accordance with the change in error caused
by adding the new node. In order to address this issue,
TopGen multiplies the learning rates of existing weights

1-1| 1-2| 1-3| 1-4| 1-5

2-1| 2-2| 2-3| 2-4| 2-5

Figure 3: Portion of the chess board considered by domain.

by a constant amount (<1) every time new nodes are
added, producing an exponential decay of learning rates.

To help address the trade-off between changing the do-
main theory and disregarding the misclassified training
examples as noise, TopGen uses a variant of weight decay
[Hinton, 1986]. Weights that are part of the original do-
main theory decay toward their initial value, while other
weights decay toward zero. Thus, we add to the usual
cost function, a term that measures the distance of each
weight from its initial value:

(wi = Winit,)”

Cost = Z(targetk—autputk)2+)\ Z 1

Py Si 1+ (Wi — Wingt,)?

The first term sums over all training examples 7T, while
the second term sums over all weights W. The tradeoff
between performance and distance from initial values is

weighted by A.

4 Example of TopGen

Assume that Figure la’s domain theory is missing the
following rule from the target concept:

B ~F, G, .

Although we trained the KBANN-net shown in Figure 1c
with all possible examples, it was unable to improve.
TopGen begins with this KBANN-net, then proceeds by
using misclassified examples from tuning-set-1 to find
potentially useful places to add nodes. KBANN misclas-
sifies the following positive example of category A.

“FANGANHAN-IAN-JA-KANLANM

While node C' (from Figure lc) is correctly false in
this example, node B is incorrectly false. B is false
since both Bl and B2 are false. If B had been true,
the networks would have correctly classified this ex-
ample (since C' is correct), so TopGen increments the
correctable-false-negative counter for B. TopGen
also increments the counters of B1l, B2, and A, using
similar arguments.

Since nodes A, B, Bl, and B2 will all have high
correctable-false-negative counts, TopGen consid-
ers adding OR nodes to nodes A, Bl, and B2, as done in
Figure 2¢, and also considers adding another disjunct to
node B, analogous to Figure 2a. Any of these additions
allows the network to learn the target concept.

5 Experimental Results

We tested TopGen on five domains: an artificial chess-
related domain, and four real-world Human Genome
problems. While real-world domains are clearly useful

Outputs

Knowledge-based

Extra Hidden
Portion @)

Units

Figure 4: Topology of networks used by Strawman.

in exploring the utility of an algorithm, they are difficult
to use in closely-controlled studies that examine different
aspects of an algorithm. An artificial domain allows us to
determine the relationship between the theory provided
to the learning system and the correct domain theory.

5.1 A Chess-Related Domain

The first domain, derived from the game of chess, defines
board configurations where moving a king one space for-
ward is legal. Figure 3 shows the subset of the chess
board this domain considers. We want to move the king
from position 4-3 to position 3-3. Possible pieces include
a queen, a rook, a bishop, and a knight for both sides.

To help test the efficiency of TopGen’s multi-level ap-
proach of adding hidden nodes, we compare its perfor-
mance with a simple approach (referred to as Strawman
hereafter) that adds one layer of fully-connected hidden
nodes “off to the side” of the KBANN-net. Figure 4 shows
the topology of such a network. The topology of the
original KBANN-net remains intact, while we add extra
hidden nodes in a fully-connected fashion between the
inputs nodes and the output nodes. If a domain the-
ory is impoverished, it is reasonable to think that simply
adding nodes in this fashion would increase performance.
Strawman trains 21 different networks (using weight de-
cay), ranging from 0 to 20 extra hidden nodes and, like
TopGen, uses a tuning set to choose the best network.
(In the experiments presented, TopGen never tested net-
works with more than 20 new nodes.)

Our initial experiment addresses the generalization
ability of TopGen when rules are deleted from a cor-
rect domain theory. Figure 5 shows the test set error
when we randomly delete rules from the chess domain
theory. The results are averages of five runs of five-fold
cross-validation. The top horizontal line results from
a fully-connected, single-layer feed-forward neural net-
work. For each fold, we trained various networks con-
taining up to 100 hidden nodes and used a tuning set to
choose the best network. The next curve down, the top
diagonal curve, is the test set error of the initial, cor-
rupted domain theory given to Strawman, KBANN, and
TopGen. The next two curves, produced by KBANN and
Strawman, cut the test set error of the initial domain
theory almost in half.* Strawman produced almost no
improvement over KBANN. Finally, TopGen, the bottom
curve, had a significant increase in accuracy, having an

*Running KBANN without weight decay produced almost
no improvement over the initial domain theory.

Standard Neural Network

5 15%#—1}—4:————1} ———————— . 8

U:J 10% | DomainThei)ry “\“‘

% Lt KBANN

m 561 0 et e Srawman

= O%-| [y T e ——— T T —%OpGen
0% 10% 20% 30% 40% 50%

Per cent of Missing Rules

Figure 5: Test set error on the chess problem.

2.5%"
2.0%
1.5%
1.0%
0.5%-+

0.0%- T T T T
0% 10% 20% 30% 40%
Per cent of Missing Rules

Test (Sub)set Error

|
50%

Figure 6: Error on the subset of the test set that the initial
domain theory correctly classifies.

error rate of about half that of either KBANN or Straw-
man. As a point of comparison, when 45% of the rules
were deleted, TopGen added 10.9 nodes, while Strawman
added 5.2 nodes on average, and two-sample one-tailed
t-tests indicate that TopGen differs from both KBANN
and Strawman at the 99.5% confidence level.

As stated earlier, it is important to correctly classify
the examples while deviating from the initial domain the-
ory as little as possible. Since this prior knowledge may
be in a different form than what the learning algorithm
uses, we are concerned with semantic distance, rather
than syntactic distance, when measuring this deviation.
We can estimate semantic distance by testing TopGen us-
ing only those examples in the test set that the original
domain theory classifies correctly. Error on these ex-
amples indicates how much the learning algorithm has
corrupted correct portions of the domain theory.

Figure 6 shows accuracy on the portion of the test set
where the original domain theory is correct. When the
initial domain theory has few missing rules (less than
20%), neither KBANN nor Strawman overly corrupt this
domain theory in order to compensate for the missing
rules. However, as more rules are deleted, both KBANN
and Strawman corrupt their domain theory more than
TopGen. In fact, when 45% of the rules are missing,
TopGen has less than half the error rate on originally-
correct examples as both KBANN and Strawman.

5.2 Four Human Genome Domains

We also ran TopGen on four problems from the Human
Genome Project. Each of these problems aid in locating
genes in DNA sequences. The first domain, promoter
recognition, contains 234 positive examples, 4,921 neg-
ative examples, and 17 rules. (Note that this data set
and domain theory are a larger version of the one that

9% —
0 85 ga Key
7.91
8% Keann [
(0]
= 1% Strawman |:|
@
5 6% | TopGen mm]m
S
LTJ 5% — 4.58 453
417
% 4% |
B 30
ol 231 215 506
0,
2% 4 135 153 o
1% :
0% | Ml (NI e 1]
RBS Splice Junctions Promoters Terminators

Figure 7: Error rates on four Human Genome problems.

Table 2: Total number of nodes added (on average).

Domain TopGen | Strawman
RBS 8.2 8.0
Splice Junction 4.0 5.2
Promoters 4.4 5.0
Terminators 9.4 1.2

appears in Towell [1992] and Towell et al. [1990]). The
second domain, splice-junction determination, contains
3,190 examples distributed among three classes, and 23
rules. The third domain, transcription termination sites,
contains 142 positive examples, 5,178 negative examples,
and 60 rules. Finally, the last domain, ribosome binding
sites, contains 366 positive examples, 1,511 negative ex-
amples, and 17 rules. See Craven and Shavlik [1993] for
a detailed description of these tasks. (We would like to
thank Michiel Noordewier for creating these domains.)

Our experiment addresses the test set accuracy of Top-
Gen on these domains. The results in Figure 7 show
that TopGen generalizes better than does either KBANN
or Strawman. These results are averages of five runs of
five-fold cross-validation. Two-sample one-tailed #tests
indicate TopGen differs from both KBANN and Strawman
at the 97.5% confidence level on all four domains, except
with Strawman on the promoter domain. Table 2 shows
that TopGen and Strawman added about the same num-
ber of nodes on all domains, except the terminator data
set. On this data set, adding nodes off to the side of the
KBANN-net, in the style of Strawman, usually decreases
accuracy. Therefore, when Strawman picked a network
other than the KBANN network, its generalization usu-
ally decreased. Even with Strawman’s difficulty on this
domain, TopGen was still able to effectively add nodes
to increase performance.

6 Discussion and Future Work

Towell [1992] has shown that KBANN is superior to a
wide variety of machine learning algorithms on the pro-
moters and splice-junctions domains, including purely
symbolic approaches to theory refinement. Yet, even
though an expert (M. Noordewier) believed all four
Human Genome domain theories are large enough for

KBANN to adequately learn the concepts, TopGen was
able to effectively add new nodes to the corresponding
network. The effectiveness of adding nodes in a manner
similar to reducing error in a symbolic rulebase is verified
with comparisons to a naive approach to adding nodes.
If a KBANN-net, resulting from an impoverished domain
theory, suffered only in terms of capacity, then adding
nodes between the input and output nodes would have
been just as effective as TopGen’s approach to adding
nodes. This difference is particularly pronounced on the
terminator data set. TopGen has a longer run-time than
KBANN; however, we believe this is a wise investment,
since computers are becoming faster. We hope to obtain
even better results as we increase the time limit.

Future work includes using a rule-extraction algorithm
to measure the interpretability of a refined TopGen-
net. We hypothesize that TopGen builds networks that
are more interpretable than naive approaches of adding
nodes, such as the approach taken by Strawman. Trained
KBANN networks are interpretable because (a) the mean-
ing of its nodes does not significantly shift during train-
ing and (b) almost all the nodes are either fully active or
inactive [Towell, 1992]. TopGen adds nodes in a fashion
that does not violate these two assumptions.

Other future work includes testing new ways of adding
nodes. Nodes are currently added so that they are fully
connected to all input nodes. Other possible approaches
include: adding them to only a portion of the inputs,
adding them to nodes having high correlations with the
error, or adding them to the next “layer” of nodes.

7 Related Work

We described TopGen’s relationship to both network-
growing algorithms and the KBANN system earlier in this
paper. Another extension to KBANN is the DAID algo-
rithm [Towell and Shavlik, 1992]. DAID helps train a
KBANN-net by trying to locate low-level links with er-
rors, while TopGen expands a KBANN-net by searching
for nodes with errors. Propositional theory-refinement
systems, such as EITHER [Ourston and Mooney, 1990]
and RTLS [Ginsberg, 1990], are also related to Top-
Gen. These systems differ from TopGen, in that their
approaches are purely symbolic. Even though TopGen
adds nodes in a manner analogous to how a symbolic
system adds antecedents and rules, its underlying learn-
ing algorithm is “connectionist.” EITHER, for example,
uses ID3 for its induction component.

8 Conclusion

Although KBANN has previously been shown to be an
effective theory-refinement algorithm, it suffers because
it is unable to add nodes during training. When domain
theories are sparse, KBANN’s generalization degrades sig-
nificantly and it must overly corrupt the original rules to
account for the training examples. Our algorithm, Top-
Gen, heuristically searches through the space of possible
expansions of the original network, guided by the sym-
bolic domain theory, the network, and the training data.
It does this by adding hidden nodes to the neural repre-
sentation of the domain theory, in a manner analogous

to adding rules and conjuncts to a symbolic rulebase.

Experiments indicate that our method is able to
heuristically find effective places to add nodes to the
knowledge bases of four real-world problems and an ar-
tificial chess domain. Experiments also verified that
nodes must be added in an intelligent manner. Our algo-
rithm showed statistically-significant improvements over
KBANN in all five domains, and over a strawman ap-
proach in four domains. Hence, our new algorithm is
successful in overcoming KBANN’s limitation of not be-
ing able to dynamically add new nodes. In doing so, our
system promises to increase KBANN’s ability to general-
ize and learn a concept without needlessly corrupting the
initial rules, while at the same time, increasing the com-
prehensibility of rules extracted from a trained network.
Thus, our system further increases the applicability of
neural learning to problems having a substantial body
of preexisting knowledge.

References
[Craven and Shavlik, 1993] M. Craven and J. Shavlik.

Machine learning approaches to gene recognition. Ma-
chine Learning Research Group Working Paper 93-1,
Univ. of Wisconsin — Madison, 1993.

[Fahlman and Lebiere, 1989] S. Fahlman and
C. Lebiere. The cascade-correlation learning archi-
tecture. In Adv. in Neural Info. Processing Systems 2,
pages 524-532, Denver, CO, 1989. Morgan Kaufmann.

[Frean, 1990] M. Frean. The upstart algorithm: A
method for constructing and training feedforward neu-
ral networks. Neural Computation, 2:198-209, 1990.

[Ginsberg, 1990] A. Ginsberg. Theory reduction, theory
revision, and retranslation. Proc. of the 8th Nat. Conf.

on Artificial Intelligence, pages T77-782, 1990.

[Hinton, 1986] G. Hinton. Learning distributed repre-
sentations of concepts. In Proc. of the 8th Annual
Conf. of the Cognitive Science Soc., pages 1-12, 1986.

[Ourston and Mooney, 1990] D. Ourston and
R. Mooney. Changing the rules: A comprehensive ap-
proach to theory refinement. In Proc. of the 8th Nat.
Conf. on Artificial Intelligence, pages 815-820, 1990.

[Rumelhart et al., 1986] D. Rumelhart, G. Hinton, and
R. Williams. Learning internal representations by er-
ror propagation. In D. Rumelhart and J. McClel-
land, editors, Parallel Distributed Processing, Volume

1. MIT Press, Cambridge, MA, 1986.
[Towell and Shavlik, 1992] G. Towell and J. Shavlik. Us-

ing symbolic learning to improve knowledge-based
neural networks. In Proc. of the 10th Nat. Conf. on
Artificial Intelligence, pages 177-182, 1992.

[Towell et al., 1990] G. Towell, J. Shavlik, and M. No-
ordewier. Refinement of approximate domain theories
by knowledge-based neural networks. In Proc. of the
8th Nat. Conf. on Artificial Intelligence, pages 861—
866, Boston, MA, 1990.

[Towell, 1992] G. Towell. Symbolic Knowledge and Neu-
ral Networks: Insertion, Refinement, and Eziraction.
PhD thesis, Univ. of Wisconsin, Madison, WI, 1992.

