Appears in Connection Science, 8 (3-4), 1996.

Actively Searching for an Effective
Neural-Network Ensemble

David W. Opitz* Jude W. Shavlik
Computer Science Department Computer Sciences Department
University of Minnesota University of Wisconsin
10 University Drive 1210 W. Dayton St.
Duluth, MN 55812 Madison, WI 53706
opitz@cs.umt.edu shavlik@cs.wisc.edu
218-726-6149 608-262-7784

Fax: 218-726-8240

Abstract

A neural-network ensemble is a very successful technique where the outputs of a set of separately
trained neural network are combined to form one unified prediction. An effective ensemble
should consist of a set of networks that are not only highly correct, but ones that make their
errors on different parts of the input space as well; however, most existing techniques only
indirectly address the problem of creating such a set. We present an algorithm called ADDEMUP
that uses genetic algorithms to explicitly search for a highly diverse set of accurate trained
networks. ADDEMUP works by first creating an initial population, then uses genetic operators
to continually create new networks, keeping the set of networks that are highly accurate while
disagreeing with each other as much as possible. Experiments on four real-world domains show
that ADDEMUP is able to generate a set of trained networks that is more accurate than several
existing ensemble approaches. Experiments also show that ADDEMUP is able to effectively
incorporate prior knowledge, if available, to improve the quality of its ensemble.

*Currently at: Department of Computer Science; University of Montana; Missoula, MT 59812

Opitz & Shavlik

1 Introduction

Many researchers have shown that simply combining the output of many predictors can gen-
erate more accurate predictions than that of any of the individual predictors (Clemen, 1989;
Wolpert, 1992; Zhang et al., 1992). In particular, combining separately trained neural networks
(commonly referred to as a neural-network ensemble) has been demonstrated to be particularly
successful (Alpaydin, 1993; Drucker et al., 1994; Hansen & Salamon, 1990; Hashem et al., 1994;
Krogh & Vedelsby, 1995; Maclin & Shavlik, 1995; Perrone, 1992). Both theoretical (Hansen &
Salamon, 1990; Krogh & Vedelsby, 1995) and empirical (Hashem et al., 1994; Maclin & Shavlik,
1995) work has shown that a good ensemble is one where the individual networks are both ac-
curate and make their errors on different parts of the input space; however, most previous work
has either focussed on combining the output of multiple trained networks or only indirectly
addressed how one should generate a good set of networks. We present an algorithm, AD-
DEMUP (Accurate anD Diverse Ensemble-Maker giving United Predictions), that uses genetic
algorithms to generate a population of neural networks that are highly accurate, while at the
same time having minimal overlap on where they make their errors.

Traditional ensemble techniques generate their networks by randomly trying different topolo-
gies, initial weight settings, parameters settings, or use only a part of the training set (Alpaydin,
1993; Hansen & Salamon, 1990; Krogh & Vedelsby, 1995; Maclin & Shavlik, 1995) in the hopes of
producing networks that disagree on where they make their errors (we henceforth refer to diver-
sity as the measure of this disagreement). We propose instead to actively search for a good set of
networks. The key idea behind our approach is to consider many networks and keep a subset of
the networks that minimizes our objective function consisting of both an accuracy and a diver-
sity term. Since genetic algorithms are effective in their use of global information (Holland, 1975;
Goldberg, 1989), they allow us to consider a wide variety of networks during our search and
are thus a logical choice for our search method. Also, in many domains we care more about
generalization' performance than we do about generating a solution quickly. This, coupled with
the fact that computing power is rapidly growing, motivates us to effectively utilize available
CPU cycles by continually considering networks to possibly place in our ensemble.

ADDEMUP proceeds by first creating an initial set of networks, then continually produces
new individuals by using the genetic operators of crossover and mutation. It defines the overall
fitness of an individual to be a combination of accuracy and diversity. Thus ADDEMUP keeps
as its population a set of highly fit individuals that will be highly accurate, while making their
mistakes in a different part of the input space. In addition, it actively tries to generate good
candidates by emphasizing the current population’s erroneous examples during backpropagation
training.

In this paper, we investigate using ADDEMUP with both “standard” neural networks and
knowledge-based neural networks (KNNs). KNNs are networks whose topologies are determined
as a result of the direct mapping of a set of background rules that represent what we currently
know about our task (which we hereafter refer to as a domain theory). Trained KNNs have
been shown (Opitz, 1995; Towell & Shavlik, 1994) to frequently generalize better than many
other inductive-learning techniques such as standard neural networks. While KNNs that are
derived from the same set of rules may tend to agree, using KNNs allows one to have in his or
her ensemble highly correct networks. In fact, experiments reported herein demonstrate that
ADDEMUP is able use KNNs to generate a more effective ensemble of networks than a wide

! As is typical, we use generalization to mean accuracy on examples not seen during training.

Opitz & Shavlik

0
eo ensemble output

gl

| combine network outputs

|

Ox
B

« |Nnetwork N

1

1o |
AR

| network 1|
It

e @ @ input

Figure 1: A neural-network ensemble.

variety of other ensemble techniques.

The rest of this article is organized as follows. We start by explaining the importance
of an accurate and diverse ensemble. Next we present our new algorithm. We then present
experimental results from four real-world domains. Finally, we discuss these results and review
additional related work before concluding.

2 Neural Network Ensembles

Figure 1 illustrates the basic framework of a neural-network ensemble. Each network in the
ensemble (network 1 through network N in this case) is first trained using the training instances.
Then, for each example, the predicted output of each of these networks (o; in Figure 1) is
combined to produce the output of the ensemble (6 in Figure 1). Many researchers (Alpaydin,
1993; Breiman, 1996b; Hashem et al., 1994; Krogh & Vedelsby, 1995; Lincoln & Skrzypek, 1989)
have demonstrated the effectiveness of combining schemes that are simply the weighted average
of the networks (i.e., 6 = >,y w; - 0; and > ;cy w; = 1), and this is the type of ensemble on
which we focus in this article, though we briefly review alternative methods in Section 6.

Combining the output of several networks is useful only if there is disagreement on some
inputs. Obviously, combining several identical networks produces no gain. Hansen and Salamon
(1990) proved that for a neural-network ensemble, if the average error rate for an example is
less than 50% and the networks in the ensemble are independent in the production of their
errors, the expected error for that example can be reduced to zero as the number of networks
combined goes to infinity; however, such assumptions rarely hold in practice.

Krogh and Vedelsby (1995) later proved that the ensemble error can be divided into a term
measuring the average generalization error of each individual network and a term called diversity
that measures the disagreement among the networks.? Formally, they define the diversity term,

*Krogh and Vedelsby (1995) refer to diversity as ambiguity.

Opitz & Shavlik

d;, of network ¢ on input x to be:

di(z) = [05(z) — o(=)]*. (1)
The quadratic error of network ¢ and of the ensemble are, respectively:
ei(z) = [oi(x) — f(@)], (2)

e(z) = [o(z) — f(2)]?, (3)
where f(x) is the target value for input x. If we define E, E;, and D; to be the averages, over

the input distribution, of e(x), €(x), and d(x) respectively, then the ensemble’s generalization
error can be shown to consist of two distinct portions:

E=E-D, (4)

where E (= Y, w;E;) is the weighted average of the individual networks’ generalization error
and D (= Y, w;D;) is the weighted average of the diversity among these networks. What the
equation shows then, is that an ideal ensemble consists of highly correct networks that disagree
as much as possible. Creating such a set of networks is the focus of this article.

3 The ADDEMUP Algorithm

In this section, we start by giving ADDEMUP’s top-level design which describes how it searches
for an effective ensemble. This is followed by the details of the particular instantiation of
ADDEMUP we use in this article. Namely, we describe how we incorporate prior knowledge into
neural networks, then describe how we use genetic algorithms to create new candidate networks
for our ensemble.

3.1 ADDEMUP’s Top-Level Design

Table 1 summarizes our algorithm, ADDEMUP, that uses genetic algorithms to generate a set of
neural networks that are accurate and diverse in their predictions. ADDEMUP starts by creating
and training its initial population of networks. It then creates new networks by using standard
genetic operators, such as crossover and mutation.?> ADDEMUP trains these new individuals,
emphasizing examples that are misclassified by the current population, as explained below. It
adds new networks to the population and then scores each population member with respect to
its prediction accuracy and diversity. ADDEMUP normalizes these scores and then defines the
fitness of each population member to be:

Fitness; = Accuracy; + A Diversity; = (1 — E;) + X\ Dy, (5)

where A defines the tradeoff between accuracy and diversity. Finally, ADDEMUP prunes the
population to the N most-fit members, which it defines to be its current ensemble, then repeats
this process.

We define our accuracy term, 1 — E;, to be network 4’s validation-set accuracy (or training-
set accuracy if a validation set is not used), and we use Equation 1 over this validation set to

30One may use any search mechanism during this step. We compare our genetic algorithms approach with a
simulated annealing version in Section 4.

Opitz & Shavlik

Table 1: The ADDEMUP algorithm.

GOAL: Genetically create an accurate and diverse ensemble of networks.
1. Create and train the initial population of networks (see Section 3.2).
2. Until a stopping criterion is reached:

(a) Use genetic operators to create new networks (see Section 3.2).
(b) Train the new networks using Equation 6 and add them to the population.

(c) Measure the diversity of each network with respect to the current population (see
Equation 1).

) Normalize the accuracy scores and the diversity scores of the individual networks.
(e) Calculate the fitness of each population member (see Equation 5).
(f) Prune the population to the N fittest networks.
) Adjust A (see the text for an explanation).
)

This population of networks compose the current ensemble. Combine the output of
these networks according to Equation 7.

calculate our diversity term, D;. We then separately normalize each term so that the values
range from 0 to 1. Normalizing both terms allows A to have the same meaning across domains.

Since it is not always clear at what value one should set A, we have therefore developed
some rules for automatically adjusting A. First, we never change A if the ensemble error E
is decreasing while we consider new networks; otherwise we change A if one of following two
things happen: (a) the population error E is not increasing and the population diversity D is
decreasing; diversity seems to be under emphasized and we increase A, or (b) E is increasing
and D is not decreasing; diversity seems to be over-emphasized and we decrease . (We started
A at 0.1 for the experiments in this article. The amount A\ changes is 10% of its current value.)

A useful network to add to an ensemble is one that correctly classifies as many examples as
possible, while making its mistakes primarily on examples that most of the current population
members correctly classify. We address this during backpropagation training by multiplying the
usual error function by a term that measures the combined population error on that example:

Cost = Z

keT

A
X1

#R) — OK) 1™ 4 k) — ok, (6)

~

E

where #(k) is the target and o(k) is the network activation for example k£ in the training set
T. Notice that since the network is not yet a member of the ensemble, 6(k) and E are not
dependent on this network; our new term is thus a constant when calculating the derivatives
during backpropagation. We normalize (k) — 6(k) by the current ensemble error E so that the
average value of our new term is around 1 regardless of the correctness of the ensemble. This
is especially important with highly accurate populations, since t(k) — 6(k) will be close to 0 for
most examples, and the network would only get trained on a few examples. The exponent -

pus]
represents the ratio of importance of the diversity term in the fitness function. For instance, if

Opitz & Shavlik

A is close to 0, diversity is not considered important and the network is trained with the usual
cost function; however, if A is large, diversity is considered important and our new term in the
cost function takes on more importance.

We combine the predictions of the networks by taking a weighted sum of the output of each
network, where each weight is based on the validation-set accuracy of the network. Thus we
define our weights for combining the networks as follows:

1-E
S k(=B

While simply averaging the outputs can generate a good composite model (Clemen, 1989), we
include the predicted accuracy in our weights since one should believe accurate models more
than inaccurate ones. We also tried more complicated models, such as emphasizing confident
activations (i.e., activations near 0 or 1), but they did not improve the results on our testbeds.
One possible explanation is that optimizing the combining weights can easily lead to overfitting
(Sollich & Krogh, 1996). We use validation-set accuracy, instead of Breiman’s J-fold partitioning
(Breiman, 1996b) since, during crossover, new networks are created from two existing networks
which may have come from different folds. Therefore it is desirable to have each network use
the same validation set.

(7)

w;

3.2 Creating and Crossing-Over Knowledge-Based Neural Networks

Steps 1 and 2a in Table 1 specify that new networks need to be created. The algorithm we use
for generating these new networks is the REGENT algorithm (Opitz & Shavlik, 1994). REGENT
uses genetic algorithms to search through the space of possible neural network topologies.
REGENT is specifically designed for KNNs, though it applies to standard neural networks as
well. Before presenting the exact details of these steps, we discuss (a) how we generate KNNs,
and (b) REGENT’s genetic operators for refining the topology of these networks.

An empirically successful algorithm for creating KNNs is the KBANN algorithm (Towell &
Shavlik, 1994). KBANN translates a set of propositional rules into a neural network, then refines
the resulting KNN’s weights using backpropagation. Figure 2 illustrates this translation pro-
cess. Figure 2a shows a Prolog-like rule set that defines membership in category a. Figure 2b
represents the hierarchical structure of these rules, with solid lines representing necessary de-
pendencies and dotted lines representing prohibitory dependencies. Figure 2c represents the
resulting network created from this translation. KBANN creates nodes bl and b2 in Figure 2c to
handle the two rules defining b in the rule set. Biases are set to represent the appropriate AND
or OR structure of each corresponding node. The thin lines in Figure 2c are lightly-weighted
links that KBANN adds to allow refinement of these rules during backpropagation training.

This training alters the antecedents of existing rules; however, KBANN does not have the
capability of inducing new rules. For example, KBANN is unable to add a third rule for inferring
b. Thus KBANN suffers when given domain theories that are missing rules needed to adequately
learn the true concept (Opitz & Shavlik, 1993; Towell & Shavlik, 1994). REGENT addresses
this limitation by searching for refinements to a KNN’s topology. It does this by using (a) the
domain theory to help create an initial population and (b) crossover and mutation operators
specifically designed for knowledge-based networks.

REGENT attempts to create an initial population of networks that comes from the same
domain theory and yet is diverse. It does this by randomly perturbing the KBANN-generated
network at various nodes, thus creating diversity about the domain theory. Briefly, REGENT

Opitz & Shavlik

a:— b, notc.
b:-d, note,i.
b :—d, not f, not k.
c:—notg,h,j.

(@

Figure 2: Translation of a knowledge base into a neural network.
.. (0]
Original | Outeut uiput
Networks
Crossed
Over |nput InpUt
Output Output
Resulting \
Networks
Input Input
Figure 3: REGENT’s method for crossing over two networks. The hidden nodes in each original

network are divided into the sets A and B; the nodes in the two A sets form one new network,
while the two B sets form another.

perturbs a node by either (a) deleting it, or (b) applying its mutation operator (which we
explain below).

REGENT crosses over two networks by first dividing the nodes in each parent network into
two sets, A and B, then combining the nodes in each set to form two new networks (i.e., the
nodes in the two A sets form one network, while the nodes in the two B sets form another).
Figure 3 illustrates this crossover with an example. REGENT probabilistically divides the nodes
into sets so that nodes that are connected by heavily weighted links tend to belong to the same
set. This helps to minimize the destruction of the rule structure of the crossed-over networks,
since nodes belonging to the same syntactic rule are connected by heavily weighted links. Thus,
REGENT’s crossover operator produces new networks by crossing-over rules, rather than simply
crossing-over nodes.

REGENT’s mutation operator adds diversity to the population by adding new nodes to one
member of the population. The mutation operator proceeds by estimating where errors are in
the network, then adds new nodes in response to these estimates. The operator judges where
errors are in a network by using training examples to increment two counters for each node,

Opitz & Shavlik

Existing Node Decrease False Negatives Decrease False Positives

B C B C New
Node
OR Node

@

New
Node

New
Node

B C
AND Node

Figure 4: How the mutation operator adds new nodes to knowledge-based networks. Arcs
indicate AND nodes.

one for false negatives and one for false positives.* Thus the mutation operator adds diversity
to a population, while still maintaining a directed, heuristic-search technique for improving the
quality of an individual.

Figure 4 shows the possible ways that REGENT’s mutation operator adds nodes to KNNs.
In a symbolic rulebase that uses negation-by-failure, one can decrease false negatives by either
dropping antecedents from existing rules or adding new rules to the rulebase. Since gradient-
based training is effective at removing antecedents from existing rules (Towell & Shavlik, 1994),
the mutation operator adds nodes, intended to decrease false negatives, in a fashion that is
analogous to adding a new rule to the rulebase (see Figure 4a,c). The mutation operator
decreases false positives by creating new antecedents for the node (see Figure 4b,d). In doing
so, this operator is able to add rules, whose consequents were previously undefined, to the
rulebase (something, as discussed above, gradient-based training is incapable of doing).

For the results in this article, ADDEMUP uses, as its step 1 in Table 1, REGENT’s method
for creating its initial population, and, as its step 2a in Table 1, REGENT’s genetic operators to
create new networks. These steps also apply to standard neural networks if no domain-specific
knowledge is available; however in order to properly use the genetic operators presented above,
we need to create networks whose node structure is analogous to dependencies found in symbolic
rule bases. We do this by first randomly picking the number of hidden nodes to include in
a network; we repeatedly add hidden nodes to the network being constructed by randomly
selecting an existing output or hidden node, then adding new nodes to this node using one of
the four methods shown in Figure 4.

4 Experimental Study

We ran ADDEMUP on NYNEX’s MAX problem set (Provost & Danyluk, 1995) and on three prob-
lems from the Human Genome Project that aid in locating genes in DNA sequences (recognizing

4A node’s false-positive counter is incremented if changing its activation to 0 causes the network to correct
an erroneous output. Counters for false negatives are defined analogously.

Opitz & Shavlik

promoters, splice-junctions, and ribosome-binding sites - RBS). MAX is an expert system that
was designed by NYNEX to diagnose the location of customer-reported telephone problems. The
inputs in this case are an electronic profile of the telephone loop and the task it to learn where
in this loop the problem occurs. In each of the DNA programs, the input is a short segment
of DNA nucleotides (about 100 elements long) and the task is learn to predict if this DNA
subsequence contains a biologically important site.

Each of these domains is accompanied by a set of approximately correct rules describing what
is currently known about the task (see Opitz, 1995, or Opitz and Shavlik, 1994, for more details).
The DNA domains are available at the University of Wisconsin Machine Learning (UW-ML)
site via the World Wide Web (ftp://ftp.cs.wisc.edu/machine-learning/shavlik-group/
datasets/) or anonymous ftp (ftp.cs.wisc.edu, then cd to machine-learning/ shavlik-
group/datasets). Due to proprietary reasons, the NYNEX problem set is not publicly available.

Our experiments in this article measure the test-set error of ADDEMUP on these four real-
world datasets. All results presented are from a ten-fold cross validation. Within each fold,
algorithms that need a validation set held out 10% of the training instances for that set. Each
ensemble consists of 20 networks, and the REGENT and ADDEMUP algorithms considered 250
networks during their genetic search.

4.1 Generalization Ability of ADDEMUP

In this subsection, we divide our experiments into two classes: (a) the algorithms randomly
create the topology of their networks, and (b) they utilize the domain theory to create their
networks (i.e., they use KNNs). As stated earlier, using KNNs allows one to have in his or her
ensemble highly correct networks that tend to agree. The alternative of randomly generating
the network topologies thus trades off the overall accuracy of each single network for more
disagreement between the networks.

As points of comparison, we include the results of running (a) Breiman’s et al. (1996a)
Bagging algorithm, and (b) a simulated annealing (Aarts & Korst, 1989) version of ADDEMUP.
Bagging is a “bootstrap” (Efron & Tibshirani, 1993) ensemble method that trains each network
in the ensemble with a different partition of the training set. It generates each partition by
randomly drawing, with replacement, N examples from the training set, where N is the size of
the training set. Breiman (1996a) showed that Bagging is effective on “unstable” learning al-
gorithms where small changes in the training set result in large changes in predictions. Earlier,
Breiman (1984) studied instability, and claimed that neural networks and decision trees are un-
stable, while k-nearest-neighbor methods are stable. We also tried other ensemble approaches,
such as randomly creating varying multi-layer network topologies and initial weight settings,
but Bagging did significantly better on all datasets (by 15-25% on all three DNA domains).

Our simulated annealing (SA) version of ADDEMUP substituted the genetic operators in
step 2a of Table 1 with an SA operator. Our SA operator works by altering a random member
of the current population either by (a) using TopGen (i.e., REGENT’s mutation operator) to
heuristically refine the network’s topology or (b) REGENT’s algorithm for randomly altering
the topology of a network when creating its initial population. The probability of randomly
altering the topology (i.e., operator b above) versus systematically altering the topology (i.e.,
operator a above) decreases with the temperature of the system according to the Bolzmann
distribution. For these experiments, temperature started at 270 and decayed 5% after each
alteration; therefore, the probability of randomly altering the topology was close to 1 initially,
and close to 0 at the end of each run.

Opitz & Shavlik

Table 2: Test-set error from a ten-fold cross validation. Table (a) shows the results from running
the learners without the domain theory; Table (b) shows the results of running the learners
with the domain theory. Pairwise, one-tailed #tests indicate that ADDEMUP-GA in Table (b)
differs from the other algorithms (other than ADDEMUP-SA in Table b) in both tables at the
95% confidence level, except with REGENT-combined in the splice-junction domain.

‘ Standard neural networks (no domain theory used) ‘

Promoters | Splice Junction | RBS | NYNEX
best-network 6.6% 7.8% 10.7% | 37.0%
Bagging 4.6% 4.5% 9.5% | 35.7%
ADDEMUP-SA 4.6% 4.9% 9.3% | 35.2%
ADDEMUP-GA 4.5% 4.9% 9.0% | 34.9%

(a)

‘ Knowledge-based neural networks (domain theory used) ‘

Promoters | Splice Junction | RBS | NYNEX

KBANN 6.2% 5.3% 9.4% | 35.8%
Bagging-KNN 4.2% 4.5% 8.5% | 35.6%
REGENT-best-network 4.4% 4.1% 8.8% | 35.9%
REGENT-combined 3.9% 3.9% 8.2% | 35.6%
ADDEMUP-SA 3. 7% 4.0% 7.8% | 35.5%
ADDEMUP-GA 3.0% 3.6% 7.5% | 34.7%

(b)

4.1.1 Generating Non-KNN Ensembles

Table 2a presents the results from the case where the learners randomly create the topology of
their networks (i.e., they do not use the domain theory). Table 2a’s first row, best-network,
results from a single-layer neural network where, for each fold, we trained 20 networks (uni-
formly) containing between 0 and 100 hidden nodes and used a validation set to choose the best
network. The next row, Bagging, contains the results of applying the Bagging algorithm to
20 standard, single-hidden-layer networks, where the number of hidden nodes is randomly set
between 0 and 100 for each network. The results confirm Breiman’s prediction that Bagging
would be effective with non-KNNs because of the “instability” of standard neural networks.
That is, a slightly different training set can produce large alterations in the predictions of the
networks, thereby leading to an effective ensemble.

The bottom two rows of Table 2a contain the results of the SA and GA versions of ADDEMUP
where, in both cases, their initial population (of size 20) is randomly generated using REGENT’s
method for creating networks when no domain theory is present (refer to Opitz, 1995, for
more details). Even though both versions of ADDEMUP train each network with the same
training set, it still produces results comparable to Bagging. The results show that - on these
domains - combining the output of multiple trained networks generalizes better than trying
to pick the single-best network. Pairwise, one-tailed #tests indicate that Bagging and both

Opitz & Shavlik

ADDEMUP versions differ from best-network at the 95% confidence level on all four domains;
however, while ADDEMUP-GA produces better results than both ADDEMUP-SA and Bagging,
this difference is not significant at this level.

4.1.2 Generating KNN Ensembles

While the previous section shows the general power of a neural-network ensemble, Table 2b
demonstrates ADDEMUP’s ability to utilize prior knowledge. Again, each ensemble contains 20
networks. The first row of Table 2b contains the generalization results of the KBANN algorithm,
while the next row, Bagging-KNN, contains the results of the ensemble where each individual
network in the ensemble is the KBANN network trained on a different partition of the training
set. Even though each of these networks start with the same topology and “large” initial weight
settings (i.e., the weights resulting from the domain theory), small changes in the training set
still produce significant changes in predictions. Also notice that on all datasets, Bagging-KNN
is as good as or better than running Bagging on randomly generated networks (i.e., Bagging
in Table 2a).

The next two rows result from the REGENT algorithm. The first row, REGENT-best-network,
contains the results from the single best network output by REGENT, while the next row,
REGENT-combined, contains the results of simply combining, using Equation 7, the net-
works in REGENT’s final population. Opitz and Shavlik (1994) showed the effectiveness of
REGENT-bestnetwork, and comparing it with the results in Table 2a reaffirms this belief. No-
tice that simply combining the networks of REGENT’s final population (REGENT-combined)
decreases the test-set error over the single-best network picked by REGENT.

The final two rows present the results from the two versions of ADDEMUP. While AD-
DEMUP-SA produces better results than Bagging-KNN, it only produces slightly better results
overall than REGENT-combined. ADDEMUP-GA, however, is able to generate a more effective
ensemble than the other learners. ADDEMUP-GA mainly differs from REGENT-combined in two
ways: (a) its fitness function (i.e., Equation 5) takes into account diversity rather than just
network accuracy, and (b) it trains new networks by emphasizing the erroneous examples of
the current ensemble. Therefore, comparing ADDEMUP-GA with REGENT-combined directly
test ADDEMUP’s diversity-achieving heuristics. Also, since genetic algorithms are effective at
global optimizations, they are more effective at generating diverse ensembles than our simulated
annealing approach. (For the rest of this article, we concentrate only on the genetic algorithm
version of ADDEMUP.)

4.2 Lesion Study of ADDEMUP

We also performed a lesion study® on ADDEMUP’s two main diversity-promoting components:
(a) its fitness function (i.e., Equation 5) and (b) its reweighting of each training example based
on ensemble error (i.e., Equation 6). Table 3 contains the results for this lesion study. The first
row, REGENT-combined, is a repeat from Table 2b, where we simply combined the networks
of REGENT’s final population. The next two rows are “lesions” of ADDEMUP. The first, AD-
DEMUP-weighted-examples, is ADDEMUP with only reweighting the examples during training,
while the second, ADDEMUP-fitness, is ADDEMUP with only its new fitness function. The

5 A lesion study is one where components of an algorithm are individually disabled to ascertain their contri-
bution to the full algorithm’s performance (Kibler & Langley, 1988).

Opitz & Shavlik

Table 3: Test-set error on the lesion studies of ADDEMUP. Due to the inherent similarity of each
algorithm and the lengthy run-times limiting the number of runs to a ten-fold cross-validation,
the difference between the lesions of ADDEMUP is not significant at the 95% confidence level.

Promoters | Splice Junction | RBS

REGENT-combined 3.9% 3.9% 8.2%
ADDEMUP-weighted-examples 3.8% 3.8% 7.8%
ADDEMUP-fitness 3.1% 3.7% 7.4%
ADDEMUP-both 2.9% 3.6% 7.5%

final row of the table, ADDEMUP-both, is ADDEMUP with both its fitness function and its
reweighting mechanism (i.e., a repeat of ADDEMUP from Table 2b).

The results show that, while reweighting the examples during training usually helps, AD-
DEMUP gets most of its generalization power from its fitness function. Reweighting examples
during training helps create new networks that make their mistakes on a different part of the
input space than the current ensemble; however, these networks might not be as correct as
training on each example evenly, and thus might be deleted from the population without an
appropriate fitness function that takes into account diversity.

5 Discussion and Future Work

The results in Table 2 show that combining the output of multiple trained networks generalizes
better than trying to pick the single-best network, verifying the conclusions of previous work
(Alpaydin, 1993; Breiman, 1996a; Hansen & Salamon, 1990; Hashem et al., 1994; Krogh &
Vedelsby, 1995; Lincoln & Skrzypek, 1989; Maclin & Shavlik, 1995; Mani, 1991; Perrone, 1992).
When generating KNN ensembles, since every network in the population comes from the same
set of rules, we expect each network to be similar. Thus the magnitude of the improvements
of the KNN ensembles, especially KBANN-Bagging and REGENT-combined, comes as a bit of
a surprise. REGENT, however, does create some diversity during its genetic search to ensure
a broad consideration of the concept space (Goldberg, 1989; Holland, 1975). It does this
by randomly perturbing the topology of each knowledge-based neural network in the initial
population and it also encourages diversity when creating new networks during the search
through its mutation operator.

While REGENT encourages diversity in its population, it does not actively search for a highly
diverse population like ADDEMUP. In fact the single best network produced by ADDEMUP (5.1%
error rate on the promoter domain, 5.3% on the splice-junction domain, and 9.1% on the RBS
domain) is distinctively worse than REGENT’s single best network (4.4%, 4.1%, and 8.8% on
the three respective domains). Thus, while excessive diversity does not allow the population to
find and improve the single best network, the results in Table 2b show that more diversity is
needed when generating an effective ensemble. There are two main reasons why we think the
results of ADDEMUP in Table 2b are especially encouraging: (a) by comparing ADDEMUP with
REGENT-combined, we explicitly test the quality of our fitness function and demonstrate its
effectiveness, and (b) ADDEMUP is able to effectively utilize background knowledge to decrease
the error of the individual networks in its ensemble, while still being able to create enough

Opitz & Shavlik

diversity among them so as to improve the overall quality of the ensemble.

Our first planned extension to ADDEMUP is to investigate new methods for creating networks
that are diverse in their predictions. While ADDEMUP currently tries to generate such networks
by reweighting the error of each example, the lesion study showed that ADDEMUP gets most
of its increase in generalization from its fitness function. One alternative we plan to try is the
Bagging algorithm. We plan to use bootstrapping to assign each new population member’s
training examples. Moreover, rather than just randomly picking these training instances, we
plan to investigate the utility of more intelligently picking this learning set. For instance, one
could emphasize picking examples the current ensemble misclassifies.

Future work also includes investigating intelligent methods for setting the combining weights.
Currently, ADDEMUP combines each network in the ensemble by taking the weighted average
of the output of each network, where each weight is set to the validation-set accuracy of the
network. One approach we plan to implement is a proposed method by Krogh and Vedelsby
(1995) that tries to optimally find the settings that minimize the ensemble generalization error
in Equation 4. They do this by turning the constraints into a quadratic optimization problem.
Thus, while ADDEMUP searches for a set of networks that minimize Equation 4, this approach
searches for a way to optimally combine the set for this equation.

The framework of ADDEMUP and the theory it builds upon can be applied to any inductive
learner, not just neural networks. Future work then, is to investigate applying ADDEMUP to
these other learning algorithms as well. With genetic programming (Koza, 1992), for instance,
we could translate perturbations of the domain theory into a set of dependency trees (see
Figure 2b), then continually create new candidate trees via crossover and mutation. Finally,
we would keep the set of trees that are a good fit for our objective function containing both an
accuracy and diversity term. By implementing ADDEMUP on a learner that creates its concepts
faster than training a neural network, we can more extensively study various issues such as
finding good ways to change the tradeoff between accuracy and diversity, investigating the
value of normalizing the accuracy and diversity terms, and finding the appropriate size of an
ensemble.

6 Additional Related Work

As mentioned before, the idea of using an ensemble of networks rather than the single best
network has been proposed by several people. We presented a framework for these systems
along with a theory of what makes an effective ensemble in Section 2. Lincoln and Skrzypek
(1989), Mani (1991) and the forecasting literature (Clemen, 1989; Granger, 1989) indicate
that a simple averaging of the predictors generates a very good composite model; however,
many later researchers (Alpaydin, 1993; Breiman, 1996b; Hashem et al., 1994; Perrone, 1992;
Wolpert, 1992; Zhang et al., 1992) have further improved generalization with voting schemes
that are complex combinations of each predictor’s output. One must be careful in this case,
since optimizing the combining weights can easily lead to the problem of overfitting which
simple averaging seems to avoid (Sollich & Krogh, 1996).

Most approaches do not actively try to generate highly correct networks that disagree as
much as possible. These approaches either randomly create their networks (Hansen & Salamon,
1990; Lincoln & Skrzypek, 1989), or indirectly try to create diverse networks by training each
network with dissimilar learning parameters (Alpaydin, 1993), different network architectures
(Hashem et al., 1994), various initial weight settings (Maclin & Shavlik, 1995), or separate

Opitz & Shavlik

partitions of the training set (Breiman, 1996a; Krogh & Vedelsby, 1995). Unlike ADDEMUP
however, these approaches do not directly address how to generate such networks that are
optimized for the ensemble as a whole.

One method that does actively create members for its ensemble, however, is the Boosting
algorithm (Shapire, 1990). Boosting converts any learner that is guaranteed to always perform
slightly better than random guessing into one that achieves arbitrarily high accuracy. Drucker
et al. (1992) applied Boosting to neural networks to improve their error rate on a handwritten-
digit-recognition task. A problem with the Boosting algorithm, however, is that with a finite
amount of training examples, unless the first network has very poor performance, there may
not be enough examples to generate a second or third training set. For instance, if a KBANN
network is trained with 3,000 examples from one of the DNA tasks and it reaches 95% correct,
you would need 30,000 examples to find an appropriate training set for the second network.
Even more examples would be needed to generate a third training set.

Recently, Drucker and Cortes (1996) applied a new boosting algorithm, termed AdaBoost
(Freund & Shapire, 1995), to decision trees. This algorithm builds an ensemble one member at
a time, where each new member randomly picks examples from the original training set with
higher probability assigned to those patterns the current ensemble classifies incorrectly. (Bag-
ging, on the other hand, randomly picks each example with equal probability.) One potential
problem with this approach is that, since it continually picks training sets consisting mostly
of incorrect examples, the new members added to the ensemble are likely to be less correct
than earlier methods. As stated earlier, an effective ensemble must not only consist of members
who disagree, but ones that are accurate as well. While ADDEMUP also emphasizes incorrectly
classified examples, it still trains on all examples, and then includes a new network into its
ensemble only if it is also highly accurate.

An alternate approach to the ensemble framework is to train individual networks on a
subtask, and to then combine these predictions with a “gating” function that depends on the
input. Jacobs et al.’s (1991) adaptive mixtures of local experts, Baxt’s (1992) method for
identifying myocardial infarction, and Nowlan and Sejnowski’s (1992) visual model all train
networks to learn specific subtasks. The key idea of these techniques is that a decomposition
of the problem into specific subtasks might lead to more efficient representations and training
(Hampshire & Waibel, 1989).

Once a problem is broken into subtasks, the resulting solutions need to be combined. Jacobs
et al. (1991) propose having the gating function be a network that learns how to allocate
examples to the experts. Thus the gating network allocates each example to one or more
experts, and the backpropagated errors and resulting weight changes are then restricted to
these networks (and the gating function). Tresp and Taniguchi (1995) propose a method for
determining the gating function after the problem has been decomposed and the experts trained.
Their gating function is an input-dependent, linear-weighting function that is determined by
a combination of the networks’ diversity on the current input with the likelihood that these
networks have seen data “near” that input.

Although the mixtures of experts and ensemble paradigms seem very similar, they are in
fact quite distinct from a statistical point of view. The mixtures-of-experts model makes the
assumption that a single expert is responsible for each example. In this case, each expert is a
model of a region of the input space, and the job of the gating function is to decide from which
model the data point originates. Since each network in the ensemble approach learns the whole
task rather than just some subtask and thus makes no such mutual exclusivity assumption,

Opitz & Shavlik

ensembles are appropriate when no one model is highly likely to be correct for any one point
in our input space.

7 Conclusions

Previous work with neural-network ensembles have shown them to be an effective technique if
the predictors in the ensemble are both highly correct and disagree with each other as much
as possible. Our new algorithm, ADDEMUP, uses genetic algorithms to search for a correct and
diverse population of neural networks to be used in the ensemble. It does this by collecting
the set of networks that best fits an objective function that measures both the accuracy of
the network and the disagreement of that network with respect to the other members of the
set. ADDEMUP tries to actively generate quality networks during its search by emphasizing the
current ensemble’s erroneous examples during backpropagation training.

Since ADDEMUP continually considers new networks to include in its ensemble, it can be
viewed as an “anytime” learning algorithm. Such a learning algorithm should produce a good
concept quickly, then continue to search concept space, reporting the new “best” concept when-
ever one is found (Opitz & Shavlik, 1994). This is important since, for most domains, an expert
is willing to wait for weeks, or even months, if a learning system can produce an improved con-
cept.

Experiments demonstrate that our method is able to find an effective set of networks for
our ensemble. Experiments also show that ADDEMUP is able to effectively incorporate prior
knowledge, if available, to improve the quality of this ensemble. In fact, when using domain-
specific rules, our algorithm showed statistically significant improvements over (a) the single
best network seen during the search, (b) a previously proposed ensemble method called Bagging
(Breiman, 1996a), and (c) a similar algorithm whose objective function is simply the validation-
set correctness of the network. In summary, ADDEMUP is successful in generating a set of neural
networks that work well together in producing an accurate prediction.

Acknowledgement

This work was supported by Office of Naval Research grant N00014-93-1-0998. This is an
extended version of a paper published in Advances in Neural Information Processing Systems
8, D. Touretzky, M. Mozer and M. Hasselmo, eds., (pp. 535-541), MIT Press: Cambridge, MA,
1996.

References

Aarts, E. & Korst, J. (1989). Simulated Annealing and Bolzmann Machines. Wiley.

Alpaydin, E. (1993). Multiple networks for function learning. In Proceedings of the 1998 IEEFE Inter-
national Conference on Neural Networks (volume 1), (pp. 27-32), San Fransisco.

Baxt, W. (1992). Improving the accuracy of an artificial neural network using multiple differently
trained networks. Neural Computation, 4:772-780.

Breiman, L. (1996a). Bagging predictors. Machine Learning, 24(2):123-140.
Breiman, L. (1996b). Stacked regressions. Machine Learning, 24(1):49-64.

Opitz & Shavlik

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA.

Clemen, R. (1989). Combining forecasts: A review and annotated bibliography. International Journal
of Forecasting, 5:559-583.

Drucker, H. & Cortes, C. (1996). Boosting decision trees. In Touretsky, D., Mozer, M., & Hasselmo,
M., editors, Advances in Neural Information Processing Systems (volume 8), Cambridge, MA. MIT
Press.

Drucker, H., Cortes, C., Jackel, L., LeCun, Y., & Vapnik, V. (1994). Boosting and other machine
learning algorithms. In Proceedings of the Eleventh International Conference on Machine Learning,
(pp. 53-61), New Brunswick, NJ. Morgan Kaufmann.

Drucker, H., Schapire, R., & Simard, P. (1992). Improving performance in neural networks using a
boosting algorithm. In Hanson, J., Cowan, J., & Giles, C., editors, Advances in Neural Information
Processing Systems (volume 5), (pp. 42-49), Palo Alto, CA. Morgan Kaufmann.

Efron, B. & Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman and Hall, New York.

Freund, Y. & Shapire, R. (1995). A decision-theoretic generalization of on-line learning and an appli-
cation to boosting. In Proceedings of the Second European Conference on Computational Learning.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, Reading, MA.

Granger, C. (1989). Combining forecasts: Twenty years later. Journal of Forecasting, 8:167-173.

Hampshire, J. & Waibel, A. (1989). The meta-pi network: Building distributed knowledge repre-
sentations for robust pattern recognition. Technical Report TR, CMU-CS-89-166, CMU, Pittsburgh,
PA.

Hansen, L. & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12:993-1001.

Hashem, S., Schmeiser, B., & Yih, Y. (1994). Optimal linear combinations of neural networks: An
overview. In Proceedings of the 1994 IEEE International Conference on Neural Networks, Orlando, FL.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor, M1

Jacobs, R., Jordan, M., Nowlan, S., & Hinton, G. (1991). Adaptive mixtures of local experts. Neural
Computation, 3:79-87.

Kibler, D. & Langley, P. (1988). Machine learning as an experimental science. In Proceedings of the
Third European Working Session on Learning, (pp- 1-12), Edinburgh, UK.

Koza, J. (1992). Genetic Programming. MIT Press, Cambridge, MA.

Krogh, A. & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active learning. In
Tesauro, G., Touretzky, D., & Leen, T., editors, Advances in Neural Information Processing Systems
(volume 7), Cambridge, MA. MIT Press.

Lincoln, W. & Skrzypek, J. (1989). Synergy of clustering multiple back propagation networks. In
Touretzky, D., editor, Advances in Neural Information Processing Systems (volume 2), (pp. 650-659),
San Mateo, CA. Morgan Kaufmann.

Maclin, R. & Shavlik, J. (1995). Combining the predictions of multiple classifiers: Using competitive
learning to initialize neural networks. In Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence, Montreal, Canada.

Mani, G. (1991). Lowering variance of decisions by using artificial neural network portfolios. Neural
Computation, 3:484-486.

Opitz & Shavlik

Nowlan, S. & Sejnowski, T. (1992). Filter selection model for generating visual motion signals. In
Hanson, S., Cowan, J., & Giles, C., editors, Advances in Neural Information Processing Systems (volume
5), (pp- 369-376), San Mateo, CA. Morgan Kaufmann.

Opitz, D. (1995). An Anytime Approach to Connectionist Theory Refinement: Refining the Topolo-
gies of Knowledge-Based Neural Networks. PhD thesis, Computer Sciences Department, University of
Wisconsin, Madison, WI.

Opitz, D. & Shavlik, J. (1993). Heuristically expanding knowledge-based neural networks. In Pro-
ceedings of the Thirteenth International Joint Conference on Artificial Intelligence, (pp. 1360-1365),
Chambery, France. Morgan Kaufmann.

Opitz, D. & Shavlik, J. (1994). Using genetic search to refine knowledge-based neural networks. In Pro-
ceedings of the Eleventh International Conference on Machine Learning, (pp. 208-216), New Brunswick,
NJ. Morgan Kaufmann.

Perrone, M. (1992). A soft-competitive splitting rule for adaptive tree-structured neural networks. In
Proceedings of the International Joint Conference on Neural Networks, (pp. 689-693), Baltimore, MD.

Provost, F. & Danyluk, A. (1995). Learning from bad data. In Workshop on Applying Machine Learning
in Practice, held at the Twelfth International Conference on Machine Learning, Tahoe City, CA.

Shapire, R. (1990). The strength of weak learnability. Machine Learning, 5:197-227.

Sollich, P. & Krogh, A. (1996). Learning with ensembles: How over-fitting can be useful. In Touretsky,
D., Mozer, M., & Hasselmo, M., editors, Advances in Neural Information Processing Systems (volume
8), Cambridge, MA. MIT Press.

Towell, G. & Shavlik, J. (1994). Knowledge-based artificial neural networks. Artificial Intelligence,
70(1,2):119-165.

Tresp, V. & Taniguchi, M. (1995). Combining estimators using non-constant weighting functions. In
Tesauro, G., Touretzky, D., & Leen, T., editors, Advances in Neural Information Processing Systems
(volume 7), Cambridge, MA. MIT Press.

Wolpert, D. (1992). Stacked generalization. Neural Networks, 5:241-259.

Zhang, X., Mesirov, J., & Waltz, D. (1992). Hybrid system for protein secondary structure prediction.
Journal of Molecular Biology, 225:1049-1063.

